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This study investigated the impact of three prior distributions: matched, standard vague,

and hierarchical in Bayesian estimation parameter recovery in two and one parameter

models. Two Bayesian estimation methods were utilized: Markov chain Monte Carlo

(MCMC) and the relatively new, Variational Bayesian (VB). Conditional (CML) and Marginal

Maximum Likelihood (MML) estimates were used as baseline methods for comparison.

Vague priors produced large errors or convergence issues and are not recommended.

For both MCMC and VB, the hierarchical and matched priors showed the lowest root

mean squared errors (RMSEs) for ability estimates; RMSEs of difficulty estimates were

similar across estimation methods. For the standard errors (SEs), MCMC-hierarchical

displayed the largest values across most conditions. SEs from the VB estimation

were among the lowest in all but one case. Overall, VB-hierarchical, VB-matched, and

MCMC-matched performed best. VB with hierarchical priors are recommended in terms

of their accuracy, and cost and (subsequently) time effectiveness.

Keywords: Bayesian, item response theory, variational Bayesian, marginal maximum likelihood, Markov chain

Monte Carlo

INTRODUCTION

Developing accurate parameter estimation methods is an important problem in item response
theory (IRT). Currently, marginal maximum likelihood (MML) is the most widely used parameter
estimation technique in IRT. However, advances in computational statistics have made Bayesian
estimation, especially Markov Chain Monte Carlo (MCMC; Patz and Junker, 1999; Gelman et al.,
2013) techniques, a plausible alternative for IRT parameter estimation. Two possible reasons for
the lack of adoption of Bayesian inference are (1) MCMC runs much slower than MML and (2)
it is not obvious how to choose appropriate priors. In this paper, we address both of these issues.
To address computational efficiency, we suggest variational Bayesian (VB; Beal and Ghahramani,
2003) inference, which provides answers close to MCMC at a fraction of the time and cost. Both
prior choice and the appropriateness of VB to IRT were investigated using simulation.

In general, Bayesian methods have advantages over traditional estimation approaches because
their estimates are asymptotically distribution free and therefore depend less on the distribution of
the data (Ansari and Jedidi, 2000). Bayesian methods overcome some drawbacks of MML, such
as lack of efficiency in smaller samples, and inaccurate estimation of parameters with extreme
response patterns (Lord, 1986; Baker and Kim, 2004). In particular, Bayesian methods have a
potential advantage over MML in small samples and when the examinee ability distribution is not
normal.

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://dx.doi.org/10.3389/fpsyg.2016.01422
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2016.01422&domain=pdf&date_stamp=2016-09-27
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:prathiba.natesan@unt.edu
http://dx.doi.org/10.3389/fpsyg.2016.01422
http://journal.frontiersin.org/article/10.3389/fpsyg.2016.01422/abstract
http://loop.frontiersin.org/people/8249/overview
http://loop.frontiersin.org/people/11025/overview
http://loop.frontiersin.org/people/377653/overview
http://loop.frontiersin.org/people/377658/overview


Natesan et al. Bayesian Priors for VB and MCMC

A main estimation difference between MML and Bayesian
methods is the necessity of specifying priors to estimate the
posterior distribution of parameters. In a Bayesian framework,
prior specification allows for the systematic incorporation of
previous information into the current estimation (Fox, 2010).
Although the effect of priors on parameter estimates is quite
minimal in large samples, priors can have a considerable impact
in small samples. Therefore, appropriate prior choice is an
important issue to be addressed when using these methods in
the estimation of IRT models. However, a review of Bayesian
procedures in the IRT literature shows that the use of priors has
been largely inconsistent, leaving the field with little guidance
on appropriate prior use. For instance, in estimating the
parameters of a one-parameter logistic model (1-PL), Ghosh
et al. (2000) used multivariate t-distribution priors for ability
and flat priors for difficulty. Swaminathan and Gifford (1982)
used a unit normal prior for ability and a hierarchical prior for
difficulty, (b ∼ N(µ, σ ), µ ∼ uniform prior and σ ∼

inverse χ2 with ν = 10 and λ = 10, where µ and σ are the
mean and standard deviation of the distribution from which
the difficulty parameter b is drawn). Although Swaminathan
and Gifford (1982) discouraged the use of extremely optimistic
priors such as the unit normal distribution, or very diffuse priors
with large variances, these continue to be used in the field (e.g.,
Patz and Junker, 1999; Kim, 2001; Fox, 2010). Gao and Chen
(2005) studied four different prior specifications in estimating
the difficulty parameters of a 3-PL model. However, all four
prior distributions were relatively informative (beta distributions
with SD < 0.9 and uniform distributions ranging from−3 to 3).
Sheng (2010) compared the impact of prior variances specified
using beta distributions on three-parameter normal Ogivemodel.
She discouraged the use of very small prior variances for small
samples. However, there is no guidance on how small is small
enough. Furthermore, she suggested that the performance of
hierarchical priors be tested for IRT models. Gelman et al. (2008)
compared the performance of priors derived from the data for
logistic regression models. However, they warned against the
use of this method for small sample sizes. There is very little
consensus about appropriate prior use in the estimation of IRT
models. Parameter recovery using diffuse priors such as those
used by Kim (2001) and hierarchical priors such as those used
by Swaminathan and Gifford (1982) have not been compared.

Building upon the works of Swaminathan and Gifford (1982),
Lord (1986), and Kim (2001), the purpose of this study was
to investigate the choice of prior distributions in Bayesian
estimation of one-parameter (1-PL) and two-parameter (2-PL)
models. This study focuses on parameter recovery of Bayesian
methods (both the traditional MCMC and the newer variational
Bayesian) under different prior choices. Although some studies
have compared the performance ofMCMCwithMML for graded
response models (Kieftenbeld and Natesan, 2012), nominal
response models (Wollack et al., 2002), and generalized graded
unfolding models (Roberts and Thompson, 2011), the choice of
priors and variational Bayesian (VB) estimation have not been
studied for IRT models. In sum, no study has comprehensively
compared the performance of vague and hierarchical priors for
MCMC and VB estimates of IRT models.

Both the 1-PL and 2-PL IRT models are popular in applied
practice. These models are easier to estimate and have lower
sample size requirements than the 3-PL model, which includes
a lower asymptote, pseudo-guessing parameter. These models
are readily suitable for a wide range of applications such as
dichotomously scored achievement test items, response time
models, and voting preference models in political science. Since
the variational Bayesian estimation method (VB) is relatively
new and has not been investigated for any IRT models, these
popular and comparatively simple IRT models are examined to
evaluate prior choice and the use of a newer Bayesian estimation
methodology.

In this study, parameter recovery of two Bayesian estimation
techniques, MCMC and VB, was investigated for different prior
distribution choices using simulated data. Conditional maximum
likelihood (CML) andmarginalizedmaximum likelihood (MML)
were used as a baseline for comparison. CML is the most widely
used estimation method for the 1-PL model, while MML is
the most widely used estimation method for IRT models more
generally.

PARAMETER ESTIMATION

For the 2-PL model, the probability of a correct response Y for an
individual iwith ability level θi on item kwith difficulty parameter
bk and discrimination parameter ak is given as:

P(Yik = 1 | θi, bk, ak) =
exp(ak(θi − bk))

1+ exp(ak(θi − bk))
(1)

Equation (1) reduces to the 1-PL model when the discrimination
parameter is constrained to a constant.

BAYESIAN ESTIMATION

Bayesian estimation uses prior information about the
characteristics of parameters and the conditional likelihood
of the data given the model parameters to obtain the joint
posterior density of the model parameters. In Equation (2)
below, f (�|X) represents the joint posterior density of the model
parameters given the data, f (X|�) represents the likelihood
of the item response data given the model parameters (under
conditions of local item independence1), and f (�) is the prior
density of the model parameters:

f (�|X) ∝ f (X|�)f (�) (2)

Unlike MML which focuses on point estimates, Bayesian
estimation focuses on the joint posterior distribution whose
summary statistics yield extensive information about the
parameters (e.g., credibility intervals which indicate probability
that the true value is contained in this interval). Adaptability
to complex models and restriction of estimates to reasonable
ranges (e.g., discrimination parameter will not be infinite) are

1Local independence refers to the condition where responses to items are

independent for a given level of ability. That is, when the ability level is held

constant, the probability of responding to any item is independent of other items.
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other advantages of Bayesian estimation (Fox, 2010). However,
the choice of priors may introduce bias in the estimates, such
as estimates being regressed toward the mean of the assigned
prior, especially in small samples. Possible non-convergence of
parameter estimates, specifying appropriate priors, and intensive
computation are potential problems.

Prior specification may be the largest advantage, yet
potentially the greatest drawback, of implementing Bayesian
methods. The flexibility in specifying priors helps estimate
complex sampling designs and dependency structures in
Bayesian estimation (for more details refer Fox, 2010). Priors
also allow the researcher to include information from previous
research in a systematic manner. In cases where little is known
about the population distribution, extra care is required in
specifying the prior so that it expresses the uncertainty about the
population without being too vague. The two Bayesian estimation
techniques under study, MCMC and variational Bayesian, are
briefly described next.

MCMC Estimation
MCMC uses the proportionality in Equation (2) to evaluate
the relative likelihoods of parameter estimates. Ultimately,
the goal of MCMC is to reproduce the f (�|X) distribution,
which often cannot be determined analytically. Therefore, the
characteristics of the distributions are determined by sampling
enough observations from the posterior. The Gibbs sampler
is one such technique that samples with respect to univariate
conditional distributions of the model parameters (Geman and
Geman, 1984; Gelfand and Smith, 1990). The Gibbs sampler uses
conditional posterior distributions to obtain a chain of draws of
the model parameters, ω = (ω1, . . . , ωP). The algorithm starts

with initial values ω
(0) = (ω1

(0)
, . . . , ωP

(0)) then iteratively
updates ω

(t−1) to ω
(t) by sampling as follows:

ω1
(t) ∼ p(ω1|ω2

(t−1), . . . , ωP
(t−1), Y)

ω2
(t) ∼ p(ω2|ω1

(t), ω3
(t−1), . . . , ωP

(t−1), Y)

·

·

·

ωP
(t) ∼ p(ωP|ω1

(t), . . . , ωP−1
(t), Y). (3)

The distribution of ω
(t) converges to the posterior distribution

p(ω|Y). Usually, the influence of the initial values are allowed
to “burn-in” by discarding the first B iterations in a chain
(ω(0)

, . . . , ω
(T) ) of length T. A point estimate ω̂ for a parameter

ω is the posterior mean of the marginal posterior distribution
p(ω|Y), which can be approximated by the mean of the
samples as:

ω̂ =
1

(T − B)

∑T

t=B+ 1
ω(t). (4)

Variational Bayesian Estimation
VB is used to approximate intractable integrals by specifying a
family of approximate distributions and then finding themember

of this family that minimizes divergence to the true posterior
(Bishop, 2006). An advantage of VB over MCMC is the reduction
of computation by approximating the posterior with a simpler
function, leading to faster estimation. A disadvantage may be
some loss of accuracy because of this approximation. The present
study investigated the extent of the loss of accuracy in exchange
for faster estimation of 1-PL and 2-PL model parameters.

In the 1-PLmodel, the ability levels θ and difficulty parameters
b are the unknown parameters, both of which have real values.
Therefore, an approximating family in which the parameters
were Gaussian and independent was chosen for the VB approach.
The approximate distribution is

q(θ, b) =
∏

i

q(θi)
∏

k

q(bk), (5)

where q(θi) denotes a Gaussian probability density function with
two free parameters (a mean and variance) for each i, thus
giving a point estimate plus uncertainty for each parameter.
These means and variances are optimized by minimizing
the Kullback–Leibler divergence KL(q(θ, b) || p(θ, b)). Kullback–
Leibler divergence is a non-symmetric measure of the difference
between the distributions p and q (KL, Kullback and Leibler,
1951). Here, p(θ, b) is the exact joint posterior. The usual method
for performing this minimization is coordinate descent, i.e., one
of the q’s is optimized at a time, with the others held fixed.
The Infer.NET software program (http://research.microsoft.
com/en-us/um/cambridge/projects/infernet/, Minka et al., 2012)
provides several options for performing this minimization.
In the current study, the bound of Saul and Jordan (1999)
on the logistic function gave the best trade-off of speed
vs. accuracy.

In the case of hierarchical priors, additional unknowns such
as the means and precisions of the ability, discrimination (for
2-PL), and difficulty parameters (mθ , uθ , ma, ua, mb, and ub,
respectively) must be dealt with. For their posterior distributions,
a fully factorized approximation was used as follows for the 1-PL:

q(mθ , uθ , mb, ub) = q(mθ ) q (uθ ) q (mb) q(ub) (6)

where q was Gaussian for the m’s and Gamma for the u’s. The
approximation for the 2-PL was:

q(mθ , uθ , ma, ua,mb, ub) = q(mθ ) q (uθ ) q (ma) q (ua)

q (mb) q(ub). (7)

The KL divergence is formed over the larger set of unknowns
and minimized as before. Because these new distributions have
two free parameters each, there are 8 and 12 additional free
parameters in the optimization process for 1-PL and 2-PL
models, respectively.

CML ESTIMATION

CML takes advantage of the sufficiency property of Raschmodels:
that the sum of each response vector is a sufficient statistic
(Andersen, 1970). Therefore, ability estimates are not needed
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if conditioning is performed on raw scores, once extreme (0
or perfect) scores are removed. In this study, CML estimation
was performed via the eRm (extended Rasch models; Mair
and Hatzinger, 2007a,b; Mair et al., 2012) package in R (R
Core Team, 2013). The difficulty parameters were normalized
using the sum-to-zero option. After difficulty parameters were
estimated, person parameters were estimated via ML using
the CML difficulty estimates. Because the sufficiency property
holds only for 1-PL, CML estimation was used only for the
1-PL model.

MML ESTIMATION

In MML estimation item parameters are estimated by integrating
the likelihood function with respect to the person parameter
distribution (normal distribution) andmaximizing the likelihood
with respect to the item parameters (Bock and Aitkin, 1981).
In contrast to CML, MML can include extreme score patterns,
yet needs to make a distributional assumption about the person
parameters. Because of the intractable nature of the likelihood
function, numerical methods are utilized for integrating and
maximizing the likelihood function. BILOG-MG (Zimowski
et al., 2003) is a widely used software program for IRT estimation
of item and examinee parameters. For more information on and
how to use BILOG-MG, readers may refer to Rupp (2003). In
this study, BILOG-MG was used with the option of estimating
the item parameters using MML and ability parameters using the
maximum likelihood (ML) method2.

METHODS

The primary purpose of this study was to investigate the impact
of prior choice on 1-PL and 2-PLmodel parameter estimation for
two Bayesian methods: MCMC and VB. Three prior choices were
considered for each of the two Bayesian techniques.

Matched Prior
Matched prior refers to the same distribution that was used
to simulate data. This may not be realistic, but is included
as a gold-standard against which the other prior results were
compared. The matched priors were: θ, b ∼ N(0, 1) and
ak ∼ lognormal(0, 0.25).

Standard Vague Prior
This case refers to a situation where there is a large uncertainty
in selecting the prior distribution. The degree of uncertainty is
reflected in the variance of the prior distribution. In this study,
the prior distribution for the ability parameter was set to the
standard normal, while the prior for difficulty and discrimination
parameters were modeled with large variances representing the
most “pessimistic” belief that almost nothing is known about the
parameter: θ ∼ N(0, 1), b ∼ N(0, 103), ak ∼ lognormal(0, 8).

2This option was selected (as opposed to EAP estimation) so that it utilizes purely

non-Bayesian estimation.

Hierarchical Prior
In this case, the parameters of the prior distributions are
treated as random variables and given hyper-priors, which
are vague. Table 1 below summarizes these priors for both
Bayesian estimation methods. A relatively informative inverse
gamma (1, 1) distribution was used for variance because Gelman
(2006) cautioned against the use of very low values such as
0.01 and 0.001 for the gamma prior which lead to improper
posteriors.

CML andMML estimates were used for baseline comparisons.
Both the MML and CML methods were used for 1-PL data; only
MML was used for 2-PL data. Other factors varied were sample
size (250, 500, 1000, 2000) and test length (10, 20, 40). Sample size
(4), and test length (3) were completely crossed, resulting in 12
conditions. For 1-PL data 8 estimation methods were completely
crossed with the sample size and test length resulting in 96
conditions, whereas for 2-PL data 7 estimation methods were
completely crossed with the sample size and test length resulting
in 84 conditions.

DATA GENERATION

Examinee abilities and item difficulties were generated from
the standard normal distribution with mean 0 and standard
deviation 1; item discrimination parameters were generated
from the lognormal distribution with mean 0 and standard
deviation 0.25. For generating 1-PL data, the probability of
correct response was computed by fixing the discrimination
parameter in Equation 1 to 1, and converting into a response

TABLE 1 | Estimation methods and prior distributions for normal data.

Estimation

method

Prior choice Prior distributions Name

MCMC Matched θ , b ∼ normal(0, 1) MCMC-matched

a ∼ lognormal(0, 0.25)

Standard vague θ ∼ normal(0, 1) MCMC-stdvague

b ∼ normal(0, 103)

a ∼ lognormal(0, 8)

Hierarchical θ ∼ normal(mθ , u−1
θ

) MCMC-hierarchical

b ∼ normal(mb, u−1
b

)

mθ ,mb ∼ normal(0, 106)

uθ , ub ∼ gamma(1, 1)

a ∼ lognormal(ma, u
−1
a )

ma ∼ normal(0, 106)

ua ∼ gamma(1, 1)

Variational Matched Same as MCMC VB-matched

Bayes Standard vague Same as MCMC VB-stdvague

Hierarchical Same as MCMC VB-hierarchical

CMLa NA CML

MMLa NA MML

aCML and MML estimation methods were used for 1-PL data and only MML was used

for 2-PL data.
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of 0 or 1 using a randomly generated threshold from the
uniform distribution. For the 2-PL data, the probability of
correct response was computed using Equation 1, and converted
into a response of 0 or 1 using a randomly generated
threshold from the uniform distribution. For each condition,
100 data sets were simulated using MATLAB 7.11 (MATLAB,
2011).

Six different Bayesian estimations and one or two non-
Bayesian estimations (MML and CML for 1-PL data and MML
for 2-PL data) were performed on each data set. For each
estimation method for 1-PL data, examinee ability and item
difficulty parameters were estimated along with their respective
standard errors (SEs). The probability of correct response
for each examinee on each item was computed using the
estimated parameters. For 2-PL data, the ability, difficulty, and
discrimination parameters along with their respective SEs were
estimated, and the probability of correct response for each
examinee on each item was computed using the estimated
parameters.

MCMC estimates were obtained using OpenBUGS (Lunn
et al., 2009); VB estimates were obtained using Infer.Net (Minka
et al., 2012). CML estimates were obtained via the eRm package
in R and MML estimates were obtained via BILOG-MG.

For the MCMC analysis, the first 5000 samples were discarded
(burn-in) and the next 1000 samples were used for parameter
estimation. The mean of the posterior distribution was taken
as the value for each estimate. In order to speed convergence,
the initial values of the means were set at 0 for both standard
vague and hierarchical priors, while the initial values of the
standard deviations were set at 1 for hierarchical priors.
Adequacy of convergence of the parameter estimates was checked
using convergence diagnostics produced by the Bayesian output
analysis (BOA; Smith, 2007) program. BOA generates several
diagnostic indices, of which three were considered: multivariate
potential scale reduction factor (MPSRF; Brooks and Gelman,
1998), estimated potential scale reduction (EPSR; Gelman,
1996), and the half-width test (Heidelberger and Welch, 1983).
Convergence is indicated when the 0.975th quantiles of both
scale reduction factors are <1.2, whereas for the half-width
test the choice is pass/fail. Results for all conditions met all
convergence criteria, indicating that the samples were drawn
from fairly stationary distributions. However, this does not imply
that the number of samples was always adequate for accurate
estimation of parameters. In some cases with the hierarchical
prior, it appears that 1000 samples may not have been enough
to match the accuracy of the variational approximation.

EVALUATION CRITERIA

The average root mean squared error (RMSE) of the ability
parameter for a given sample of S examinees was computed as:

Average RMSE (θ) =
1

R

∑R

r= 1

√
1

S

∑S

s= 1
(θ̂sr − θsr)2, (8)

where θ̂sr and θsr were the estimated and real values of the ability
parameter for replication r and examinee s, respectively. The

average RMSE of the difficulty parameter for a given test length L
was computed as:

Average RMSE(b) =
1

R

∑R

r= 1

√
1

L

∑L

i= 1
(
⌢

b ir − bir)2, (9)

where
⌢

b ir and bir were the estimated and real values of the
difficulty parameter for replication r and item i, respectively, and
R is the total number of replications (in this case, 100). The
average RMSE of the discrimination parameter for a given test
length L was computed as:

Average RMSE(a) =
1

R

∑R

r= 1

√
1

L

∑L

i= 1
(âir − air)2, (10)

where âir and air were the estimated and real values of
the discrimination parameter for replication r and item i,
respectively, and R is the total number of replications (in this
case, 100).

The 2-PL model has a shift and scale ambiguity in the
parameters, in the sense that (θ, b, a) can be transformed into an
equivalent (θ ′, b′, a′) given by Equations (11–13) for any s, t.

a′k =
ak

s
(11)

b′k = bks+ t (12)

θ ′i = θis+ t (13)

In order to measure the RMSE fairly, we took the estimates from
eachmethod in each trial and transformed them as above in order
to minimize the RMSE to the true values. That is, (s, t) were
chosen to minimize

J(s, t) = RMSE(θ |s, t)+ RMSE(b|s, t)+ RMSE(a|s, t), (14)

where RMSE(θ |s, t) is the RMSE formula in Equation (8) where
the estimated θ is transformed by (s, t).

Accuracy of parameter estimates was evaluated using the
RMSE between the real (simulated) and shifted values of the
estimated parameters. Note this is more accurate than simply
computing the correlation between the estimated and real
parameters since a correlation allows each parameter to have its
own shift and scale, which is not consistent with the model.

Even with these adjustments, looking at the RMSE of
individual parameters can be misleading and inconclusive. For
example, if method A has low RMSE for difficulty while method
B has low RMSE for ability, which should we regard as better?
For this reason, we also include RMSEs for the probabilities
of correct responses. This provides a single direct measure of
how well the model has fit the data. The RMSEs were averaged
over all 100 replications. The average RMSE of the probability of
correct response for a given test length L and sample size S was
computed as:

Average RMSE(p)=
1

R

∑R

r= 1

√
1

LS

∑S

s= 1

∑L

i= 1
(
⌢
p isr − pisr)2,

(15)
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where
⌢
p isr and pisr were the probabilities of examinee s

replication r and item i computed based on estimated and real
parameters, respectively. Finally, RMSEs were evaluated based on
comparison (i.e., whether one condition had lower RMSE than
another) and not based on any absolute cut-off.

In order to compare the accuracy of parameter estimates
with respect to the estimation method (EM), sample size
(SS), test length (TL), and all possible interactions, five
separate analyses of variance (ANOVA) were conducted for
1-PL data and seven separate analyses of variance (ANOVA)
were conducted for 2-PL data. The five dependent variables
corresponding to the five ANOVAs for the 1-PL data were:
average RMSEs for difficulty, ability, and probability estimates,
and average SEs for ability and difficulty estimates. For the
2-PL data, the two additional ANOVAs included average
RMSEs and average SEs for the discrimination parameter
estimates. For each ANOVA the same independent variables
were utilized: EM (eight levels for 1-PL and seven levels for
2-PL), SS (four levels), and TL (three levels) and all possible
interactions.

For each ANOVA, effect sizes (η2) were used to assess the
effect of each independent variable and two way interactions
on the respective estimate. Following Cohen (1988), an effect
size greater than 14% was considered large, between 8 and 14%
medium, and below 8% small.

RESULTS

1-PL Data
ANOVA results for the 1-PL data conditions are shown in
Table 2; the corresponding average RMSEs and SEs are shown in
Table 3. Table 2 shows the percentage of variance explained (η2)
for both main and interaction effects that explain at least 8% of
variance. It can be seen that the estimationmethod (EM) explains
the majority of the total variance in the RMSEs for ability,
difficulty, and the probability of correct response estimates. EM
also explains a major portion of the variance for the SEs of the
difficulty parameter. The TL on the other hand explains major
portion of the variance for the ability SEs.

Ability Estimate

Table 2 shows that EM accounts for 84% of the variance
in the average RMSEs of the ability estimate, but only 18%
of the variance in SEs of ability estimates. In contrast, TL
accounted for 72% of the variance in SEs and only 11% in
EM. It can be seen from Table 3 that all Bayesian estimates,

TABLE 2 | Effect sizes (η2) from ANOVA for 1-PL data in percentages.

Effect Average RMSE Average SE

Ability Difficulty Probability Ability Difficulty

EM 84.413 99.327 95.163 18.014 60.936

TL 11.484 72.505

SS 21.736

EM × SS 9.436

with the exception of MCMC-standard vague, have the lowest
RMSEs. For the SEs, all Bayesian estimates, with the exception
of MCMC-hierarchical, have the lowest values. As expected,
increasing test length was associated with a decrease in both
the RMSEs and SEs. This was true across all estimation
methods.

Difficulty Estimate

Table 2 shows that EM explains 99% of the variance in the
average RMSEs of the difficulty estimate, and about 61% of the
variance in SEs. Sample size and the interaction between sample
size and EM explain about 22 and 9.5% of the variance in the
difficulty SEs, respectively. As can be seen from Table 3, all
estimation methods have lower and similar RMSEs thanMCMC-
standard vague values. For SEs, all estimation methods, except
MCMC-hierarchical, have lower and similar values. TheMCMC-
hierarchical SEs are more than three times larger than other
methods. Marginal means aggregated over test length and sample
size are given in Table 4.

Probability Estimate

To examine the concurrent effect of both ability and difficulty
estimates and their SEs, probabilities of correct responses were
computed and their SEs were averaged. Examining these values
from Table 3, it can be seen that all Bayesian estimation methods
with the exception of MCMC-standard vague have lower values
than both CML and MML SEs.

2-PL Data
MCMC standard vague did not converge for some datasets when
using OpenBUGS. Therefore, we implemented our own MCMC
algorithm to estimate the 2-PL parameters. VB standard vague
also did not converge in several conditions, but improvements
to this algorithm could not be made. Therefore, VB standard
vague results are not reported. ANOVA results for the 2-PL data
are shown in Table 5. It shows effects (main and interaction)
that explain at least 8% of variance (η2) in average RMSEs and
average SEs. For the average RMSEs, TL explains the majority of
variance for ability and probability estimates, while EM explains
the majority of variance for the difficulty estimate; SS explains the
majority of variance for the discrimination parameter estimate.

TABLE 3 | Marginal means by estimation method for 1-PL data.

Estimation method Ability Difficulty Probability

RMSE SE RMSE SE RMSE

CML 0.60 0.58 0.09 0.09 0.11

MCMC-hierarchical 0.47 0.60 0.09 0.35 0.09

MCMC-matched 0.47 0.47 0.09 0.10 0.09

MCMC-stdvague 1.33 0.48 1.40 0.11 0.36

MML 0.60 0.59 0.10 0.10 0.16

VB-hierarchical 0.47 0.46 0.09 0.09 0.09

VB-matched 0.47 0.46 0.09 0.09 0.09

VB-stdvague 0.47 0.46 0.10 0.10 0.09
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TABLE 4 | Marginal means aggregated over test length and sample size for the 1PL model.

SS CML MML MCMC VB

Hierarchical Matched Std_vague Hierarchical Matched Std_vague

diff-RMSE 250 0.15 0.16 0.15 0.15 1.39 0.15 0.15 0.15

500 0.10 0.11 0.10 0.10 1.39 0.10 0.10 0.10

1000 0.07 0.08 0.07 0.07 1.40 0.07 0.07 0.07

2000 0.05 0.06 0.05 0.05 1.40 0.05 0.05 0.05

diff-SE 250 0.15 0.16 0.55 0.16 0.16 0.15 0.15 0.15

500 0.10 0.11 0.38 0.11 0.12 0.10 0.10 0.10

1000 0.07 0.08 0.27 0.08 0.08 0.07 0.07 0.07

2000 0.05 0.06 0.19 0.06 0.06 0.05 0.05 0.05

TL

ab-RMSE 10 0.82 0.82 0.60 0.60 1.28 0.60 0.60 0.60

20 0.58 0.58 0.47 0.47 1.33 0.47 0.47 0.47

40 0.40 0.40 0.35 0.35 1.37 0.35 0.35 0.35

ab-SE 10 0.79 0.83 0.77 0.60 0.60 0.58 0.59 0.59

20 0.56 0.57 0.59 0.47 0.47 0.46 0.46 0.46

40 0.39 0.39 0.44 0.35 0.35 0.35 0.35 0.35

p-RMSE 10 0.14 0.19 0.11 0.11 0.36 0.11 0.11 0.11

20 0.10 0.15 0.10 0.09 0.36 0.09 0.09 0.09

40 0.07 0.13 0.07 0.07 0.37 0.07 0.07 0.07

TABLE 5 | Effect sizes (η2) from ANOVA for 2-PL data in percentages.

Effect Average RMSE Average SE

Ability Difficulty Discrimination Probability Ability Difficulty Discrimination

EM 56.32 16.58 50.18 48.92 42.51

TL 93.19 88.36 26.15

SS 21.61 47.19 22.05 19.73

EM × SS 21.22 25.69 22.14 16.95

For the average SEs, EM explains the majority of variance for all
three parameters, although both TL and SS play a significant role.

Ability Estimate

Table 5 shows that TL accounts for 93% of the variance in the
average RMSEs of the ability estimate, while for average ability
SEs both EM and TL account for 50 and 26% of the variance,
respectively. Table 6 shows marginal means of average RMSEs
aggregated over SS. Table 7 shows marginal means aggregated
over TL and SS. From Table 6 it can be seen that both RMSEs
and SEs of the ability estimate decrease as the TL increases. This
is true for all estimation methods and all prior choices. For TL of
10 items, all estimation methods have similar RMSEs; however,
as the TL increases to 20 and 40 items, Bayesian estimates
have similar and smaller values than MML RMSEs. For SEs,
hierarchical priors have the highest SEs, while the rest of the
Bayesian SEs are lower than MML SEs. From Table 8 it can

be seen that ability SEs are lowest for VB-matched, MCMC-
matched, and MCMC-standard vague.

Difficulty Estimate

Table 5 shows that both average RMSEs and average SEs for the
difficulty estimate are affected by EM, SS, and the interaction
of EM and SS. The EM accounts for about 50% or more of the
variance for both RMSEs and SEs. Table 7 shows results across
SS and Table 8 shows results across EM methods. From Table 8

it can be seen that both RMSEs and SEs are lowest for MCMC-
matched, VB-matched, and VB-hierarchical. From Table 7 it can
be seen that the average RMSEs decrease with an increase in
sample size for all estimation methods except for MML. The
error decreases by more than half as the SS increases from 250
to 2000. For MML, the average error is not affected by the SS.
The average SEs decreases with increasing SS for all estimation
methods without exception.
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TABLE 6 | Marginal means aggregated over sample size for the 2-PL modela.

Parameter Test length MML MCMC VB

Matched Standard vague Hierarchical Hierarchical Matched

Ability RMSE 10 0.61 0.59 0.60 0.61 0.59 0.59

20 0.51 0.46 0.47 0.48 0.46 0.46

40 0.46 0.35 0.35 0.36 0.35 0.35

Ability SE 10 0.82 0.59 0.60 1.37 0.98 0.58

20 0.56 0.47 0.48 1.00 0.80 0.45

40 0.38 0.35 0.37 0.69 0.63 0.34

Probability RMSE 10 0.14 0.12 0.12 0.12 0.12 0.11

20 0.10 0.09 0.09 0.09 0.09 0.09

40 0.08 0.07 0.07 0.07 0.07 0.07

a For the 2-PL data, VB-stdvague estimates did not converge for several conditions. Therefore they are not reported.

TABLE 7 | Marginal means aggregated over test length for the 2PL model.

Parameter Sample size MML MCMC VB

Matched Standard vague Hierarchical Hierarchical Matched

Difficulty RMSE 250 0.41 0.18 0.6 0.26 0.19 0.18

500 0.4 0.14 0.27 0.19 0.14 0.14

1000 0.4 0.1 0.13 0.13 0.11 0.1

2000 0.4 0.08 0.09 0.09 0.08 0.08

Difficulty SE 250 0.31 0.2 1.18 1.27 0.26 0.15

500 0.21 0.15 0.35 0.92 0.19 0.11

1000 0.13 0.11 0.15 0.58 0.14 0.08

2000 0.09 0.08 0.1 0.38 0.1 0.05

Discrimination RMSE 250 0.23 0.16 0.46 0.19 0.17 0.16

500 0.16 0.13 0.19 0.14 0.13 0.13

1000 0.11 0.1 0.12 0.11 0.1 0.1

2000 0.08 0.07 0.08 0.08 0.07 0.08

Discrimination SE 250 0.15 0.17 0.5 0.35 0.07 0.12

500 0.1 0.14 0.19 0.29 0.05 0.09

1000 0.07 0.11 0.12 0.25 0.04 0.06

2000 0.05 0.08 0.08 0.2 0.03 0.05

Discrimination Estimate

Similar to the difficulty parameter, the discrimination parameter
also is affected by EM, SS, and the interaction of EM and SS.
For the RMSEs, a substantial portion of the variance (47%) is
accounted for by the SS, while for the SEs, a substantial portion
of the variance (43%) is accounted for by the EM. From Table 7

it can be seen that as the SS increases from 250 to 2000, RMSEs
drastically decrease for all estimation methods. While the same
trend can be observed for the SEs also, the decrease in the
SEs is not as steep as the decrease in RMSEs. From Table 8 it
can be observed that for RMSEs, all Bayesian methods, except
the MCMC-standard vague, have lower values than MML; for
SEs, MCMC-standard vague and MCMC-hierarchical have the

highest values and VB-matched and VB-hierarchical have the
lowest values.

Probability Estimate

Probability of correct response, which takes into account
both ability and item estimates, provides an overall effect of
the estimates on the item responses. It can be seen from
Table 8 that RMSEs associated for the probability of correct
response are about the same for all the Bayesian estimates
and are lower than RMSEs of MML. Similar to the ability
estimate, RMSEs for the probability of correct response is
only affected by the TL, accounting for 88% of the variance.
From Table 6 it can be seen that as the TL increases from
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TABLE 8 | Marginal means aggregated over SS and TL for the 2PL model.

Parameter Statistic MML MCMC VB

Matched Standard vague Hierarchical Matched Hierarchical

Ability RMSE 0.52 0.47 0.47 0.48 0.47 0.47

SE 0.59 0.47 0.48 1.02 0.46 0.8

Difficulty RMSE 0.4 0.13 0.27 0.17 0.13 0.13

SE 0.18 0.14 0.44 0.79 0.1 0.17

Discrimination RMSE 0.15 0.12 0.21 0.13 0.12 0.12

SE 0.09 0.12 0.22 0.27 0.08 0.05

Probability RMSE 0.11 0.09 0.09 0.09 0.09 0.09

10 to 40, the RMSE decreases by about half for all estimation
methods.

SUMMARY AND CONCLUSION

Through statistical simulation, the present study showed that
practitioners would benefit from using Variational Bayesian
with hierarchical priors to estimate parameters of 1-PL and 2-
PL models. This method is cost-effective, quick, and accurate.
Infer.NET is a freely available software program that implements
VB. The codes for 1-PL and 2-PL estimation are available upon
request. The hierarchical priors used in the present study covered
a far wider range of item and person parameter values than
those encountered in psychometric research. Therefore, users
may apply these programs to any dataset they would use for 1-PL
and 2-PL applications.

EM, TL, and SS played significant roles in accurately
estimating item and examinee parameters. This reflects the
findings of Kieftenbeld and Natesan (2012), Wollack et al. (2002),
Swaminathan and Gifford (1982), and Roberts and Thompson
(2011) who all found that test length affected the accuracy of
examinee parameters and sample size affected the accuracy of
item parameters. With respect to the sample size, and RMSEs our
results were similar to Sheng’s (2010) with one exception. In our
study the average RMSEs decreased as the sample size increased
for both difficulty and discrimination parameters, whereas in
Sheng’s RMSEs decreased with increased sample size only for the
discrimination parameter. Regarding the test length our results
were similar to Sheng (2010), namely, the test length had no effect
in estimating discrimination and difficulty parameters. Standard
vague priors produced relatively large RMSEs and in some cases
did not converge. This confirms Sheng’s (2010) suggestions about
not using extremely vague priors to avoid convergence issues. The
RMSEs were lower for all Bayesian methods (with the exception
of standard vague priors) than the CML and MML estimates.
SEs for VB estimation methods (with the exception of standard
vague priors) were either lowest or about the same as other
methods for all conditions except one case (2PL ability estimates).
Surprisingly, the MCMC-hierarchical SEs were, most of the time,
larger than other methods. With a few exceptions hierarchical
priors showed superior performance. Matched and hierarchical

produced comparable results. Overall, VB-hierarchical, VB-
matched, and MCMC-matched performed uniformly well in
most situations and produced the lowest RMSEs and SEs in
most cases.

Although the matched prior results were very similar to
the hierarchical priors, such matched priors are unavailable
to practitioners in real data applications because the actual
distribution of parameters is unknown. Therefore, researchers
must be cautious about choosing either extremely informative
or extremely vague priors when the true parameter distribution
is unknown. Unless previous research provides convincing
evidence about parameter distributions, very informative or
vague priors should be avoided in practice. Because hierarchical
priors produced very similar results in this simulation where
the true distributions known, hierarchical priors appear
advantageous and are recommended for both MCMC and VB
estimation in practice.

Additionally, this study has demonstrated that VB is a viable
alternative to MCMC for the estimation of model parameters in a
Bayesian framework. The results showed that in most cases there
is no loss in accuracy of parameter estimates in VB, while gaining
the efficiencies of faster estimation, making it an attractive choice
for Bayesian estimation. However, the trade-off could be some
loss in precision as evidenced in the case of SEs of ability estimates
for 2-PL data. VB-hierarchical priors recovered the parameters
as well as matched priors did, even for small samples. The
savings in computational time could be significant for VB. For
example, OpenBUGS took 336 s to estimate the parameters of
2000 examinees and 40 items using standard priors while VB
took 8.62 s and BILOG-MG took 1.5 s. OpenBUGS estimation
time increased (5 h for hierarchical priors), while that of VB
decreased (6.5 s) for complex prior specifications. Our own Gibbs
sampler with hierarchical priors took 102.09 s for estimation. It is
also possible that other Bayesian programs such as just another
Gibbs sampler (JAGS, http://mcmc-jags.sourceforge.net/) and
STAN (http://mc-stan.org/) are more computationally efficient
than OpenBUGS.

Future research needs to focus on more complex models

such as the 3-PL and polytomous models and under varied
conditions to further investigate the viability of VB as a reliable
estimation method. Further research also needs to be done
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on how reliable prior information can be used for parameter
recovery in small samples using both VB and MCMC. In the
present study OpenBUGS ran into convergence issues for vague
priors for the 2-PL model. In such instances, the researcher

may have to find alternate solutions such as writing their own

Gibbs samplers. Therefore, there is need for research that focuses
specifically on developing and making available algorithms for

IRT models.
With VB, we now have the opportunity to exploit the

advantages of Bayesian estimation (i.e., estimating complex
models, incorporating information from previous studies,

and placing realistic constraints on parameters) while
liberating ourselves from the disadvantages of MCMC (i.e.,
non-convergence and time-intensive computation). The
possibility of expanding the use of VB for more complex
models than 1-PL and 2-PL may encourage the measurement

field to investigate newer item response models and to
operationalize Bayesian estimation into more mainstream
operational examinations3.
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