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Observing others’ actions enhances muscle-specific cortico-spinal excitability, reflecting
putative mirror neurons activity. The exposure to emotional stimuli also modulates
cortico-spinal excitability. We investigated how those two phenomena might interact
when they are combined, i.e., while observing a gesture performed with an emotion,
and whether they change during the transition between adolescence and adulthood, a
period of social and brain maturation. We delivered single-pulse transcranial magnetic
stimulation (TMS) over the hand area of the left primary motor cortex of 27 healthy adults
and adolescents and recorded their right first dorsal interossus (FDI) muscle activity (i.e.,
motor evoked potential – MEP), while they viewed either videos of neutral or angry hand
actions and facial expressions, or neutral objects as a control condition. We reproduced
the motor resonance and the emotion effects – hand-actions and emotional stimuli
induced greater cortico-spinal excitability than the faces/control condition and neutral
videos, respectively. Moreover, the influence of emotion was present for faces but not
for hand actions, indicating that the motor resonance and the emotion effects might be
non-additive. While motor resonance was observed in both groups, the emotion effect
was present only in adults and not in adolescents. We discuss the possible neural bases
of these findings.

Keywords: mirror neurons, TMS, motor evoked potentials, anger, late adolescence

INTRODUCTION

Previous studies have shown that visual information received during actions’ observation is also
processed as motor information, i.e., in terms of a motor resonance. At the neural level this is
implemented by the engagement of mirror neurons, mainly found in the premotor and parietal
cortices, which are active both during action observation and during action execution. This mirror
neurons system (MNS) might provide the foundation for social understanding. Indeed, mirroring
external events would allow us to “resonate” with others while viewing them acting and might be
crucial for understanding their intentions, beliefs and goals (Rizzolatti et al., 2001; Rizzolatti and
Craighero, 2004; Fadiga et al., 2005; Agnew et al., 2007; Catmur et al., 2007). Understanding others’
intentions also requires emotional and empathic processing (Agnew et al., 2007). Interestingly,
viewing others’ emotional facial expressions recruits brain regions involved while we ourselves
experience similar emotions (e.g., Carr et al., 2003; Wicker et al., 2003). Furthermore, MNS activity
has been shown to be higher in individuals showing higher accuracy in emotion discrimination
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and recognition (Enticott et al., 2008). The link between MNS
and emotion is also highlighted by studies showing that exposure
to emotional stimuli can modulate MNS response. For instance,
Enticott et al. (2012a) have reported that the increased motor
excitability during action observation was further enhanced
if negative emotional stimuli had been presented before the
observation period as compared to a condition where positive
stimuli had been presented. Not only pictures or videos inducing
emotions can affect movements but also linguistic material.
Indeed, Spadacenta et al. (2014) showed decreased reaction
time and mistakes in a reaching task after processing negatively
valenced verbs as compared to neutral verbs, suggesting that
the automatic attraction of attention by the former speeds
up the activation of motor circuitry, illustrating the tight link
between action and emotion even in language processing.
Besides, a rich literature puts forward the engagement of the
motor system during emotional processing (e.g., Frijda, 2009;
Tamietto et al., 2009). In particular studies using transcranial
magnetic stimulation (TMS) have revealed increased cortico-
spinal excitability, reflecting activation of the motor system, while
subjects were exposed to emotional stimuli unrelated to action,
either in the visual (Baumgartner et al., 2007; Hajcak et al., 2007;
Schutter et al., 2008; Coombes et al., 2009; Coelho et al., 2010; van
Loon et al., 2010; Enticott et al., 2012a), auditory (Baumgartner
et al., 2007; Komeilipoor et al., 2013) olfactory (Rossi et al., 2008),
or verbal domain (Oathes et al., 2008; Baumert et al., 2011).
Some of these studies reported larger motor evoked potentials
(MEPs) only while viewing unpleasant stimuli as compared to
neutral and pleasant ones (Coelho et al., 2010; Enticott et al.,
2012a). Others found that, irrespective of valence, emotional
arousal could enhance cortico-spinal excitability (Baumgartner
et al., 2007; Hajcak et al., 2007; Coombes et al., 2009; van Loon
et al., 2010; Borgomaneri et al., 2012). Lastly, while the tight
link between action and emotion is undeniable, the direction of
their mutual influence is not always well established. For example
negative stimuli (e.g., painful, fearful stimulations) might either
induce avoidance behaviors (Morrison et al., 2007; Schutter et al.,
2008) or approaching ones (Avenanti et al., 2005). Nevertheless,
altogether, these findings are in line with theories suggesting that
emotionally salient stimuli might be viewed as motivators for
action and thereby influence the execution of future movements
(de Gelder, 2009; LeDoux and Damasio, 2013).

One question that remains unexplored is to which extent
the “action-observation” and “emotion” effects on motor activity
are comparable and whether they could add to each other. We
set out to bring some elements of response to this question by
combining emotional modulation and action observation and
investigating the modulation of cortico-spinal excitability by
emotions embedded into the observed action, in this case an
angry gesture.

In addition, we wanted to explore how MNS activity in
response to action observation and emotion perception could
be modulated by individual factors related to social cognition.
Some deficits in MNS functions have been reported in individuals
with autism (Enticott et al., 2012b) pointing toward a relationship
between MNS and social functioning, although the results are
mixed (review in Hamilton, 2013). More convincingly, fMRI

and TMS studies have reported a correlation between MNS
activity and social abilities, such as empathy, in the normal
population (Gazzola et al., 2006; Puzzo et al., 2009; Jola et al.,
2012). If MNS activity is related to social cognition ability,
one might expect to observe changes during the lifespan when
social abilities develop. In this respect late adolescence is a
crucial period when social behavior as well as brain structure
and function undergo unique changes (Grosbras et al., 2007).
We define the period of late adolescence operationally as the
period comprising the transition between high school and higher
education, thus ranging from about 17–19 years. Others have
referred to this period as “emerging adulthood” (Arnett, 2000)
or youth (Steinberg, 2013). This period is characterized by
an abrupt change in social context, while fundamental social
abilities, such as perspective taking (Dumontheil et al., 2010),
theory of mind (Moor et al., 2012) and some aspects of emotion
processing (Rothman and Nowiki, 2004; Tottenham et al., 2011)
are still not adult-like. Brain activity during executive tasks
involving social or emotional stimuli also changes in this age
range (Monk et al., 2003; Hare et al., 2008; Veroude et al., 2013),
suggesting that the increased sensitivity to emotional stimuli
in late adolescents might be linked to immature connectivity
between frontal and prefrontal regions supporting executive
control and subcortical regions involved in emotional processing.
In parallel, developmental morphometric brain imaging studies
show that white matter structure and gray matter density display
a protracted developmental time course into the early twenties,
particularly in prefrontal, parietal and limbic regions important
for linking executive control and emotion processing (Giedd
and Rapoport, 2010; review in Lenroot and Giedd, 2006; Lebel
and Beaulieu, 2011). In this view we hypothesize that the motor
system and the MNS would be more influenced by emotion in
late adolescents than in adults.

In summary, we asked two questions: (1) Is the MNS activity
during action observation modulated by emotion embedded in
the observed gesture? and (2) Does the emotion modulation of
the MNS change with age, at the transition into adulthood?

To probe MNS activity, we used single-pulse TMS over the
hand representation of the primary motor cortex while recording
muscle activity. The resulting responses, the MEPs, provide
us with a read-out of cortico-spinal excitability, and thus of
motor system engagement, at the moment of stimulation. It
is well established that MEP amplitude increases during action
observation and that this reflects MNS activity (Fadiga et al.,
1995; Strafella and Paus, 2000; Gangitano et al., 2001; Aziz-Zadeh
et al., 2002; Maeda et al., 2002; Clark et al., 2003; Patuzzo et al.,
2003; Montagna et al., 2005; Avenanti et al., 2007). We applied
TMS while participants passively watched short videos of object-
directed hand actions that were performed either in a neutral way
or an in angry way. In accordance with previous studies using this
method, the hand orientation in the video matched the one of
the participant (Maeda et al., 2002), and we delivered the TMS
pulse over the hemisphere contralateral (i.e., left) to the hand
performing the action (i.e., right; Aziz-Zadeh et al., 2002), at the
time of maximum use of the muscle where we recorded activity
(Gangitano et al., 2001). Further, to look at the effect of emotion
independently of the movement we also showed videos of facial
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expressions, either emotionally neutral or angry. We choose to
use emotions of anger, which are perceived as a social threat
signal (Green and Phillips, 2004), since their influence on motor
responses has been most consistently reported (Schutter et al.,
2008; Coelho et al., 2010; Enticott et al., 2012a; Ferri et al., 2013).

In line with the previous reports outlined above, we expected
that both neutral hand action videos and angry face expression
videos would induce larger MEP amplitudes than neutral face
expression videos, which in turn should not be different from
control videos of objects in motion. We also hypothesized that if
the effects of emotion and action observation are independent we
would observe a larger increase of the cortico-spinal excitability
when they are combined in the angry hand action condition.
In contrast, if they rely on the same modulatory pathway to
the motor cortex, then their respective effect might not add.
Furthermore, we hypothesized that the effect of emotion would
be higher in late adolescents than in adults.

MATERIALS AND METHODS

Participants
Healthy students from the University of Glasgow, Scotland,
took part in this experiment. Forty-two datasets were recorded
(20 adults and 22 adolescents). All datasets for which more
than half of the MEP were contaminated by noise and thus
undistinguishable or were inferior to 0.1 mV were discarded.
Consequently, only 27 of them were included in this analysis:
14 young adults between 23 and 25 years old [mean (SD)
age 24 (0.78), 9 females], 13 late adolescents between 17 and
19 years old [mean (SD) age 18 (0.82), 9 females]. Except two
participants, all were right-handed. They were naïve to the aim of
the study. They received ten British pounds as a compensation for
their participation. Each participant filled a safety questionnaire
ensuring that they had no contraindication to TMS (Rossi et al.,
2009). A written informed consent was obtained from all the
participants. This study was approved by the ethics committee
of the College of Science and Engineering at the University
of Glasgow (CSE01404) and in line with 1964 Declaration of
Helsinki.

Thirty-two additional participants took part in an online
experiment to rate the stimuli. They also belonged to two groups:
17 young adults between 22 and 27 years old [mean (SD) age 25
(1.41), 11 females], 15 late adolescents between 16 and 19 years
old [mean (SD) age 18 (1.12), 9 females].

Transcranial Magnetic Stimulation and
EMG Recordings
Single-pulses of TMS were delivered over the left primary motor
cortex (M1) using a circular coil (diameter 9 cm) connected to a
biphasic MagStim Rapid2 Stimulator (Magstim, Whitland, UK).
The maximum output on the single-pulse delivery mode is 3.5
Teslas.

The EMG activity of the first dorsal interossus (FDI) was
recorded using a CED (Cambridge Electronic Device) amplifier
and the software Signal (4.07). We placed three silver-chloride
electrodes on the participants to record the right FDI activity. By

palpating the FDI of the participants while they moved up and
down the index finger, we put the active electrode on the belly
of this muscle. The reference electrode was placed on the joint
of the index finger and the ground electrode on the elbow. Prior
to electrode attachment with surgical tape, all these sites were
cleaned with alcohol. We also applied electrolyte cream (EC2
Astro-Med, Inc Subsidy) on the electrodes to improve the contact
between the electrodes and the skin.

The first step in the TMS session consisted in localizing
the optimal site on the scalp to evoke responses in the right
FDI. Participants wore a tight swimming cap to allow us to
mark localizations. They were seated comfortably with their head
supported by padded chin- and forehead- rests. The coil was first
placed over the approximate location of the hand motor area over
the left hemisphere using vertex and inion landmarks (Clark et al.,
2003). The stimulator output was set at 60% of the maximum.
The target area was explored by displacing the coil in small steps
until responses could be evoked in the right FDI and therefore
MEPs detected. During this stage, isolated pulses were separated
by at least 7 s. Once the spot with the highest responses was
localized, we marked the site on the cap to ensure consistent
coil positioning across the experiment. For the duration of the
experiment, the same experimenter was responsible for holding
the coil in place, with the help of an articulated arm (Manfrotto,
Inc.) fixed on the same support as the chin- and forehead-rests.

The second step consisted in determining the resting motor
threshold. To this end, we lowered the intensity stepwise until we
reached an intensity for which we could detect only five MEPs
larger than 50 mV out of 10 consecutive trials. This intensity
was considered as the individual resting motor threshold. This
threshold didn’t differ significantly between the two age groups
[t(24) = 0.73, p = 0.47]: the means (SD) of the resting motor
threshold were 45.43% (8.47) of the stimulator maximal output
for adults and 47.61% (6.96) for adolescents. The intensity
was set to 120% of the individual resting motor threshold for
the experiment. Therefore, the means (SD) of the experiment
stimulation intensities were 53.93% (9.63) for adults and 57.00%
(8.26) for adolescents.

Stimuli and Tasks (TMS and Online
Experiment)
Five kinds of 2-s black-and-white video clips were presented
on an 18-inch CRT screen located 45 cm away from the
participants. They were selected from a set used in previous fMRI
studies (Grosbras and Paus, 2006; Shaw et al., 2012; Tahmasebi
et al., 2012). These stimuli showed hand actions (stirring with
a spoon, cutting with scissors, picking up a phone, drawing
with a pencil, moving a computer mouse, cutting with a knife,
hammering and lifting a glass), face movements (e.g., actors
twitched their nose, opened their mouth, blinked their eyes) or
object movements (e.g., flag, metronome, water, wheel, helices
or windscreen wipers). The hand and face movements could be
performed either in a neutral or in an angry way. The object-
directed hand action videos showed a right hand completing
actions toward an object, with all actions clearly involving the
right FDI. While participants watched these videos, the TMS
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pulse was timed to occur at the start of the grasp, which is likely
to induce the highest motor facilitation (Urgesi et al., 2010). The
face movements included either a shift from neutral to angry
expressions or ambiguous non-emotional movements. Neutral
object videos included videos of objects in movements without
any human agent. This condition was included in order to verify
the specificity of the action observation and emotion effects and
was thus considered as the control condition. For the face and
control stimuli, the timing of the TMS pulse was set so as to
match, on average, that of the one determined for the hand
action videos. There were eight different stimulus exemplars per
condition, one being selected semi-randomly for each trial.

The videos were blocked per condition with a block
comprising 24 videos separated by 5 s inter-trial intervals. Within
a block, each individual stimulus was thus presented three times.
One pulse per video was delivered. Two blocks were separated by
80 s long “rest” blocks during which a black-and-white picture of
a tree was presented. During these “rest” blocks, we delivered 11
pulses with an inter-pulse interval of 7 s on average. The order of
the five video blocks (Hand Neutral: HN, Hand Angry: HA, Face
Angry: FA, Face Neutral: FN, Control: Ctr) was counterbalanced
across participants.

Participants were instructed to look carefully at the videos
(or at the tree during the rest blocks), while staying, as much as
possible, still and relaxed. To prevent voluntary contractions of
the right FDI, they placed their right hand on a pillow and were
asked to relax their forearm and hand. Because of the strong noise
of the TMS, earplugs were offered to the participants. The whole
experiment lasted∼25–30 min.

Thirty-two independent participants performed an online
experiment in order to assess the subjective judgment of the
stimuli. They were requested to rate the emotion perceived,
while they viewed the videos used in the TMS experiment (hand
actions, face movements and objects movements). They rated
each video using a 15-points Likert scale: from “strong happiness”
(−7) to “strong anger” (7) going through “medium happiness,”
“neutral” (0) and “medium anger.” The happiness option was
added to ensure that the neutral videos did not convey any
emotional activation and that the angry videos had a negative
valence. Each video was presented only once. The presentation
order was counterbalanced across participants.

Data Analysis
Stimuli Ratings
The participants had to rate the intensity of the stimuli according
to two categories, happiness and anger, by using a single scale
from −7 (happiness) to 7 (anger) going through 0 (stimuli
considered as neutral). We investigated the effect of both the
different categories of videos (five types of videos: HN, HA, FA,
FN, Ctr) and the age-group (adults vs. adolescents) on the ratings
using a 5 × 2 repeated-measures ANOVA. Post hoc pairwise
comparisons were performed using t-tests. The critical p-value
was set at 0.05 for all the analyses.

TMS Data
We measured the peak-to-peak MEP amplitudes (in mV) using
an in-house Matlab script. The MEPs onsets varied across

participants (between 17 and 32 ms) but were constant within
participant. Therefore, we specified, for each participant, an
interval of interest in which the peak-to-peak amplitudes were
extracted automatically. In our dataset all trials had a clearly
distinguishable MEP superior to 0.1 mV. For each video block
and each rest block, we computed the median amplitude across
trials. A repeated-measures ANOVA conducted on the median
amplitudes of the five rest conditions revealed a trend toward
a decrease in MEPs values between the beginning and the
end of the experiment [F(4,26) = 2.12, p < 0.08 η2

= 0.70],
with no significant group differences in median amplitude
[F(1,25) = 1.48, p = 0.24, η2

= 0.05] nor interaction between
group and change across session [F(1,4) = 1.58, p = 0.34,
η2
= 0.04]. ANOVAs conducted in individuals on the trials of

the five different rest conditions revealed significant (p < 0.05)
changes in 16/27 participants (7/13 adolescents). Therefore, we
decided to normalize the median value of each video block by
dividing it by the median value of the rest block presented just
before.

We entered these data into a 2 × 5 mixed-model repeated-
measure ANOVA, with group (adults vs. adolescents) as a
between subjects variable, condition (HN, HA, FA, FN, Ctr) as
the within subject factor and subject and condition/subject as
random intercepts and random slopes (Scheffé, 1959, chapter 8;
Barr et al., 2013). To explore the interactions, we then specified
the following contrasts to test our hypotheses. To test whether
emotion and action had an additive effect on cortico-spinal
excitability we compared HA and HN, with age group as a
between subject factor and subject/condition as a random effect
factor. To investigate how age affects the action observation effect
and its specificity we compared HN and Ctr as well as HN vs.
FN between the two groups, still modeling subject/condition as
random slope. To investigate how age affects the emotion effect
we tested group differences in the contrasts FA vs. Ctr and FA
vs. FN. We present results without any correction for multiple
comparisons. This statistical analysis was conducted in R (R-2015
package; R Core Team, 2015).

RESULTS

Behavioral Results
All stimuli were perceived as either neutral or angry and none was
perceived as happy. The 5 (video conditions) × 2 (age groups)
repeated-measures ANOVA showed a main effect of videos on
value of ratings [F(4,120) = 69.92, p < 0.0001], with no age
effect [F(1,30) = 0.37, p = 0.5], nor interaction [F(4,120) = 0.83,
p = 0.5]. T-tests were performed to statistically quantify the
differences it may exist between pairs of conditions (see Figure 1).
As expected, HA and FA were both perceived as inducing
a significantly greater anger intensity than HN [HA/HN:
t(31) = 8.29, p < 0.0001; FA/HN: t(31) = 10.65, p < 0.0001],
Ctr [HA/Ctr: t(31) = 8.53, p < 0.0001; FA/Ctr: t(31) = 11.44,
p < 0.0001] and FN [HA/FN: t(31) = 6.67, p < 0.0001; FA/FN:
t(31) = 9.47, p < 0.0001]; therefore confirming the previous
validation of our stimuli. We also observed that angry face stimuli
(FA) were rated as showing significantly greater anger intensity
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FIGURE 1 | Mean of the ratings’ values across the group (from −7 = happiness to 7 = anger, going through 0 = neutral) for each kind of videos (i.e.,
Hand Anger, Hand Neutral, Face Anger, Face Neutral, Control). Post hoc pairwise t-tests were performed to statistically quantify the a priori differences it may
exist between each condition. ∗∗∗p < 0.001, corrected for multiple comparisons.

than angry hand stimuli [FA/HA: t(31) = 6.58, p < 0.0001].
All these reported comparisons were corrected with Bonferroni
correction. We didn’t observe any difference between neutral
videos: neutral hand, face and control were rated similarly.
Importantly, when looking at individual ratings within each
category (i.e., HN, HA, FA, FN, Ctr), we did not observe any
difference between the eight different video exemplars.

TMS Results
Figure 2 presents the normalized MEPs averaged for adults and
adolescents separately. Qualitatively, we observed the expected
pattern in adults’ results, reflecting both the motor resonance
effect (i.e., neutral hand actions produced higher excitability than
control and neutral faces) as well as the emotion effect (i.e., angry

faces induced higher excitability than control and neutral ones;
see Figure 2 and Table 1). In contrast late adolescents displayed
a different and less expected pattern, with high MEPs for HN
but not for emotional stimuli (see Figure 2 and Table 1). This
figure also shows that adolescents present higher cortico-spinal
excitability than adults while viewing HN [F(1,646) = 5.576,
p = 0.0185], FN [F(1,646) = 21.67, p < 4 × 10−6] and Ctr
[F(1,633) = 17.32, p = 4 × 10−5] videos while no difference
was observed when participants viewed emotional stimuli (FA:
p= 0.232; HA: p= 0.235).

The ANOVA of the normalized MEP amplitudes revealed a
main effect of video type [F(4,3211) = 8.86, p = 4. 10−7], a main
effect of group [F(1,3211)= 7.79, p= 0.0053] and an interaction
between group and video condition [F(4,3211) = 2.743,

FIGURE 2 | Motor evoked potential (MEP) amplitudes (normalized values) for each kind of videos (i.e., Hand Anger, Hand Neutral, Face Anger, Face
Neutral, Control) for adults and adolescents. Post hoc pairwise t-tests were performed to statistically quantify, for each condition, the differences it may exist
between adults and adolescents. ∗p < 0.05, ∗∗∗p < 0.001. Bars indicate the standard error.
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TABLE 1 | Results of the post hoc tests which, assess the differences
between conditions for adults (left) and adolescents (right) separately.

Adolescents

Conditions HA HN FA FN CTR

HA 0.0555 0.602 0.432 0.824

HN 0.453 0.0168 0.244 0.0476

FA 0.046 0.273 0.723 0.805

FN 6.7 10−5 0.000194 2.17 10−6 0.352

CTR 2.3 10−8 1.39 10−6 0.0076 0.183

A
d

ul
ts

Bold numbers highlight significant differences between conditions. Hatched cells
highlight the significant interactions (i.e., video condition × group).

p = 0.027]. We computed post hoc planed contrasts to explore
these main effects and interactions based on our hypotheses.
They revealed that, as expected, neutral hand (HN) induced
significantly higher excitability compared to control stimuli
[F(1,1277) = 4.068, p = 0.041] reflecting the action observation
effect. Neutral hand also induced higher excitability than neutral
face stimuli [F(1,1290) = 7.93, p = 0.0049], reflecting the
specificity of this effect. There was no interaction between these
effects and age group. We also observed an effect of emotion:
the condition FA (emotion effect without action observation
effect) induced higher change in excitability than control
[F(1,1276) = 11.66, p < 7 × 10−5] and FN [F(1,1291) = 4.418,
p = 0.0357]. The FA vs. Ctr contrast showed a mild interaction
with age group [F(1,1276)= 3.471, p= 0.062]. Indeed comparing
FA and Ctr tested in each group separately showed a significant
effect in the adult group (p < 0.0076) but not in the late
adolescent group (p < 0.805). The contrast FA vs. FN also
showed an interaction with age group [F(1,1291) = 15.970,
p < 7 × 10−5]. Indeed comparing FA and FN tested in each
group separately showed also a significant effect in the adult
group (p < 2.17 × 10−6) but not in the late adolescent group
(p < 0.723).

We used additional planned contrasts to compare the
effect of action observation and emotion, respectively, on
cortico-spinal excitability and their interaction with age. There
was no difference between hand with and without emotion
[HA vs. HN; F(1,1292) = 0.513, p = 0.47], indicating that
observing a gesture performed with anger does not add to
change in excitability due to neutral action observation. No
interaction with age group was observed. To directly compare
the magnitude of the effects of action and emotion we compared
directly FA vs. HN. We did not observe any difference
[F(1,1293) = 1.135, p = 0.287]. For completes, Table 1 presents
all the possible post hoc tests performed in the two age groups
separately.

In summary, our data show a main effect of condition, which
replicates the action observation and emotion effect reported
in the literature. They indicate that the action observation
and the emotion effects on cortical excitability are of similar
magnitude and not additive in the case of angry hand action.
Our data also shows that the video conditions influence cortico-
spinal excitability differently in the two age groups. While
the action observation effect is present in both groups, the

emotion effect is significant only for the adults and not
for the late adolescents. This interaction is mainly due to
increased excitability for the control and the neutral face
conditions, showing high responses variability, in the adolescent
group.

DISCUSSION

We used single-pulse TMS to assess the influence of action
observation only, emotion only, and the combination of both of
these components on cortico-spinal excitability. We also tested
whether the effects of emotion and action observation on motor
resonance change with age, at the transition between adolescence
and adulthood.

Using dynamic stimuli – i.e., videos presenting neutral/angry
others’ hand actions, neutral/angry facial expressions, or neutral
moving objects – we confirmed that both action perception and
emotional stimuli facilitate cortico-spinal excitability. Combining
these two factors by presenting angry gestures did not show any
additional augmentation in motor excitability compared to the
action observation (neutral hand movements) or the emotion
(angry face movements) factors presented in isolation. Lastly,
while the action observation effect was present in all participants,
the effect of emotion was observed in adults but not in late
adolescents, although the interaction was marginally significant
(p < 0.06).

Motor Resonance Modulation by Action
Observation and Emotion
By showing significantly larger changes in MEPs while
participants viewed neutral hand action videos compared to
neutral objects or neutral face expressions, our data complement
the corpus of experiments showing that motor excitability is
increased during action observation (Fadiga et al., 1995; Strafella
and Paus, 2000; Gangitano et al., 2001; Aziz-Zadeh et al., 2002;
Maeda et al., 2002; Clark et al., 2003; Patuzzo et al., 2003;
Montagna et al., 2005; Urgesi et al., 2006, 2010; Avenanti et al.,
2007, 2012).

The higher MEPs observed for angry faces compared to
control stimuli or to neutral faces also replicates previous studies
reporting that viewing emotional stimuli increases cortico-spinal
excitability in a task-unrelated way. These studies, however, had
mostly used pictures from the International Affective Picture
System (IAPS, Baumgartner et al., 2007; Hajcak et al., 2007;
Coombes et al., 2009; Coelho et al., 2010; van Loon et al.,
2010; Borgomaneri et al., 2012, 2014; Enticott et al., 2012a).
Only a couple of studies had shown that presentation of social
emotional signals such as body movements (Borgomaneri et al.,
2012, 2015) or fearful faces (Schutter et al., 2004) also yielded
increase in MEPs amplitude. Taken together these and our results
support a close relationship between the mechanisms involved in
processing threat-related signals and the motor system. At the
neural level this could be supported by anatomical connections
between limbic regions, such as the amygdala, and cortical motor,
premotor and sensorimotor areas (e.g., Grèzes et al., 2014). This
is in line with, functional studies showing activations in both
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motor- (premotor and inferior frontal cortices) and emotion-
(amygdala, insula) related regions while participants watch
emotional facial expressions (e.g., Carr et al., 2003, reviewed in
Grèzes and Dezecache, 2014).

Our main goal here was to compare the effects that action
observation and emotion, respectively, have on cortico-spinal
excitability and how these may interact in a condition where the
emotion is conveyed by the observed action. We revealed that
the difference in MEPs between emotional and neutral stimuli
was observed only in the context of face stimuli, which were
not directly related to the targeted muscle representation. In
contrast, in the action observation condition, we did not observe
any difference between the neutral and angry hand actions. In
addition, the effect of emotion for the face stimuli was of same
amplitude as the effect of action observation, with no significant
difference between the angry face condition and either of the
hand conditions. Therefore, while combining action perception
and emotion in a single stimulus, we didn’t observe larger motor
responses than when only one of these components was included
in a stimulus, indicating that the two effects are not additive in
this case.

This might be explained by a ceiling effect: after a certain
point is reached, all muscle fibers are recruited and the motor
response cannot increase anymore. However, although we did not
build recruitment curves, this seems unlikely when stimulating
at 120% of individual motor threshold (Kojima et al., 2013;
Goetz et al., 2014). The maximum amplitude we observed across
all participants was 6 mV with average maximum amplitude
being 2.9 mV (SD = 1.55) across participants, which is below
the maximum that could be expected in most participants for
the FDI. Alternatively, the emotion induced by angry hand
movements might not have been intense enough compared
to the emotion conveyed by angry face expressions, and thus
too weak to induce an effect above the action observation
effect. Yet ratings showed that the difference between angry
and neutral hand movements was highly significant despite
no effect at the level of the MEPs. This seems thus to rule
out the possibility that the lack of physiological difference
between HA and FA was due to the weaker conscious emotional
perception.

The lack of difference between emotion and action
observation here is at odd with a previous study, which
showed indication of additivity between increased cortico-
spinal excitability due to emotional arousal and increased
excitability due to preparation of movement. van Loon et al.
(2010) measured MEPs elicited by M1 TMS during motor
preparation in a reaction-time task. Prior to and irrelevant
to the task, pictures that could bear a positive, negative or
neutral valence were presented. The presentation of emotional
pictures was associated with larger MEPs than the presentation
of neutral ones. Crucially, this effect was larger during the
motor preparation phase when the cortico-spinal excitability
was the highest. The discrepancy between this report and our
results suggests that hand-action observation might influence
motor excitability through a different pathway than motor
preparation, possibly overlapping with the mechanism by
which emotion influences the motor system (see discussion in

Bestmann and Krakauer, 2015). This is in line with the report
by Oliveri et al. (2003) showing that pre-conditioning TMS
applied over the supplementary motor area (SMA) selectively
increased motor excitability during responses to emotional
stimuli, but not for responses to neutral stimuli or at rest.
In contrast pre-conditioning the dorsal premotor cortex did
not show this effect. This suggests that a specific pathway
including the SMA, which may be modulated by amygdala
activity (de Gelder et al., 2012; Grèzes et al., 2014), is involved
in transforming motivation into motor responses and that this
pathway could be influenced by the emotional state as well
as by the observation of other people. Modulatory changes
occurring in this pathway could add to changes occurring at
the level of motor programming, as it was the case in van Loon
et al. (2010) study discussed above and in studies showing
increased motor activity during imitation as compared to action
observation or execution alone (Clark et al., 2003) or studies
showing additive effects of action observation and motor imagery
(which supposedly engages motor preparation; Sakamoto et al.,
2009).

Age Effect: Emotions Effect on Motor
Resonance Is Observed in Adults but Not
in Adolescents
As late adolescence is a period of increased emotional
sensitivity we could have expected an increased motor resonance
while viewing emotional stimuli. If anything, we observed a
trend toward a weaker effect of emotion in adolescents and
when we considered the adolescent group alone, we did not
observe differences in motor response amplitudes when viewing
emotional compared to neutral videos. The lack of emotion effect
in adolescents is likely not explained by the way adolescents felt
the emotion expressed by the videos as no group differences
were observed regarding the ratings. It might be due to large
responses for FN and Ctr videos, greater than those observed
in adults. However, this might be lessened as high responses
variability is observed in this population for neutral faces and
control stimuli. Therefore, to explain adolescent group pattern,
more studies may be needed. Another explanation might be that
the angry faces were processed differently in adolescents and in
adults. FMRI studies have shown that adolescents engaged the
same brain regions as adults, yet with lower activity for the angry
faces but not for the neutral ones (Shaw et al., 2012; Tahmasebi
et al., 2012). Other studies have reported higher amygdala
activity in adolescents than in adults while viewing social threat-
related stimuli (Hare and Casey, 2005; Guyer et al., 2008),
although late adolescents have rarely been tested. Also, there
might be less integration between emotion and motor control
neural circuits in adolescents. Indeed, (1) a few studies have
shown that connections between the limbic system (including
the amygdala) and the prefrontal cortex mature from childhood
to adulthood and contribute to developmental differences in the
efficient recruitment of cognitive control (Elzinga and Bremner,
2002; Liston et al., 2006; Steinberg, 2008; Christakou et al.,
2011) and (2) a direct pathway between the amygdala and
motor cortical regions including the primary motor cortex,
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the premotor cortex and the supplementary motor area was
also recently described by Grèzes et al. (2014), which could
provide an anatomical basis for the influence of motor behavior
by amygdala activity. An immaturity of these limbic/motor
connections could account for the lack of emotion effect on
motor excitability in adolescents. Although these results should
be taken with care due to the low sample sizes, they highlight the
importance of studying late adolescence as a period of changes
in integration between action and emotion representation.
They call for further brain imaging studies investigating this
question.
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