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This case study examined the effects of auditory working memory (WM) training on
neuroplastic changes in stroke survivors and how such effects might be influenced by
self-perceived stress. Two participants with a history of stroke participated in the study.
One of them had a higher level of self-perceived stress. Both participants underwent a
course of auditory WM training and completed baseline and post-training assessments
such as self-perceived stress, performance satisfaction questionnaires, behavioral task
performance, and functional magnetic resonance imaging. They were trained on a
computerized auditory WM task (n-back) 5 days a week for 6 weeks, for a total of
20h. Participant 1 had high levels of perceived stress, both pre- and post-training,
and showed improvement on the satisfaction aspect of functional engagement only.
Participant 2 had lower levels of perceived stress and demonstrated improvements
on all performance tasks. Neuroimaging results showed evidence of improved neural
efficiency on the trained task for participant 2. The results shed light on the need to
evaluate psychological influences, e.g., stress, when studying the neuroplastic changes
in people with stroke. However, the case design approach and other factors that might
have positively influenced outcomes mean that these results must be interpreted with a
great deal of caution. Future studies using a larger sample are recommended to verify
the findings.
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INTRODUCTION

Working memory (WM) is considered one of the most important cognitive components for stroke
rehabilitation (Cicerone et al., 2011). WM is defined as the capacity to maintain and manipulate
information for a period of several seconds (Baddeley, 1986).

The linkage between stress and cognition can be drawn from the cognitive activation theory
of stress (Ursin and Eriksen, 2004). Stress response activates when there is a discrepancy between
what really happens and what is expected (Ursin, 2009). An individual evaulates whether a situation
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is stressful based on prior experience, and his/her response to
stress can be either positive (i.e., effective coping mechanisms),
negative (i.e., feeling of hopelessness), or uncertain (i.e., feeling
of helplessness; Levine and Ursin, 1991). Thus, the level and
duration of stress can increase if the individual has disorted
expectations and weak coping mechanisms. Sustained stress
has many pathological effects; a well-known effect is the
excessive exposure of glucocorticoid, which has adverse effects
in the hippocampus, a structure vital to learning and memory
(Sapolsky, 1996).

The relationship between stress and WM has been shown in
recent studies. For example, stress exposure from environmental
disasters is shown to impaire WM performance (Li et al., 2015).
Individuals exposed to prolonged academic stress are found to
have positive correlation between self-perceived stress scores and
brain electrical activities on WM tasks (1- and 2-back tasks; Yuan
et al,, 2015). Some researchers show that WM training improves
WM performance in healthy adults with stess (Gavelin et al.,
2015). Furthermore, a behavioral study has found improvements
of cognitive function after working memory training in patients
with stroke, but the study did not include mesaures for self-
perceived stress (Westerberg et al., 2007). Hence, how stress
affects the neuroplsatic changes after WM training has yet to be
addressed.

In healthy adults, neuroplastic changes associated with WM
training have been widely examined using n-back tasks and
functional magnetic resonance imaging (fMRI; e.g., Klingberg,
2010; Schneiders et al., 2012). With identical paradigms, auditory
WM tasks appear to be more difficult than their visual
counterparts (Jaeggi et al., 2010), providing an added value
for using auditory n-back tasks as training. Auditory WM
tasks typically activates the inferior and middle frontal gyri,
middle and superior temporal gyri, and superior and inferior
parietal lobes (Alain et al, 2001; Owen et al., 2005). With
training, most studies reported decreased neural activations in
the inferior, superior and middle frontal gyri and the inferior
and superior parietal lobes (Garaven et al, 2000; Landau
et al., 2004). Activation decreases reflect more efficient neural
processing, i.e., the same task can be performed with fewer
cognitive resources compared to pre-training conditions (Kelly
and Garavan, 2005). Some studies reported activation increase
in frontal and parietal regions after training, suggesting a
redistribution of neural networks that facilitate skill transfer
(Olesen et al., 2004; Kelly and Garavan, 2005; Westerberg and
Klingberg, 2007).

Although, previous studies have shown that WM training is
effective for improving cognitive performance (e.g., Westerberg
et al., 2007), some studies have reported that WM training does
not transfer to other tasks or skills (e.g., Shipstead et al., 2012;
Melby-Lervag and Hulme, 2013). For studies demonstrating
positive outcomes, a training period of 5 weeks was commonly
used to achieve neuroplastic effects on n-back tasks (Klingberg,
2010). Another feature in WM training is adaptive procedures in
which the task difficulty co-varies with performance (von Bastian
et al.,, 2013). Some studies used non-adaptive procedures where
task difficulty was controlled (e.g., Li et al., 2008; Leung et al,,
2014).

Objectives
This case study examined the effects of stress on the neuroplastic
changes of WM training in two stroke survivors.

BACKGROUND

Two participants with a history of stroke and demonstrated
memory problems in daily activites were recruited from an
out-patient clinic. The participants had difficulty with WM as
indicated by a score of 3 or above on WM items of the Cognitive
Failure Questionnaire (Broadbent et al., 1982). They were not
receiving any other therapies during the time of experiment and
were fitted for fMRI. Both participants gave written informed
consent. The study was approved by the Health Research Ethics
Board of the University of Alberta (UA).

Participant 1 was 37-year-old man and suffered a mild stroke
involving the right middle cerebral artery (MCA) 2 years before
the study. He also had the stroke 20 years ago. He had completed
a bachelor degree in a local college and was working full time
in a private company as a secretary. He was single, lived alone,
and had no documented history of any other neurological or
psychiatric conditions. He reported memory deficits that were
noticeable during work and social interaction with colleagues.

Participant 2 was 37-year-old woman and suffered a right-
sided cerebral infarction involving the right MCA 4 years before
the study. She had also sustained two episodes of brain-stem
cerebral infarction during hospitalization for her stroke. She had
completed post-secondary education and was working full time
as a managerial assistant in a company. She was single and
lived alone. Her job required her to interact with people, and
she reported having difficulties with concentration and memory
which affected her work performance.

Behavioral Assessments and Results
Perceived Stress Scale (PSS) is a commonly used psychological
instrument for measuring the perception of stress (Cohen et al.,
1983). The psychometric properties of PSS have been confirmed
(Lee, 2012). PSS has been used to assess perceived stress in
people with stroke (Ostwald et al., 2008; Santos et al., 2015). The
questions in PSS asked about participants’ feelings and thoughts
during the last month, and how often they felt a certain way. All
of the 10 items were used in this study. PSS scores were obtained
by reversing responses (e.g., 0 = 4 points, 1 = 3 points) to the
four positively stated items, and then summing the scores across
all items. Higher score indicated higher stress level.

Canadian Occupational Performance Measures (COPM)
identifies functional difficulties that are unique to an individual
(Law et al., 2005). Participants reported their satisfaction and
performance level on activities of their choice on an ascending
10-point scale. An increment of two or more points on either
scale over time has been shown to be clinically significant (Law
et al.,, 2005).

Test scores at baseline were shown in Table 1. Participant 1
showed a higher level of self-perceived stress (PSS = 27/40) than
participant 2 (PSS = 13/40). Both participants had comparable
performance scores (COPM performance scale = 5.3 and 5.5
for participant 1 and 2, respectively), but participant 2 was
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TABLE 1 | Results of PSS and COPM scores and the performance of
1-back and 2-back tasks during fMRI (3-back was not performed during
fMRI).

Participant 1 Participant 2

Pre Post Pre Post

PSS Total score 27/40 33/40 13/40 11/40
COPM?@ Mean performance (P) 5.3/10  5.3/10 5.5/10  7.3/10
Mean satisfaction (S) 1.7/10  4.0/10 5.3/10 8.3/10
N-back 1-back hit rate (%) 94.2 96.1 97.8 100.0*
performance
during fMRI
1-back RT (ms) 567.9 669.4 691.1 605.9
2-back hit rate (%) 95.4 97.2 95.6 97.8*
2-back RT (ms) 599.9 674.5 897.0 771.0

RT, reaction time; Pre, pre-training testing; Post, post-training testing.

*Data from two instead of all three fMRI runs as one of the runs was contaminated due to
technical problems of the MRI scanner.

@Details of the goals and ratings (R, performance; S, Satisfaction): Participant 1 had three
goals: (1) attend to tasks at work (Pre: P =6, S = 2, Post: P = 6, S = 3); (2) able to stay
on conversation with others (Pre: P =5, S = 1; Post: P = 5, S = 6); and (3) do multiple
things at once (Pre: P =5, S = 2; Post: P = 5, S = 3). Participant 2 had four goals: (1)
attend details in tasks (Pre: P =6, S = 6; Post: P = 7, S = 8); (2) organize appointments
(Pre: P =6, S = 6; Post: P =8, S = 9); (3) stay on tasks without being distracted (Pre:
P=5,8=4;Post: P=7,S = 8); and (4) multitasking (Pre: P =5, S = 5, Post: P = 7,
S=38).

more satisfied with her task performance than participant 1
(COPM satisfaction scale = 1.7 and 5.3 for participant 1 and 2,
respectively).

Training Tasks and Schedule

The training tasks consisted of a series of auditory n-back tasks,
n = 1, 2, and 3, created using E-prime2.0 (Psychology Software
Tools). Participants monitored a series of auditory stimuli (letters
and digits) through headphones. They had to press a button
when a stimulus was identical to the one presented one trial
back (1-back), 2 trials back (2-back), or 3 trials back (3-back).
Stimuli were arranged in blocks and presented in a random
sequence.

The training sessions occurred 5 days a week for 6 weeks.
Each day, participants completed four tasks (10 min each) at
home. There was a gradual progression of task difficulty, meaning
that there were more 1-back than 2- or 3-back tasks in week 1
and more 3-back than 1- or 2-back tasks in week 6. The entire
training program consisted of 40 blocks for each type of task.
This training schedule controlled the amount of exposure to each
type of task (Li et al., 2008; Leung et al., 2014). A student met
with the participants once every week to give feedback on their
performance.

fMRI Scanning

Participants performed 1-back and 2-back tasks in an fMRI
session before and after training. From prior studies, Leung
et al. (2014) and Leung and Alain (2011), 3-back tasks were
difficult for patients and some healthy adults, which reduced the
reliability of neuroimaging results. Therefore, 3-back tasks were
not administered in fMRI. There were three runs for each session,

each containing six blocks of tasks, with each block followed by
a 30-s rest period. Each task block lasted 40 s and consisted of 20
trials, and was preceded by 2's of spoken instruction, indicating
1-back or 2-back task. Each trial consisted of an auditory stimulus
lasting 600 ms and a pause period lasting 1400 ms. Participants
pressed a button whenever they heard a target. The 1-back and
2-back tasks were randomly distributed with a total of nine blocks
for each task.

The fMRI scanning was performed at the Peter S. Allen
MR Research Center at UA. A 1.5-T MRI system (Siemens)
with a standard birdcage head coil was used. Structural T1
weighted anatomical volumes were obtained (axial orientation,
TR = 2080ms, TE = 4.38ms, FOV = 256mm, slice
thickness = 1 mm). T2* functional images were obtained using
EPI acquisition (TR = 1950 ms, TE = 40 ms, flip angle = 90°,
FOV = 256 mm, effective acquisition matrix = 64 x 64). Each
functional sequence consisted of 36 4-mm thick axial slices,
positioned to image the whole brain with a duration of 7 min
and 42s.

Overall Procedure

Participants attended an intake interview at UA. They were
assessed on PSS and COPM, and were given a hearing test
to ensure they had a normal range of hearing thresholds in
both ears. They performed the pre-training fMRI testing on
1-back and 2-back tasks. After that, they performed the training
at home using a laptop provided by the researchers. After
training, participants repeated the fMRI scanning and behavioral
assessments. A research assistant not involved in the training
administered the behavioral assessments.

Analysis of Behavioral Data

The total scores of PSS were reported. The mean scores of the
performance and satisfaction scales of the COPM were calculated
based on participants’ goals (Law et al, 2005). Hit rate and
reaction time of n-back tasks were extracted. The training data
was presented by dividing the mean hit rate and reaction time
obtained from each week by that of week 1.

Analysis of fMRI Data

Preprocessing was performed using Statistical Parametric
Map (SPM8) (Wellcome Department of Cognitive Neurology,
Institute of Neurology, UK), running under Matlab 2012a
(MathWorks, MA, USA). The first five images of each run
were removed to avoid unstable signals. The remaining images
of each run underwent a slice timing procedure to correct
for slice sequence. The images were re-aligned with the first
image for motion correction and co-registered with high-
resolution structural images. The images were then spatially
normalized and resliced to the MNI standard template (Montreal
Neurological Institute). The images were spatially smoothed
by convolution with a three-dimensional Gaussian kernel
(FWHM = 8 mm).

The pre-processed data were modeled as a general linear
model (GLM) using separate regressors for the sustained and
transient activities (Alain et al., 2008). The GLM model consisted
of 10 regressors which included both pre- and post-training
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data, each containing two types of blocks (1-back and 2-back
as sustained activity), two types of targets (hit response of 1-
back and hit response of 2-back as transient activity), and
a rest condition. The time course of the neural activity was
modeled using the canonical hemodynamic response function.
The resulting time series data was high-pass filtered with a
threshold of 128 s to remove low-frequency drift.

The first-level analysis was done by setting up T contrasts
for pair-wise comparisons. All contrasts were performed on
sustained activities (i.e., task blocks) to minimize neural
activations elicited by motor responses. A spatial cluster extent
threshold was applied by using AlphaSim with 1000 Monte Carlo
simulations to control for multiple comparisons. This procedure
yielded a minimum cluster size of 196l (correspond to 3
voxels in the original acquisition space), with a map-wise false-
positive probability of p < 0.03 (Alain et al, 2008). Hence,
only significant activations that had a cluster size of 196 pl and
p < 0.01 (corrected) for each voxel were reported. Activation
maps were presented using the MRIcron program (http://
www.sph.sc.edu/comd/rorden/mricro.html), and the regions of
activation were identified by Automated Anatomical Labeling
(AAL) on the standard MNI template (Tzourio-Mazoyer et al.,
2002).

RESULTS

Both participants completed 6 weeks of training. Both of
them showed improvement on the satisfaction scale of the
COPM, and participant 2 showed additional improvement
on the performance scale (see Table1 for the goals and the
corresponding ratings).

Regarding perceived stress, participant 1 showed higher scores
on PSS compared to participant 2 and an increase of PSS score
from the pre-training to the post-training testing (Table 1).
Participant 2 showed a stress level comparable to norm samples
(Cohen and Williamson, 1988), and the PSS scores were similar
in both the pre- and post-training testing.

For n-back tasks, both participants showed comparable
hit rates and reaction times during fMRI scanning (Table 1).
However, during training, participant 1 showed a gradual decline
in hit rate and response speed (i.e., longer reaction time) in all
of the n-back tasks over the 6-week period. Participant 2 showed
improvement in hit rate, especially during the 3-back task, and
reaction time across weeks (Figure 1).

Regarding neuroimaging findings, participant 1 showed
significant activation in the middle temporal gyrus and inferior
parietal lobe for the 1-back and 2-back tasks before training,
and in the middle temporal gyrus after training. There was
no indication of significant frontal activities for participant
1. For participant 2, there was significant activation in the
frontal and parietal regions in the 1-back task before training,
and the activation subsided after training. In the 2-back task,
there was significant activation in the frontal regions before
training and substantial activation in the middle temporal gyrus,
inferior parietal lobe, and cerebellum after training (Table 2 and
Figure 2).

A Hit rate
_ 12
ERE
g1
S 1
3 ---8--- 1-back P1
E 091 ---g0-- 2-back P1
E.z,os- R - e ---gr-- 3-back P1
H o, '»..A —=a—1-back P2
S 0.7 A —&— 2-back P2
s g X
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FIGURE 1 | Changes of task performance during training. All values are
relative to week 1. (A) Hit rate; calculated by dividing hit rate (%) in each week
by that in week 1; greater the value better the performance. (B) Reaction time;
calculated by dividing reaction time (ms) in each week by that in week 1;

greater the value slower the reaction time. P1, participant 1; P2, participant 2.

DISCUSSION

Neural activities were examined in two participants who had
different levels of self-perceived stress and self-perception of
task performance and satisfaction. Overall, participant 2 showed
favorable outcomes (i.e., reduced self-perceived stress, improved
performance and satisfaction on functional tasks, and improved
n-back performance). In contrast, participant 1 had a high
level of self-perceived stress over the training period and
showed improvement only on the satisfaction scale of the
COPM. Neuroimaging findings showed differences between the
two participants. While neural activation in the fronto-parietal
regions, core regions for WM, was decreased for participant 2,
there was no such activation in participant 1 in both the pre- and
post-training testing.

For participant 2, the decrease of fronto-parietal activation
was consistent with previous training studies in healthy adults
(Garaven et al., 2000; Landau et al., 2004) and stroke patients
(Leung et al.,, 2014). This suggests that the cognitive training
implemented for this participant result in increased neural
efficiency, as the process of updating and storage becomes more
efficient and consequently requires less effort during the training
(Kelly and Garavan, 2005).

Frontiers in Psychology | www.frontiersin.org

August 2016 | Volume 7 | Article 1266


http://www.sph.sc.edu/comd/rorden/mricro.html
http://www.sph.sc.edu/comd/rorden/mricro.html
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

Leung et al.

Self-perceived Stress and Stroke

TABLE 2 | T contrasts comparing the pre-training and post-training activation.

MNI coordinates

Brain regions L/R BA X y z T voxel
PARTICIPANT 1
1-back Pre > Post Middle temporal gyrus 37 66 —52 —4 3.78 162
Post > Pre Middle temporal gyrus L 20 —56 —36 —12 8.41 96
2-back Pre > Post Middle temporal gyrus R 37 60 —60 8 3.25 20
Inferior parietal lobe L 40 —b4 —34 50 2.85 64
Post > Pre Middle temporal gyrus R 20 58 —40 —-14 3.99 55
PARTICIPANT 2
1-back Pre > Post Middle frontal lobe R 6 36 2 60 4.00 267
Inferior frontal gyrus R 45 50 40 6 4.21 292
Middle temporal gyrus R 21 68 —46 —4 3.13 42
Inferior parietal lobe L 7 —26 —64 44 3.38 130
R 40 54 —48 42 3.68 305
2-back Pre > post Middle frontal gyrus L 45 —42 30 26 4.35 957
R 47 42 48 -10 3.44 729
Post > pre Middle temporal gyrus L 20 -38 14 —34 4.08 143
Inferior parietal lobe L 40 —56 —48 40 3.30 137
R 40 52 —-50 40 3.51 191
Cerebellum_Crus2 R 46 —74 —46 3.12 21

All activations are significant at p < 0.005 and cluster size >196 ul. Only true activations are listed. BA, Brodmann’s Area; L, left; R, right.

Participant 1 did not appear to show frontal activities which
are crucial for n-back tasks. He also performed poorly during
the training, with decreased task accuracy and increased response
time across weeks. This pattern was different from that of
participant 2 as well as the findings of a patient (KB) reported
in another study (Leung et al.,, 2014). In that study, KB was a
39-year old man and had multiple strokes damaging both the
frontal and parietal regions. KB demonstrated improvements in
all WM tasks throughout a 7-week auditory WM training and
a pattern of neural activation resembled that of participant 2 in
this study. Stress was not a concern for KB. Instead, his wife
was very supportive, and he had a very happy family life. Past
studies on healthy adults have shown that high-stress individuals
elicited reduced neural activities during cognitive processing
compared to low-stress individuals (Hayashi et al., 2012; Koric
et al., 2012). Also, a review has found that even mild acute
uncontrollable stress can cause a rapid and dramatic loss of
frontal cognitive abilities, and prolonged stress exposure can
cause structural changes in prefrontal dendrites (Arnsten, 2009).
Hence, the fronto-parietal network in participant 1 might have
been altered because of the higher level of stress experienced by
the participant. In addition, participant 1 had a higher PSS score
in the post-test and a decline of performance throughout the
training but normal performance during the post-training fMRI
testing. As the participant reported, the reason might be that the
participant performed the training tasks during mid-night when
he was tired and felt frustrated on the tasks. Previous clinical
findings have shown that higher perceived stress measured by PSS
was associated with less functional independence in people with
stroke (Santos et al., 2015). In addition, high-stress level assessed

by psychological questionnaires has been shown to correlate with
high stress-induced cortisol responses which increase medial
temporal activity (Henckens et al., 2016).

Our results show different patterns of neuroplastic changes
in two participants with different levels of self-perceived stress.
However, with only two participants, it is difficult to conclude
how stress modulates the neural activity. Instead, our results shed
light on the need to evaluate self-perceived stress when studying
the neuroplastic changes in people with stroke. The results
also suggest that stress could be one of the modulating factors
influencing neuroplastic changes and behavioral outcomes of the
training.

LIMITATIONS

The case design approach and other factors that might have
positively influenced outcomes mean that the findings must
be interpreted with a great deal of caution. Additionally, a
lower rating of the satisfaction scale of COPM in participant 1,
compared to participant 2, suggests that additional psychological
factors, other than self-perceived stress, may contribute to the
differences in the results between the two participants.

CONCLUDING REMARKS

Two participants completed a course of auditory WM training.
The participant with a high level of self-perceived stress
performed worse on task performance and demonstrated less
effective neuroplastic patterns compared to the other participant.
The results highlight the need to assess self-perceived stress when
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Participant 1

1-back

(corrected) and cluster size >196 pl.

FIGURE 2 | Brain maps comparing the neural activation between the pre-training and post-training testing. All activations are significant at p < 0.01

studying training effects in people with stroke. Also, the results
must be interpreted with caution, and future studies using a
larger sample are recommended to replicate the findings.
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