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Systematicity is a property of cognition where capacity for certain cognitive abilities

implies capacity for certain other (structurally related) cognitive abilities. This property

is thought to derive from a capacity to represent/process common structural relations

between constituents of cognizable entities, however, systematicity may not always

materialize in such admissible contexts. A theoretical challenge is to explain why

systematicity fails to materialize in contexts that allow the realization (e.g., by induction)

of common structure (universal construction). We hypothesize that one cause of

failure arises when the potential gain afforded by induction of common structure

is overshadowed by the immediate benefit of learning the task as independent

stimulus-response associations. This hypothesis was tested in an experiment that

required learning two series of pair maps that involved products (universal construction),

or non-products (control) of varied size: the number of unique cue/target elements (three

to six) constituting pairs. Each series was learned in either ascending or descending order

of size. Only performance on the product series was affected by order: systematicity was

obtained universally in the descend group, but only on large sets in the ascend group,

as revealed by the significant order × size interaction for errors in the product condition,

F(3, 87) = 3.38,p < 0.05. Smaller maps are more easily learned without inducing the

common product structure, which is more readily observable with larger maps: larger

maps provide more evidence for relationships between stimulus dimensions that facilitate

the discovery of the common structure. The new challenge, then, is to explain the

systematic learnability of stimulus-response maps, i.e., second-order systematicity.

Keywords: systematicity, compositionality, universal construction, association, classicism, connectionism,

learning

1. INTRODUCTION

An important feature of cognition is that possession of cognitive capacities appears to be organized
on the basis of common “structures.” That means, for example, if a person has the ability to
recognize the square as being the left object in a scene consisting of a square to the left of a
triangle, then that person has the ability to recognize the triangle as being the left object in a scene
consisting of a triangle to the left of a square. Put another way, in general, people don’t have one of
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those two capacities without having the other. Both capacities are
related by a common structure: the spatial relation relationship
between the two objects. This property of cognition is called
systematicity (Fodor and Pylyshyn, 1988). Systematicity has been
more formally characterized as having cognitive capacity c1
if and only if having structurally related cognitive capacity
c2, i.e., as structural equivalence classes of cognitive capacities
(McLaughlin, 2009).

The systematicity challenge for cognitive science is to explain
why cognitive capacity is distributed along common structural
relations. That is to provide a theory of cognitive architecture—
the basic cognitive representations and processes, and their
modes of composition—from which systematicity properties
necessarily follow (Fodor and Pylyshyn, 1988; Aizawa, 2003).
The classical (symbol systems) theory of cognitive architecture
supposes symbolic cognitive processes for constructing and
operating on symbolic representations of the world. For example,
the scene consisting of a square to the left of a triangle is
represented by a pair of symbols, st, where the first symbol,
s, represents the square and the second symbol, t, represents
the triangle so that the spatial relationship between square and
triangle is mirrored by the syntactic relationship between the
corresponding symbols representing those constituent entities.
Assuming a symbolic process, first, for accessing the first symbol
of a pair of symbols, then systematicity follows from the fact
that the inferences pertaining to the square-triangle and triangle-
square scenes involve one and the same process, i.e., first(st) = s
and first(ts) = t; there is no case of having one inferential capacity
without having the other. An analogous arrangement of neural
processes can be developed for a connectionist theory to likewise
demonstrate systematicity (Smolensky, 1987).

The problem for both approaches, however, is the lack
of clear theoretical criteria from which systematicity is a
necessary consequence (Aizawa, 2003). The connectionist
approach of positing networks of weighted connections between
neurons was criticized, as a theory of cognitive architecture,
because this kind of theory admits models with and without
the requisite systematicity properties (Fodor and Pylyshyn,
1988; Fodor and McLaughlin, 1990). Systematicity does not
necessarily follow from such connectionist theory. Ironically,
the same problem befalls the classical approach, as one can
configure a symbol system with grammatical rules that do
or do not support systematicity (Aizawa, 2003; Phillips and
Wilson, 2010). To obtain systematicity, classicists assume
only “canonical” grammars, i.e., the grammars that support
systematicity (McLaughlin, 2009). However, this assumption
appears to be ad hoc: motivated only to fit the data, not
confirmable independently of confirming the theory, and
unconnected to the rest of the theory’s core principles (Aizawa,
2003). So, it remains unclear how classical theory is supposed to
fully explain systematicity (Aizawa, 2014).

To overcome these shortcomings, we proposed a category
theory (Mac Lane, 1998) approach to cognitive architecture,
whereby a systematicity property is explained as a necessary
consequence of a categorical universal construction (Phillips
and Wilson, 2010, 2011, 2012). Our category theory approach
starts with the formal, mathematical concept of a category,

which consists of a collection of objects, a collection of relations
between objects, called morphisms, and a composition operation
that takes two morphisms and returns a morphism. A common
first example is Set, the category of sets (objects) and functions
(morphisms). Here, we interpret morphisms as cognitive
processes (functions) between sets of cognitive representations,
and the composition operation is composition of cognitive
processes. A universal construction is an arrangement whereby
each morphism in a particular collection of morphisms is
obtained by the composition of a common (universal) morphism
and a unique morphism. For intuition, in regard to the square-
triangle example, one can think of the universal morphism as
the common relational schema and each unique morphism as the
unique combination of constituents in that relation. Composition
of each unique morphism with the universal morphism yields no
fewer (necessity) and no more (sufficiency) than one morphism
for each relational instance. Thus, systematicity is a necessary and
sufficient consequence of universal construction (see Phillips and
Wilson, 2014, for a summary).

The intuitive example just given alludes to an important
universal construction, called the categorical product, that we
use throughout this paper. In general, a categorical product of
two objects, A and B, consists of the product object, P, and two
morphisms, p1 : P → A and p2 : P → B, that recover the A and
B constituents. In Set, the categorical product is the Cartesian
product of two sets A and B, which is the set of all pairwise
combinations of elements from each set, i.e., the set {(a, b)|a ∈

A, b ∈ B}, and two functions, called projections, that return
the first and second components of each pair, i.e., π1(a, b) = a
and π2(a, b) = b. We have argued that categorical products
underlie a variety of relational (Phillips and Wilson, 2010) and
inferential cognitive capacities (Phillips et al., 2009), and shown
that changes in product arity, supposed to underlie visual search
difficulty, correspond to changes in EEG synchrony (Phillips
et al., 2012). In each case, the response depends on representing
combinations of components in a way that maintains the identity
of each component, which is afforded by the projections. In
conjunctive visual search, for example, the target of search is
uniquely identified by a combination of item features, such as
color and orientation (binary product), or color, orientation,
and spatial frequency (ternary product). These results suggest
that products are fundamental to many cognitive tasks, where
constituents must be combined in ways that maintain their
identities.

1.1. Absence of Systematicity
Although systematicity is a property of some aspects of cognition,
systematicity may not materialize in other situations. These
situations also attest to common structure as the basis for
equivalence classes of cognitive capacities. Idioms, such as
“John kicked the bucket”—John died—are examples (Fodor and
Pylyshyn, 1988, p. 42).Whereas, the systematicity of “John kicked
the ball” and “John kicked the bat” accords with the common
structural relation, kicked, the lack of systematicity with regard
to the idiom “John kicked the bucket” accords with the fact that
understanding this idiom depends on understanding a different
relation, i.e., died. Hence, while you don’t find English speaking
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people who understand the meaning of “John kicked the ball”
but not “John kicked the bat,” you do find English speakers who
understand the meaning of “John kicked the ball” but not the
idiomatic meaning of “John kicked the bucket,” even though
they understand the meanings of constituents, “John,” “bat,”
“ball,” “bucket,” and “kicked.” Absence of systematicity is further
exemplified by the “phrase book” model of language (Fodor and
Pylyshyn, 1988, pp. 37–38), where say a tourist grapples with
communication in a foreign language by committing to memory
a collection of common-use phrases. Whether or not phrases
are committed to memory is independent of their structural
relations, which accords with the tourist’s lack of systematic
comprehension of that language.

The category theory explanation says that universal
constructions are necessary and sufficient for systematicity.
Therefore, by this explanation, absence of systematicity is
implied by failure to possess the requisite universal construction.
For idioms, absence of systematicity is straightforwardly due
to the fact that there are no common structural relations to
be represented/processed, which in categorical terms means
that there does not exist a universal morphism. In the phrase
book example, however, the common structural relation is
present, but is not represented by the tourist’s rote memorization
approach to language acquisition: each phrase is committed
to memory irrespective of its grammatical structure. This
situation raises a more general question for theories of cognitive
architecture, including the categorical theory: Why do people
fail to represent/process an existing common structural relation?
In categorical terms, this question is to ask why the existing
universal morphism is not represented.

Part of the reason for the absence of systematicity in the phrase
book example is that the phrases acquired by rote learning are
superficially represented as sequences of otherwise unstructured
letters/words that have no further meaning to the tourist.
Naturally, a theory of cognitive architecture can account for these
exceptions by simply representing them as such. The deeper and
more general question, however, asks why the cognitive system
represents such structurally related entities without choosing to
represent their common structure. The intuitive reason behind
the phrase book example, which motivates the current study,
is a kind of cost-benefit tradeoff: a tourist may decide that the
benefits of proficiently using a foreign language for a few days
are outweighed by the cost (months/years) required to learn that
language to an adequate level of proficiency. In this case, one may
simply learn the surface features, without grasping the deeper
grammatical structure.

Universal constructions are amenable to a cost-benefit
analysis, because every morphism pertaining to the universal
construction is equally a composition of two morphisms: the
universal morphism and the unique morphism. A simple analysis
of Cartesian products, i.e., products in Set, suggested a cost-
benefit tradeoff in regard to morphisms modeling maps between
sets of cue/target stimuli (Phillips, 2013). A more detailed
introduction is provided in the next section, which motivates the
design of the current experiment. The basic intuition given here
is that when the number of mapped elements is small, it may be
more cost-effective to learn mappings as direct links from cues

to targets, rather than indirectly via links to/from the underlying
product. Conversely, when the number of mappings is large, it
may be more efficient to learn each mapping as a composition
of mappings that involve the product. This intuition parallels
that for the phrase book example: when the number of occasions
that require use of the foreign language are likely to be few, rote
learning may be more cost-effective. However, a rote learning
approach is prohibitively expensive for everyday use.

The purpose of the current study is to test the behavioral
implications of learning universal (product) constructions,
and thereby provide empirical support for our universal
constructions explanation for systematicity and the cost-benefit
hypothesis. To facilitate exposition, we introduce just the
basic constructions (functions) needed for the experimental
design. The basic category theory upon which the hypothesis
is based is given in Phillips (2013). For further theoretical
details on the category theory (universal constructions) approach
to systematicity see Phillips and Wilson (2010), or Phillips
and Wilson (2014) for an overview. Introductions to category
theory can be found in many books on this topic (e.g., Mac
Lane, 1998; Awodey, 2010; Simmons, 2011; Leinster, 2014). For
applications of category theory to other areas of cognitive science
(see e.g., Halford and Wilson, 1980; Magnan and Reyes, 1995;
Ehresmann and Vanbremeersch, 1999; Lambek, 2004; Ellerman,
2007; Healy et al., 2008; Gómez-Ramirez and Sanz, 2011; Phillips,
2014). General implications of this categorical perspective on
acquisition of systematicity are also discussed in the final section.

1.2. Categorical Product: Behavioral
Implications
In this section, we introduce a concrete example of a categorical
product to test the behavioral implications of our category theory
approach to systematicity and failure. The example involves
products of sets and associated functions in the context of
learning maps from stimulus cues to targets.

A collection of cue-target mappings can be modeled as a
function from a set of cues to a set of targets. For example,
suppose the cues are characters G, K, and P, and corresponding
targets are shapes ⋆, H, and ♣, respectively. This collection
of cue-target mappings is modeled as the function char2shape :

Char → Shape;G 7→ ⋆,K 7→ H,P 7→ ♣, where Char is the
set of character cues, and Shape is the set of shape targets, and the
“maps to” symbol ( 7→) indicates a specific cue-target mapping.

Targets may be compositional. Suppose the targets also
have a color feature, respectively, red, green, and blue. In
this case, each character also cues a target color, modeled as
the function char2color : Char → Color;G 7→ red,K 7→

green,P 7→ blue, where Color is the set of color features.
So, each character cues a pair of features, modeled as the
function 〈char2color, char2shape〉 :Char → Color× Shape;G 7→

(red,⋆),K 7→ (green,H),P 7→ (blue,♣).
Cues and functions may also be compositional. For example,

the product of functions char2color and char2shape is the function
char2color × char2shape : Char × Char → Color × Shape,
which sends each pair of characters to a (color, shape) pair
in accordance with the constituent functions, e.g., (G,G) 7→
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(red,⋆), (G,K) 7→ (red,H), etc. The nine char2color ×

char2shape mappings are obtained from the product of the
three char2color mappings and the three char2shape mappings.
Figure 1 shows char2color and char2shape, which consist of three
mappings each, and their product char2color×char2shape, which
consists of nine mappings composed from the six component
mappings, i.e., the three mappings from char2color and the three
mappings from char2shape. In general, the product of maps
f : A → C and g : B → D each consisting of n mappings (i.e.,
2nmappings in total) is the map f × g :A×B → C×D; (a, b) 7→
(f (a), g(b)) which consists of n2 mappings. Hence, computing
a mapping via a product (if it exists) offers greater benefit with
larger n.

Induction of a product of functions is also possible from
a subset of its mappings. For example, suppose one is given
the char2color × char2shape mappings (K,G) 7→ (green,⋆),
(P,G) 7→ (blue,⋆), (G,K) 7→ (red,H), and (G,P) 7→ (red,♣),
where each constituent char2color and char2shape mapping
appears at least once in the set. Having induced the constituent
maps, one can then infer the other char2color × char2shape
mappings from the product of those constituent maps. We
refer to this form of induction as behavioral generalization.
For comparison, in the context of language, this form of
generalization is called weak systematicity (Hadley, 1994).

Behavioral generalization is not afforded by every function
from A× B to C×D. In particular, the function 〈p, q〉 :A× B →

C × D, where p : A × B → C and q : A × B → D does not
afford generalization when each target component is uniquely
determined by each pair of cues (Note that a map f × g is called a
product of functions, and a map 〈p, q〉 is called a product function.
We refer to the latter as a non-product function/map, meaning not
a product of functions, to avoid confusion).

As already mentioned, previous work (Phillips, 2013)
suggested that construction of products depends on a cost-
benefit tradeoff: when the number of mappings is small the cost
of constructing products may outweigh the benefit (response
prediction); conversely, when the number of mappings is large
benefit may outweigh cost. In terms of behavioral generalization,
then, no behavioral generalization is predicted for product
maps consisting of a small number of mappings (capacity for
the associated universal morphism is absent), but behavioral
generalization is predicted for product maps consisting of a
large number of mappings (capacity for the associated universal
morphism is present). The purpose of the current study in to test
these predictions.

The hypothesis is that systematicity fails to materialize when
the cost of (learning to) represent a universal construction
outweighs its (perceived) benefits, such as correct responses
to subsequently related task stimuli. One difficulty with
testing a potential tradeoff over universal constructions is
that we do not have an independent measure of the cost of
inducing/representing a product. To circumvent this difficulty,
we test participants on products of different sized maps.
Accordingly, we expect that as the size of the constituent maps
increases, participants will exhibit a transition from computing
the product map directly, i.e., without making use of the
underlying universal construction (product), in which case there

FIGURE 1 | Maps (A) char2shape and (B) char2color and their product

(C) char2shape x char2color. The dashed arrows direct computation of the

product map, solid arrows indicate indirect computation of the product map

via the two component maps.

will be no behavioral generalization, to computing the map
indirectly via the product construction, in which case there
will be behavioral generalization. Figure 1C indicates the direct
route as dashed arrows and the indirect route as solid arrows.
Conversely, for participants initially given products of large
maps, we expect that they will use the product construction. Since
these participants have already induced the product structure,
which can then be employed for products of smaller maps, we
expect behavioral generalization for products of all sized maps
in this case. So, in the experiment that follows, one group of
participants is tested on a series of product maps in the order of
small to large (ascend group), and the other group of participants
is tested on the same series of product maps, but in the order of
large to small (descend group). The prediction is that the ascend
group will exhibit increased behavioral generalization on product
maps with increased map size, but the descend group will exhibit
behavioral generalization on product maps across all sizes.

2. METHODS

Participants were required to learn two cue-target maps: (1) a
product map, f × g : A × C → B × D, which consists of maps
f : A → B and g : C → D, as the experiment condition; and
(2) a non-product map, 〈p, q〉 : A × C → B × D, that had no
such product composition, as a control condition. In each case,
participants were first trained on a subset of mappings, followed
by testing on all mappings. Our primary interest is whether they
learned to decompose the product map f × g into its constituents
f and g.
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2.1. Participants
There were 31 adults who were paid a flat rate of 5000-yen,
regardless of performance, to participate in the experiment:
19–40 years of age (23.2 mean), 7 female. All were right-
handed with normal or corrected-to-normal vision. This study
was carried out in accordance with the recommendations of
“Guidelines for handling ergonomic experiments, Committee on
Ergonomic Experiments, Bioethics and Biosafety Management
Office, Safety Management Division, National Institute of
Advanced Industrial Science and Technology” with written
informed consent from all participants. All participants gave
written informed consent in accordance with the Declaration of
Helsinki.

2.2. Apparatus and Stimuli
Stimuli were presented by a notebook computer (Mac OSX)
using MATLAB software (MathWorks, Natick, MA) with the
Psychophysics Toolbox extensions (Brainard, 1997; Kleiner et al.,
2007) on an external display, 43 cm (width) and 33 cm
(height), placed about 57 cm from the participant, so 1 cm
is ∼1◦ field of view. The shape stimuli were chosen from
shape materials in Microsoft Office (Microsoft, Redmond, WA),
and their colors were defined by web safe color codes. The
approximate angle (width × height) subtended of each string
and shape were 5◦ × 1.5◦ and 2◦ × 2.4◦, respectively. Screen
resolution was 1920×1200 pixels; refresh rate was 60 Hz. Stimuli
were displayed on a gray background. Stimuli are shown in
Figure 2.

2.3. Conditions
We used a factorial design with the following factors.

Order: Participants where divided into two groups. The ascend
group (15 participants, 3 females) did each task in the order of
smallest to largest number of taskmappings; the descend group
(16 participants, 4 females) did each task in reverse order.
Task: Task structure was a product, or a non-product.
Size: The number of unique character to color/shape
mappings, n, was three, four, five, and six.
Cue: For the testing stage, a pair cue was either old, if the
characters appeared together as a pair cue in the training stage,
or otherwise novel. All pairs presented in the training stage
were considered old.

FIGURE 2 | Cue and target stimuli.

2.4. Procedure and Analysis
For each participant we have the following procedure.

Experiment: Each experiment consisted of eight sessions, one
session per set size for the product task, and one session per
set size for the non-product task. Sessions are grouped by task.
Task and size order were randomized.
Session: Each session consisted of sequence of training
blocks, followed by one test block. Training ceased when the
minimum 90% correct response (one block) criterion was
reached, after administering five blocks.
Training/testing block: Each training block consisted of 1

2n
2

training trials (i.e., 4, 8, 12, 18 trials), balanced over features;
each testing block consisted of n2 trials, i.e., all cue-target pairs.
Training/testing trial: Each training trial consisted of four
phases: fixation (500 ms), cue/shape presentation/response
(2000 ms), delay (500 ms), target feedback (1000 ms); each
testing trial consisted of two phases: fixation (500ms), and
cue/shape presentation/response (2000 ms), i.e., no feedback
(see Figure 3).
Cue/shape and target feedback displays: The Cue/shape display
consisted of a string of three characters: two characters
constituted the pair cue, and one hash character (“#”) was to be
ignored, and a colored shape. During presentation participants
were required to respond by pressing the “Yes” key when the
displayed shape was the target for the given cue, otherwise by
pressing the “No” key. Participants were instructed to respond
as accurately and quickly as possible. The target/feedback
display consisted of the same three characters as cue/shape
display, and the target colored shape associated with the given
cue, underlined to indicate feedback. Training and testing
trials were self-paced: each trial was initiated by pressing a key.

The order of task instances was randomized. Within-block trial
order was also randomized. Participant response errors and
times were recorded. Analyses of variance (ANOVAs) were
conducted on error rates to access effect significance; t-tests were
conducted on error rates to determine whether performance was
significantly about chance level (50%). Upon completion of each
series of tasks, we asked participants to report on themethod they
used to map cues to targets.

3. RESULTS

Our primary interest is performance on (novel) test trials,
as a measure of behavioral generalization. So, after reporting
analysis for all training and testing trials, we report test trial
analyses for novel and old trials, and product and non-product

FIGURE 3 | Phases of a training trial.
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conditions. We also report on participant awareness of the
structure underlying the product task.

3.1. Training
3.1.1. Training Blocks
A three-factor (order, task, size) ANOVA on number of blocks
to criterion revealed a main effect of task, F(1, 29) = 21.75, p <

0.001. More training blocks were required to reach criterion for
the non-product than product task. There was a main effect of
size, F(3, 87) = 65.73, p < 0.001. Fewer blocks were required at
size 3 than sizes 4, 5, and 6; and for size 5 than sizes 4 and 6. There
was a significant order-size interaction, F(3, 87) = 22.08, p <

0.001 (Figure 4).

3.1.2. Ascend and Descend Order
For the ascend group, a two-factor (task, size) ANOVA revealed
main effects of task, F(1, 14) = 18.10, p < 0.001, with more blocks
in the non-product condition, and size, F(3, 42) = 10.04, p <

0.001. Likewise, for the descend group, there was a main effect
of task, F(1, 15) = 5.39, p < 0.001, with significantly more
blocks in the non-product condition, and a main effect of size,
F(3, 45) = 83.83, p < 0.001.

3.2. Testing
3.2.1. Testing Trials (All)
A four-factor (order, task, size, cue) ANOVA on error rate
revealed main effects for order, F(1, 29) = 4.39, p < 0.05, and
task, F(1, 29) = 28.36, p < 0.001. There were more errors in the
ascend than descend order group; there were more errors in the
non-product than product task. There were significant two-way
interactions of order-task, F(1, 29) = 4.95, p < 0.05, task-cue,
F(1, 29) = 13.06, p < 0.01, and task-size, F(3, 87) = 12.70, p <

0.001. There was also a significant three-way interaction of
order-task-size, F(3, 87) = 3.88, p < 0.05. One-sample t-tests
against chance level revealed significantly below chance level
error rates:

– on old trials in product and non-product tasks at all set sizes
for ascend and descend groups,

– on novel trials in the product task at all set sizes for the descend
group, and

– on novel trials in the product task at set size six for the ascend
group

(p < 0.05, Holm-Bonferroni correction for multiple
comparisons). Error rates are shown in Figure 5.

3.2.2. Novel and Old Trials
For novel trials, a three-factor (order, task, size) ANOVA on
error rate revealed a main effect for task, F(1, 29) = 28.57, p <

0.001. Errors were greater in the non-product than product
condition. There were significant two-way interactions of order-
task, F(1, 29) = 5.21, p < 0.05, and task-size, F(3, 87) = 10.22, p <

0.001. There was a significant three-way interaction, F(3, 87) =

4.12, p < 0.05. For old trials, a three-factor (order, task, size)
ANOVA on error rate revealed a significant two-way interaction
of task-size, F(3, 87) = 3.09, p < 0.05.

3.2.3. Product and Non-product Tasks
For the product task on novel trials, a two-way (order, size)
ANOVA revealed a main effects for order, F(1, 29) = 4.36, p <

0.05, and size, F(3, 87) = 3.38, p < 0.05, however, the effect of
size was not significant after a correction formultiple comparison
(Holm-Bonferroni method). There were more errors in the
ascend than descend group. There was a significant interaction,
F(3, 87) = 4.74, p < 0.01. For the non-product task on novel
trials, there was a main effect of size F(3, 87) = 7.66, p < 0.001.

3.2.4. Awareness (Training)
With regard to the product task, 21 participants reported
awareness of the product structure. The other 10 participants
reported no awareness. The numbers of aware and unaware
participants were (respectively) 11 and 4 for the ascend group,
and 10 and 6 for the descend group. The mean number of blocks
to criterion for the product task was larger in the unaware than
aware ascend and descend groups. However, these differences
were not significant.

FIGURE 4 | Number of training blocks to criterion. Error bars indicate one standard deviation.
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FIGURE 5 | Error rates on testing trials for ascend (upper panel) and descend (lower panel) groups. Error bars indicate one standard deviation.

3.2.5. Awareness (Testing)
For error rates on novel trials, a four-factor (Order, Awareness,
Task, Size) ANOVA revealed amain effect of awareness, F(1, 26) =
25.21, p < 0.001, the unaware group had more errors than
the aware group (Order and task effects were also significant).
Accordingly, we analyzed the aware and unaware data separately.
For the aware group, a three-factor (Order, Task, Size) ANOVA
revealed a main effect of task, F(1, 18) = 129.70, p < 0.001,
with more errors on the non-product than product task. There
were significant two-way interactions of order-task, F(1, 18) =

36.81, p < 0.001, and task-size, F(3, 54) = 10.20, p < 0.001, and
a significant three-way interaction, F(3, 54) = 6.88, p = 0.001
(Figure 6). For the unaware group, there were no significant
main effects or interactions (Figure 7).

4. DISCUSSION

The prediction that universal construction, hence systematicity,
depends on a cost-benefit tradeoff was supported by the
significant three-way interaction of order-task-size on error rates
for novel test trials. Recall that low error rates on novel test
trials indicate behavioral generalization, which is possible in
the product, but not the non-product task, i.e., tasks of the
form f × g, but not 〈p, q〉. The significantly below chance
level error rates on old test trials indicate that both ascend
and descend groups of participants were able to learn both
product and non-product tasks at all set sizes. For novel trials
in the non-product task, performance was not significantly below
chance, naturally, since no prediction on novel trials was logically
possible. Importantly, generalization on the product task was
observed across all set sizes for the descend group only. In the
ascend group, performance was significantly lower than chance

for set size six only, suggesting that participants learned cue-
target responses as direct associations, i.e., without reference to

the product structure. Mean error rates decreased (generalization
increased) with increased set size, indicating that participants
gradually performed the task with reference to the product
structure.

The difference between ascend and descend groups cannot

be explained by task difficulty, as measured by number of cue-
target mappings, because performance for the ascend group was
significantly lower than chance at the larger set size on the

product task, whereas number of mappings implies the opposite
effect, i.e., more errors with larger sets.

The difference between ascend and descend groups can be

explained by a perceived (empirical) cost-benefit tradeoff, as
mentioned in the Introduction (see also Phillips, 2013). The
descend group is initially faced with learning a large number
(18) of cue-target mappings. The effort needed to learn these
mappings is lessened by exploiting the underlying product

structure. In this case, one only need learn the six character-to-
color and six character-to-shape mappings. Once this shortcut
is observed, it can be applied to the other product tasks, hence
generalization performance did not change with size for the
descend group. By contrast, for set size three, only four cue-

target mappings had to be learned, which is less than the three
character-to-color plus three character-to-shape mappings. So,
for the ascend group, who have yet to be exposed to the testing
component of the task, there is no clear benefit in learning
the training mappings as a product construction. Participants
in the descend group, on the other hand, have already been
exposed to the testing component for the product task at the
other set sizes. Thus, although there is also no gain on training
for the descend group, there is an expected performance gain
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FIGURE 6 | Error rates on testing trials for ascend (upper panel) and descend (lower panel) aware groups. Error bars indicate one standard deviation.

FIGURE 7 | Error rates on testing trials for ascend (upper panel) and descend (lower panel) unaware groups. Error bars indicate one standard deviation.

in the testing component of the product task that is expected to
follow.

Training performance, in terms of number of blocks to
criterion, revealed that significantly fewer blocks were required
in the product case in both ascend and descend groups,
which further supports the learning of product constructions.
Moreover, the order-size interaction is also consistent with
the idea that the ascend group took advantage of product

structure realized at smaller set sizes to make learning more
effective at the size six. However, the interaction with task
was not significant. One possible reason is the high variance:
some participants required many blocks to reach criterion. Why
fewer training blocks were needed at size five than four is
unclear.

The self-report analysis also supported the claim that
systematicity depends on an empirical cost-benefit tradeoff. The
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interaction of order-task-size was evident in the aware group, but
not the unaware group. For the unaware group, generalization
was basically flat across sizes and did not differ across task. This
result further supports the importance of perceived cost-benefit
tradeoff. However, the data do not allow us to determine the cause
of awareness.

4.1. Categorical Perspective
From a category theory perspective, the absence of a systematicity
property is a consequence of failure to induce the associated
universal construction. To understand failure to induce a
universal constructions we need to understand the goals of the
system in relation to task demands. The primary goal for all
participants is to provide the correct response to a given cue.
For the ascend group, this goal can be fulfilled in small set size
conditions by simply learning the direct cue-target mappings.
However, for larger set size conditions the resources (time, effort)
needed to learn more mappings becomes burdensome, and so
an alternative is sought. At some point, presumably, participants
observe that the characters are mapped independently of each
other which affords more effective learning via the product
construction.

An important question, then, is what engenders the
observation that the cue-target maps conform to a product. Note
that even for large set sizes participants are still able to learn all
cue-target mappings directly, as evidenced by their performance
in the non-product condition across all set sizes. Thus, task
demands alone cannot explain the shift toward products.
Furthermore, task demands alone cannot explain failure of
systematicity for the ascend group in small sized conditions,
because the descend group did not employ a direct map approach
in this condition, as evidenced by their significantly below chance
level performance.

One possibility is that participants are sensitive to the
co-occurrences between stimulus dimensions (i.e., left/right
character, color, and shape), not just the co-occurrences of
specific stimuli. An explanation that relies only on the co-
occurrence of specific stimuli is perplexing because it suggests
that products over small sets should more likely engender
induction. For instance, to see that characters are mapped
independently one needs trials, in close temporal proximity to
minimize forgetting, where (say) a left character is paired with
different right characters yielding the same target color. From
such trials one can deduce that the mapping of the left character
to a color does not depend on the right character. However,
for larger sets there are more character combinations, hence the
likelihood of the same character appearing in the same position
on consecutive trials is less than that for small sets. That is
simply because randomly selected consecutive pairs are less likely
to share a common constituent in the larger set conditions.
At the level of stimulus dimensions, however, large set sizes
provide more examples of the relationship between dimensions
that is independent of specific stimuli: e.g., that the color feature
dimension is associated with the left character dimension, or
that the shape feature dimension is associated with the right
character dimension. Thus, the link between constituent sets,
which is essentially the role or position that each constituent plays

within the complex entity, is more informative in the large size
conditions. Hence, induction of products on the basis of set-level
co-occurrences is more likely to occur in the large size conditions,
which is consistent with the data.

A response via a universal construction is composed of two
constituent capacities (i.e., two maps) compared to a direct
response which involves just a single map. This difference
suggests that response times should be shorter in situations that
do not involve computing a universal construction. However,
participants must first correctly recognize the stimulus pair. This
recognition process may take more time in the non-product
case (n2) than the product case (2n) simply because the greater
number of stimuli likely increases their similarity which makes
them more difficult to discriminate. An analysis of response time
data (see Appendix) revealed a significant effect for size (and
cue, but not order or task) that is consistent with this possibility:
the shorter response times for smaller set sizes suggest that
any temporal advantage afforded by directly mapping stimuli to
responses is offset by the additional time needed to determine the
stimulus being presented.

4.2. A New Challenge
From a computational learning perspective, where learning is
treated as a search over a parameter space for a function
that “best” fits the data, one can improve generalization by
constraining search. A basic tradeoff is that some parameters
afford a better fit to the given training data at the possible
expense of poorer generalization on the new instances. In a
probabilistic setting, this tradeoff is called the bias/variance
dilemma (Geman et al., 1992). The available methods are too
numerous to mention, but the basic idea is to guide search to
regions more likely to contain “good” parameters. Many early
connectionist attempts to address the systematicity challenge
were essentially along this line, i.e., careful crafting of neural
network models to demonstrate systematicity as a particular
capacity for generalization (see, e.g., Hadley, 1994; Niklasson
and van Gelder, 1994; Hadley and Hayward, 1997; Boden and
Niklasson, 2000). A capacity to generalize is a well-known
property of many kinds of neural networks. However, there are
many ways to configure a network to learn, and not all of these
ways afford the requisite level of generalization (see, e.g., Marcus,
1998; Phillips, 1998). Thus, a challenge for the learning approach
is to explain why a network is configured in just the right way
to afford the desired generalization property, which echoes the
original systematicity problem. One can see this problem as
a kind of second-order systematicity challenge (Aizawa, 2003):
explain why an ability to learn one cognitive capacity implies an
ability to learn another structurally related cognitive capacity. In
the current context, that systematicity challenge is to explain why
having the ability to learn one product map implies having the
ability to learn another product map.

The results presented here, however, raise a further challenge
because for the ascend group on the product series the capacity
to learn the product map at set size six did not imply the
capacity to learn the product map at set size three. The
further challenge is to explain why under some conditions the
cognitive system possesses a systematicity property and under
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FIGURE 8 | Response times on testing trials for ascend (upper panel) and descend (lower panel) groups. Error bars indicate one standard deviation.

other (closely related) conditions it does not. From a category
theory perspective, one possible way forward is a category theory
treatment of (co)recursion (see, e.g., Arbib and Manes, 1975;
Bird and de Moor, 1997), in which case a system can be
treated as a generalized state machine (Rutten, 2000). Suppose
learning is considered as a recursive process: a process that maps
(generalized) cognitive states that include the currently available
cognitive capacities to cognitive states that include possibly
newly acquired cognitive capacities. A category theory treatment
of recursion, via certain kinds of universal constructions,
called initial algebras and final coalgebras, may provide a
basis for explaining the systematicity of learning (Phillips and
Wilson, 2016b). For instance, every universal construction is the
“optimal” construction, in a particular category theoretic sense,
which can be learned from a general optimization procedure
(Phillips and Wilson, 2016a). Yet, the results presented here
suggest that any approach to the systematicity of learning will
have to take into account the goals of the cognitive system, the
costs and benefits (in terms of cognitive resources) of learning a
cognitive capacity with vs. without representing the underlying
universal construction, and prior experience to meet this new
challenge.

Learning alternative strategies in response to changes in
context also raises broader issues for models of cognition, such
as how the acquisition of new strategies interacts with previously
acquired strategies. Marchiori and Warglien (2011) report that
in a game scenario participants can learn and choose between
different strategies in response to changes in their opponent’s
strategy. In contrast to humans, neural network models with
neural activity based on a sigmoidal function tend to “average”

responses. However, this shortcoming can be addressed with
neural activity based on a softmax function (Marchiori and
Warglien, 2011), which is a generalization that affords the
learning of multimodal (as opposed to unimodal) distributions.
For example, this approach has been used to model a mixture
of experts (Jacobs et al., 1991). Such models may also help
address the new systematicity challenge raised by the current
study. For the current study, however, our experimental design
and data do not allow us to investigate such interactions.
Although response times were shorter for old than novel cues
during the testing phase of the product condition (i.e., after
learning the universal construction), see Appendix, suggesting
that participants switched between product and non-product
strategies based on cue, this difference can also be explained as
a practice effect. Further work is needed to determine how the
acquisition of strategies based on universal constructions interact
with other strategies.
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APPENDIX

Testing trials (response times): A four-factor (order, task, size,
cue) ANOVA on response times (for error-free testing trials)
revealed main effects for size, F(3, 87) = 6.31, p < 0.005, and

cue, F(1, 29) = 8.56, p < 0.01. Response times were shorter for
size 3 than sizes 5 and 6, and shorter for old than novel trials.
There was no effect of order, F(1, 29) = 1.90, p = 0.18, or task,
F(1, 29) = 0.23, p = 0.64. There were no significant interactions.
Response times are shown in Figure 8.

Frontiers in Psychology | www.frontiersin.org 12 August 2016 | Volume 7 | Article 1310

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

	Why Are There Failures of Systematicity? The Empirical Costs and Benefits of Inducing Universal Constructions
	1. Introduction
	1.1. Absence of Systematicity
	1.2. Categorical Product: Behavioral Implications

	2. Methods
	2.1. Participants
	2.2. Apparatus and Stimuli
	2.3. Conditions
	2.4. Procedure and Analysis

	3. Results
	3.1. Training
	3.1.1. Training Blocks
	3.1.2. Ascend and Descend Order

	3.2. Testing
	3.2.1. Testing Trials (All)
	3.2.2. Novel and Old Trials
	3.2.3. Product and Non-product Tasks
	3.2.4. Awareness (Training)
	3.2.5. Awareness (Testing)


	4. Discussion
	4.1. Categorical Perspective
	4.2. A New Challenge

	Author Contributions
	Funding
	References
	Appendix


