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In psychology, studying multivariate dynamical processes within a person is gaining

ground. An increasingly often used method is vector autoregressive (VAR) modeling, in

which each variable is regressed on all variables (including itself) at the previous time

points. This approach reveals the temporal dynamics of a system of related variables

across time. A follow-up question is how to analyze data of multiple persons in order to

grasp similarities and individual differences in within-person dynamics. We focus on the

case where these differences are qualitative in nature, implying that subgroups of persons

can be identified. We present a method that clusters persons according to their VAR

regression weights, and simultaneously fits a shared VAR model to all persons within a

cluster. The performance of the algorithm is evaluated in a simulation study. Moreover, the

method is illustrated by applying it to multivariate time series data on depression-related

symptoms of young women.

Keywords: time series analysis, cluster analysis, vector autoregressive modeling, partitioning, individual

differences

INTRODUCTION

In psychology, studying multivariate within-person processes across time is gaining ground
(Molenaar, 2004; Hamaker, 2012; Hamaker et al., 2015). For instance, in emotion psychology, Pe
and Kuppens (2012) studied the dynamical interplay of emotions in daily life. More specifically,
they investigated if the experience of a particular emotion at a specific occasion increased or
decreased the intensity of another emotion at the next occasion. As another example, Snippe et al.
(2015) analyzed the person-specific temporal relations between mindfulness, repetitive thinking,
and depressive symptoms during mindfulness-based treatment. Finally, Rosmalen et al. (2012)
inspected the dynamics between depression level and physical activity after a myocardial infarction.

Individual differences in these within-person dynamics are often present. In many cases, it
is plausible for empirical or theoretical reasons that these differences are qualitative in nature.
Empirical findings indeed regularly suggest that subgroups of persons exist that are characterized
by similar dynamics. For example, in the study of Rosmalen et al. (2012) mentioned above, past
activity level predicted the current depression score for two of the four participants, whereas the
temporal direction of this relation was reversed for another participant and no significant effects
were present for the final participant. Similar patterns of individual differences were reported by Pe
and Kuppens (2012) and Snippe et al. (2015). In other research areas, theoretical arguments point
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to qualitative differences as well, but empirical evidence
is yet missing. For example, attachment theory conjectures
that qualitatively different patterns of attachment can be
distinguished: Secure attachment, avoidant attachment, and
anxious attachment (Bowbly, 1969; Ainsworth et al., 1978). The
within-person dynamics of attachment-related behaviors (e.g., do
children react to stressful situations by using mother as a safe
haven or do they try to solve the problem on their own because
they don’t expect help from mother?) should differ accordingly
across persons. Another example can be found in the literature on
eating disorders, where anorexia nervosa, bulimia nervosa, and
binge eating disorder, are presumably associated with different
temporal dynamics (e.g., do patients react to body dissatisfaction
by avoiding to eat or by binging?; Stice, 2002).

An important data-analytical question is then how to
parsimoniously reveal these qualitative differences in within-
person dynamics. In general, qualitative differences are often
revealed by clustering techniques (Gan et al., 2007). To date,
however, clusterwise extensions of models capturing the within-
person dynamics of multiple variables are not readily available1.
In this paper, we will present one solution to this problem, related
to recent autoregressive (AR) based clustering approaches (e.g.,
Liao, 2005; Frühwirth-Schnatter and Kaufmann, 2008; D’Urso
et al., 2013, 2015), which focus on the dynamics within single
variables:We propose a clusterwise extension of themost popular
time series model for studying multivariate dynamical processes,
namely vector autoregressive (VAR) models (e.g., Schmitz and
Skinner, 1993; Wild et al., 2010; Bos et al., 2012; Rosmalen et al.,
2012; Bringmann et al., 2013; van Gils et al., 2014; Wichers, 2014;
Pe et al., 2015; Snippe et al., 2015; van der Krieke et al., 2015).

In a VAR model, each variable is regressed on all other
variables and itself at previous time points. Contemporaneous
(i.e., at the same time point) relations between the variables are
dealt with by allowing instantaneous correlations between the
respective residuals (as discussed in the textbook of Hamilton,
1994; Lütkepohl, 2005). In contrast, the structural VAR (SVAR)
model, less often used in psychology, adds coefficients to
capture the direction and the size of contemporaneous relations.
However, in order to identify a SVAR model, theory is needed to
specify a priori which unidirectional contemporaneous relations
are present (Lütkepohl, 2005). An advantage of VAR is thus that
no such restrictions need to be imposed. The price to pay is
that the coefficients are not directly interpretable (see Brandt and
Williams, 2007). If the goal is to make predictions about future
points in time based on past and present measurements (i.e.,
forecasting), this is however not an issue.

The aim of this paper is thus to develop a method to classify
persons based on their temporal dependencies drawing on the
VAR methodology. This clusterwise VAR model groups persons
according to their VAR coefficients, and simultaneously fits a
shared VAR model to all persons within a cluster. Clusters will
then consist of persons with similar dynamical processes.

1Mixture VARmodels were proposed (e.g., Fong et al., 2007) for dealing with non-
stationarity issues in one multivariate time series. These models impose a mixture
distribution upon the innovations, and hence, cluster time points of the time series.
Our aim is to group persons with similar stationary dynamic processes.

The remainder of the paper is organized as follows. In the
next section, we shortly recapitulate the theory of VAR models,
followed by the introduction of the clusterwise VAR model. In
addition, the section contains a description of the algorithm
and proposes a model selection procedure. In the third section,
the performance of the algorithm is evaluated in a simulation
study. Then, the model is illustrated with an application to time
series data on depression-related symptoms of young women. To
conclude, directions for future research are addressed.

CLUSTERWISE VAR(1) MODELING

The VAR(1) Model
Model
VAR modeling was proposed to analyze M-variate time series
data of length T (Hamilton, 1994; Lütkepohl, 2005). The model
consists of a set of equations in which each of the M variables
is separately regressed on all M variables (including itself) at
previous occasions. As is mostly done in psychological research
(e.g., Schmitz and Skinner, 1993; Wild et al., 2010; Bringmann
et al., 2013; Pe et al., 2015; Krone et al., 2016; Schuurman et al.,
2016), we will focus on a model predicting the score of the
variables at time t based on the measurements at time point t-
1, that is, a VAR model of order 1. Extending the model to higher
orders is straightforward, however (Hamilton, 1994; Lütkepohl,
2005). The model formula of the VAR(1) model reads as follows:

yt = c + 8yt − 1 + ut (1)

where the M×1 vectors yt and yt−1 represent the values of the
variables at time points t and t-1, respectively, the M×1 vector
c holds the intercepts, the M×M matrix 8 contains the VAR(1)
regression slopes, and theM×1 vector ut holds the innovations at
time t. The innovations are dynamical residuals, and they capture
the part of the variable that cannot be predicted based on the
scores at the previous time point.

The VAR(1) model comes with three assumptions. A
first assumption is that the intervals between consecutive
measurements are of equal length. Second, the innovations are
assumed to follow a normal distribution with a zero mean vector
and a covariance matrix 6; violations of this assumption can
be tackled by using a mixture distribution instead (see Fong
et al., 2007). The innovations can thus be correlated at the same
time point, but not across time points. Further, the time series
are assumed to be stationary (i.e., the joint distribution is time
invariant; Lütkepohl, 2005). This implies that the eigenvalues of
8 should have a modulus smaller than 1 (Lütkepohl, 2005).

VAR(1) models can be used for forecasting (Lütkepohl,
2005)2. Specifically, forecasts can be computed for the time points
following a particular set of variable scores (i.e., a specific state
of a person). In other words, given our VAR(1) parameters
and certain scores for each of the variables, we can investigate

2Next to forecasting, structural analyses to investigate the precise nature
of the system dynamics are possible (e.g., calculating impulse response
functions). However, these methods require identification assumptions about the
contemporaneous relations between the variables (see Brandt andWilliams, 2007),
and are therefore not considered in the current paper.
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how each variable would evolve assuming that there are no
innovations. Think for instance of the following hypothetical
example. Two persons have the same high scores on the same
set of variables, but their VAR(1) slopes strongly differ, with the
slopes of the first person being closer to zero than those of the
second person. Now, we can inspect whether the predictions for
each variable differ across those persons. The variable scores of
the first person will probably quickly return to their mean value.
The variable scores of the second person only slightly decrease
because of the VAR(1) slopes and therefore also impact the next
observations. Thus, the variables only return to their mean value
after a while. Over and above this, the percentage of explained
variance R2 for each variable gives an indication of the extent to
which this variable can be predicted on the basis of the variables at
the previous point. For the hypothetical example, the past scores
of the second person predict the future observations to a greater
extent than the past scores of the first person, leading to a larger
R2. Both approaches—forecasting and R2—will be shown in the
application below.

Data Analysis
Various procedures including least squares (LS) estimation
methods, Yule-Walker estimation, and maximum likelihood
(ML) estimation, are available to estimate the parameters of
a VAR model (see e.g., Hamilton, 1994; Lütkepohl, 2005). LS
and ML estimators yield identical estimates (Lütkepohl, 2005).
Yule-Walker estimators have the same asymptotic properties, but
might be less optimal in small samples (Lütkepohl, 2005). We
will only discuss multivariate LS as the clusterwise extension we
will present is based on this estimation procedure. Following
Lütkepohl (2005), by defining

Y ≡ (y2, . . . ,yT), (2)

B ≡ (c,8), (3)

and

Z ≡ (

[
1
y1

]
, . . . ,

[
1

yT−1

]
), (4)

the VAR(1) model can be rewritten as follows:

Y = BZ + U. (5)

The VAR(1) coefficients can then be obtained by solving the
following closed-form expression:

B̂ = YZ′(ZZ
′

)
−1

. (6)

This estimation step is equivalent to conducting an ordinary
LS estimation for each equation separately (Lütkepohl, 2005). A
sufficiently large number of time points are required to obtain
good estimates (typically larger than 50; see e.g., Wild et al., 2010;
Rosmalen et al., 2012; Krone et al., 2016).

The Clusterwise VAR(1) Model
Model
In this paper, we propose a clusterwise extension of the VAR(1)
model. Starting from the key idea behind clusterwise linear
regression (Späth, 1979, 1982; DeSarbo et al., 1989; Brusco
et al., 2008), we will cluster persons according to their VAR(1)
regression weights [i.e., each person i (i = 1, . . . , I) is assigned to
one particular cluster k (k = 1, . . . , K)], and simultaneously, fit a
shared VAR(1) model to all persons within a cluster. In terms of
the taxonomy of Liao (2005), who distinguishes clustering time
series based on (a) the raw data, (b) features extracted from the
data, and (c) model parameters, our clustering approach is based
onmodel parameters to ensure that we identify groups of persons
with similar time dynamics.

The model formula is the following:

yit =
∑K

k = 1
pik

(
ck + 8kyi,t−1 + ukt

)
. (7)

TheM×1 vectors yit and yi,t−1 now contain the scores of person
i on the M variables at time points t and t-1 (t = 1, . . . , Ti).
Importantly, the number of time points does not have to be
equal across persons, as is shown by the subscripted i in Ti. pik
denotes an element of the I×K partition matrix. When pik equals
1, person i belongs to cluster k; pik equals 0 if this is not the
case. The VAR(1) regression coefficients ck and 8k differ across
the clusters of persons as indicated by the subscript k. The same
assumptions as described above need to bemet for the clusterwise
extension, but now also across persons. More specifically, this
means that intervals between the measurements should be equal
for all persons. In addition, the mean of each variable should be
constant across persons. Person-mean centering can be applied
if this assumption does not hold. It is also assumed that the
innovation covariation matrix is equal for all participants within
a cluster. Note that a similar assumption is made in case of a
multilevel extension of the VAR model (Bringmann et al., 2013),
which focuses on quantitative rather than qualitative differences
in model parameters.

Regarding the interpretation of the clusterwise VAR(1) model,
the above mentioned approaches—forecasting and computing
R2—can be used to compare the clusters. It is especially
interesting to see how the predictions given a specific state (i.e.,
a particular set of variable scores) differ across the clusters.
Inspecting possible differences in R2 values may also be useful,
as they indicate whether the variable scores are more predictable
in one cluster than in another, and for which variables this holds.

Data Analysis

Loss function
For a particular number of clusters K, a partition matrix and
the regression coefficients of each cluster are estimated by
minimizing the sum of squared prediction errors:

LK =

∑I

i = 1

∑Ti

t = 2

(
yit − ŷit

)2
(8)

where ŷit represents the predicted scores of person i for the M
variables at time point t. Note that the loss function is calculated
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starting from the second time point of each person onwards
because an observation at a previous time point is needed to
determine the residual.

Estimation
To fit the clusterwise model to data, we propose to use an
alternating least squares (ALS) approach, consisting of four steps:

1 Obtain an initial clustering of the persons, in either a random
or a rational way. Empty clusters are not allowed. In the
random case, each person is randomly assigned to one of
the K clusters, with each cluster having equal probability of
being assigned to. The rational start is based on hierarchical
clustering, as is often done in ALS based clustering approaches
(e.g., Brusco and Cradit, 2001; Steinley, 2003; Brusco and
Cradit, 2005; Wilderjans and Ceulemans, 2013). Specifically,
drawing on the approach of Zheng et al. (2013), we first fit a
VAR(1) model to the data of each person separately. Second,
we conduct a hierarchical clustering using Ward’s criterion
(Ward, 1963) on the Euclidean distances between the resulting
VAR(1) slopes, and retain the K cluster partitioning as a
rational start.

2 A single VAR(1) model is fitted to the data within each cluster,
using OLS. To this end, the data of all persons within the
cluster are vertically concatenated, with the first observation
of each person being removed as mentioned above. The latter
prevents that data of one person are predicted on the basis of
data of another person.

3 To update the partition matrix, the following procedure is
followed for each person consecutively. First, by means of the
sum of squared prediction errors it is assessed how well the
VAR(1) model of each cluster fits the data of the person, and
the person is assigned to the cluster for which this sum is
minimal. Next, the VAR(1) models of the clusters with altered
memberships (if the person is assigned to a different cluster)
are re-estimated with the updated partition matrix.

4 Finally, the previous step is repeated until the clustering
no longer changes, or in other words, until there is no
improvement in fit anymore.

Clustering algorithms are often susceptible to ending in a local
minimum instead of the global minimum. Therefore, as is
commonly done in cluster analysis, we advise to run the ALS
procedure multiple times, once from the rational start described
in step 1, and a number of times using a random start (Steinley,
2003; Ceulemans et al., 2007), and retain the best fitting solution.
The Supplementary Material contains complete MATLAB code
to run the ALS algorithm to fit a clusterwise VAR(1) model.

Model selection
To run the ALS procedure, a number of clusters K has to
be specified. In most cases, the number of clusters is however
not known beforehand. An important criterion to select the
number of clusters is the interpretability of the retained model.
As checking the interpretability of many different solutions can
be cumbersome, a formal model selection strategy can assist in
identifying a subset of interesting models. We propose to use the
CHull procedure which balances model (mis)fit and complexity

(Ceulemans and Kiers, 2006; Wilderjans et al., 2013) and which
has been shown to performwell in the context of different models
(e.g., Ceulemans and Kiers, 2006, 2009; Schepers et al., 2008;
Ceulemans et al., 2011; Lorenzo-Seva et al., 2011; Bulteel et al.,
2013). CHull provides a numerical way of determining the elbow
in a scree plot, in which a measure of (mis)fit (in this case, the
sum of squared prediction errors) is plotted as a function of a
measure of complexity (in this case, the number of clusters).
More specifically, the clusterwise VAR(1) model is first fitted with
the number of clusters varying from Kmin to Kmax. Then, one
looks for the K value that maximizes the following scree test ratio
st, indicating that adding another cluster will hardly increase the
fit of the model:

stk =
LK−1 − LK

LK − LK + 1
. (9)

In practice, as indicated by Ceulemans and Kiers (2006), we
recommend to retain the models having the largest st-values
for further inspection regarding interpretability. Free software to
apply the CHull procedure is available from http://ppw.kuleuven.
be/okp/software/chull/ (Wilderjans et al., 2013).

SIMULATION STUDIES

In this section, we will present the results of two simulation
studies. In a first study, we evaluate the performance of the ALS
algorithm when using the correct number of clusters. To assess
the performance of the proposedmodel selection strategy, we will
use a subset of the generated data sets of the first study in a second
study.

Simulation Study 1
Research Questions
The goal of the first simulation study is to evaluate the
performance of the ALS algorithm when the correct number
of clusters is used. Several criteria will be evaluated: (a) the
occurrence of local minima, (b) the recovery of the clustering,
and (c) the recovery of the VAR(1) coefficients. The effect of
six data characteristics, often manipulated in simulation studies
on clustering techniques, will be examined: (a) the number of
clusters, (b) the number of time points per person, (c) the number
of persons, (d) the similarity of the dynamical structure of the
clusters, (e) the relative sizes of the different clusters, and (f) the
variance-covariance matrix of the innovations. The last factor
enables to evaluate the robustness of the method to violations of
the stationarity assumption.

Based on previous simulations regarding clustering
techniques in general, we formulate the following hypotheses.
The performance of the ALS algorithm will deteriorate when the
number of clusters is larger (e.g., Brusco and Cradit, 2005), when
less time points per person are available (e.g., De Roover et al.,
2012b), when the number of persons is lower, when the VAR
coefficients of the clusters are more similar (e.g., Heylen et al.,
2016), and when the sizes of the different clusters are unequal
(e.g., Steinley, 2003; Brusco and Cradit, 2005). Regarding the
variance-covariance matrix of the innovations, we expect that
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the performance will be worse when the assumption of an equal
covariance matrix for the persons will be violated.

Design and Procedure
When generating the data, the number of variables was set to six
for all data sets. The following six factors were manipulated in a
complete factorial design:

1. The number of clusters, at two levels: two and four;
2. The number of time points per person T, at three levels: 50,

100, and 500;
3. The number of persons, at three levels: 30, 60, and 120;
4. Distance between the VAR(1) regression coefficient matrices

of the clusters, at three levels: only positive cross-regressive
coefficients with small size differences (i.e., highly similar
clusters condition), only positive cross-regressive coefficients
with relatively large differences in size between the clusters
(i.e., similar clusters condition), and positive and negative
cross-regressive coefficients (i.e., highly dissimilar clusters
condition);

5. Relative cluster sizes, at three levels (see Milligan et al., 1983):
clusters of equal size (i.e., equal sizes condition), one cluster
containing 10% of the persons and the remaining persons
evenly distributed over the other clusters (i.e., unequal with
minority condition), and one cluster consisting of 60% of the
persons and an equal assignment of the remaining persons to
the other clusters (i.e., unequal with majority condition).

6. The innovation covariance matrix, at two levels: whereas
the variances of the innovations were always fixed to one,
the covariances were either set to 0.2 for all persons (i.e.,
equal innovation covariance condition), or randomly set to
0.2 for some persons and to 0.4 for the others (i.e., unequal
innovation covariance condition).

For each possible combination of these factors, five replications
were generated resulting in 1620 (2 × 3 × 3 × 3 × 3 × 2 × 5)
unique data sets.

In particular, the next steps were executed to construct a data
set. First, the number of persons per cluster was determined
depending on the number of persons, the number of clusters,
and on the relative sizes of the clusters. Second, a VAR(1)
regression coefficients matrix was generated for each cluster. The
autoregressive VAR(1) weights (i.e., the diagonal elements of the
8k-matrix in Formula 7) of the clusters were drawn from a
uniform distribution on the interval [0.7,0.9], whereas the cross-
regressive weights (i.e., the off-diagonal elements of the 8k-
matrix in Formula 7) were generated conditional on the required
distance between the coefficients of the clusters. In case of a
highly similar dynamical structure of the clusters, we randomly
sampled numbers from a uniform distribution on the interval
[0.3,0.5] for each cluster. Next, we rescaled the VAR(1) regression
coefficients by the following constant: 0.99

max
(∣∣∣λ8k

∣∣∣
) , where λ8k

is a

vector containing the eigenvalues of 8k-matrix and max refers
to the maximum value of the vector. Rescaling was required
to have the modulus of the largest eigenvalue smaller than 1,
which is necessary to obtain stationary time series data. In
the similar cluster condition, we randomly selected half of the

cross-regressive coefficients for each cluster separately and drew
values from a uniform distribution on the interval [0.3,0.5]. The
remaining cross-regressive VAR(1) weights were generated by
sampling numbers from a uniform distribution on the interval
[0,0.2]. The same rescaling as in the previous condition was
applied. In the highly dissimilar clusters condition, we used the
same procedure as in case of highly similar clusters. Only, after
rescaling the weights, we added an additional step in which
we randomly selected coefficients that received a minus sign.
To demonstrate the effect of the rescaling on the size of the
coefficients, Figures 1A,B show histograms of the auto- and
cross-regressive effects in the 8k-matrices for the highly similar
clusters condition, Figures 1C,D give insight into the values for
the similar clusters condition, and Figures 1E,F represent the
coefficients for the highly dissimilar clusters condition. The size
of the values is in line with findings in psychological research
(e.g., Schmitz and Skinner, 1993; Bos et al., 2012; Rosmalen et al.,
2012). Third, we generated a data matrix for each person based
on the VAR(1) model of the cluster the person was assigned to.
A T×M matrix containing the innovations was drawn from a
multivariate normal distribution with zeromeans and a variance-
covariance matrix specified according to the sixth factor above.
Starting from the innovations’ values on the first time point, the
data is generated according to the VAR(1) model in Formula
1. Finally, the data matrices of the persons were randomly
combined to create the data set. Each data set was analyzed with
the clusterwise VAR(1) algorithm, using the correct number of
clusters. The algorithm was applied 101 times as 100 random
starts and one rational start were used. The best solution was
retained. MATLAB R2016a was used to program and run the
simulation study.

Results
We will discuss the performance of the ALS algorithm by means
of the assessment criteria introduced above. For each criterion,
we will also evaluate the effect of the six manipulated factors on
the performance.

Sensitivity to local minima
The global minimum is unknown due to the addition of
innovations to the data sets. Therefore, we evaluated if the loss
function value (i.e., the sum of squared prediction errors) based
on the true clustering is smaller than the estimated loss function
value. If this is the case, the algorithm did end up in a local
minimum for sure. However, that was not true for any of the
simulated data sets.

To further investigate the performance of the algorithm, we
computed attraction rates. Attraction rates indicate how many of
the random and smart runs result in a loss function value equal
to the minimum of all runs. On average, the attraction rate is 74%
(SD = 34%) as is shown in Figure 2. A six-factorial-ANOVA,
including all main and interaction effects, was performed to
assess the influence of themanipulated factors.Wewill only focus
on sizeable effects, for which the partial eta squared values η̂

2
p

exceed 0.90. There is a substantial main effect of the number of
clusters (̂η2

p = 0.99), of the number of observations per person

(̂η2
p = 0.98), of the distance between the VAR(1) coefficients of
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FIGURE 1 | Histograms of the size of the VAR(1) coefficients of the simulation study. The autoregressive and the cross-regressive coefficients of the highly

similar clusters condition (respectively A,B), the autoregressive and the cross-regressive coefficients of the similar clusters condition (respectively C,D), and the

autoregressive and the cross-regressive coefficients of the highly dissimilar clusters condition (respectively E,F).

the clusters (̂η2
p = 0.99), and of the relative cluster sizes clusters

(̂η2
p = 0.95). The attraction rate is higher when the number

of clusters is lower (Figure 3A), the number of observations is
larger (Figure 3B), the distance between the clusters is larger
(Figures 3B,C), and the cluster size is equal (Figures 3A,C). In
addition, three interaction effects are substantial: between the
number of clusters and the relative cluster sizes (̂η2

p = 0.96),
between the number of time points per person and the distance
between the clusters (̂η2

p = 0.99), and between the distance

between the clusters and the relative cluster sizes (̂η2
p = 0.99).

A smaller number of clusters alleviates the detrimental effect of
unequal clusters (Figure 3A). The smaller the distance between
the clusters, the larger the benefit of having more time points per
person (Figure 3B). As is shown in Figure 3C, the relative cluster

sizes matter more when the VAR(1) coefficients of the clusters are
less similar.

Recovery of the clustering
To assess the accuracy of the classification, we calculate the
adjusted Rand Index (ARI; Hubert and Arabie, 1985) between the
true partition and the estimated partition. A value of 1 indicates
a perfect recovery, and a value of 0 implies that the similarities
of two partitions can be expected by chance. The ARI becomes
negative if there is less overlap than at chance level. Overall, we
find perfect recovery for 1211 out of the 1620 data sets (75%). The
mean ARI equals 0.84 (SD = 0.33). To compare, applying only
hierarchical clustering, perfect recovery was obtained for 696 data
sets (43%). The mean ARI equals 0.61 (SD= 0.44) in this case.
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FIGURE 2 | Box plot of the attraction rate.

By means of an analysis of variance, we identified the
impact of different data characteristics on the ARI. The main
effects of the number of time points (̂η2

p = 0.99), and the

distance between the clusters (̂η2
p = 1.00) are substantial.

As expected, having a larger number of time points per
participant, or a larger distance between the VAR(1) regression
coefficient matrices of the clusters, improves the classification
of the participants (see Figure 4). An interaction effect between
these two factors is also present (̂η2

p = 1.00) indicating that
having more time points per participants reduces the adverse
effect of a smaller distance between the clusters, as shown in
Figure 4.

Recovery of the coefficients
The Euclidean distance between the VAR(1) regression
coefficients based on the true cluster partitioning and the
estimated VAR(1) coefficients is computed to assess the recovery
of the coefficients (after appropriate permutation of the estimated
clusters toward the true ones). The mean Euclidean distance
equals 0.16 (SD= 0.10).

A factorial analysis of variance performed on these Euclidean
distances revealed large main effects for all the manipulated data
characteristics except for the innovation covariance matrix: The
number of clusters (̂η2

p = 0.99), the number of observations

per person (̂η2
p = 1.00), the number of persons (̂η2

p = 1.00),
the distance between the VAR(1) coefficients of the clusters
(̂η2

p = 0.99), and the relative cluster sizes (̂η2
p = 0.96). The

VAR(1) regression coefficients are recovered worse in case of
more clusters, a lower number of time points per person,
a lower number of persons, a smaller distance between the
clusters, or unequal cluster sizes (especially for the unequal
with minority condition), as is shown by the box plots in
Figure 5. Substantial interaction effects were identified between
the number of clusters and the number of observations (̂η2

p
= 0.97), between the number of clusters and the distance

between the VAR(1) coefficients of the clusters (̂η2
p = 0.92),

between the number of clusters and the relative cluster sizes
(̂η2

p = 0.97), between the number of observations per person

and the number of persons (̂η2
p = 0.98), and between

the number of observations and the distance between the
clusters (̂η2

p = 0.98). A smaller number of clusters enlarges
the positive effect of a larger number of observations per
persons (Figure 5A), and the positive effect of a larger distance
between the clusters (Figure 5B). When the number of clusters
equals two, the equal with minority conditions is clearly the
worse, whereas the unequal with majority is worse when having
four clusters. The equal sizes conditions results in the best
recovery of the coefficients (Figure 5C). A larger number of
observations slightly reduces the negative effect of a smaller
number of persons (Figure 5D), but more clearly alleviates the
adverse influence of a smaller distance between the clusters
(Figure 5E).

Simulation Study 2
Research Questions
The objective of the second simulation study is to assess the
performance of CHull as model selection procedure. To this
end, we used a subsample of the first simulation study. Because
manipulating the innovation covariance matrix did not have any
large effect in the first simulation study, we fixed the covariance
matrix to that of the equal innovation covariance condition. For
the remaining five data characteristics, we studied one of the five
replications per cell of the design.

Moreover, we formulate the same hypotheses regarding the
effect of the manipulated factors as for the performance of the
ALS algorithm as such, because we assume that complexities
in the data will not only affect model estimation but also
model selection. In particular, we expect that the performance
of CHull will deteriorate when the data contain more clusters,
when less time points per person are available, when fewer
persons are included, when the VAR coefficients of the clusters
are more similar, and when the cluster sizes are not equal.
For the data characteristics that were already manipulated in
previous simulations investigating the performance of CHull
(e.g., Schepers et al., 2008; De Roover et al., 2012a), these
hypotheses were indeed confirmed.

Design and Procedure
For each of the 162 (2 × 3 × 3 × 3 × 3) data sets retained, a
clusterwise VAR(1) model was fitted with the number of clusters
ranging from 1 to 6. As was the case in the first simulation
study, 100 random and 1 rational starts were used to initiate each
analysis. The CHull procedure was then used to determine the
optimal number of clusters.

Results
The CHull procedure performed reasonably well, as for 78%
of the simulated data sets the correct number of clusters was
indicated (126 out of 162 data sets). When the number of
clusters is selected correctly, the cluster assignment of the
persons is in most cases perfect. The mean ARI for the 126
data sets equals 0.96 (SD = 0.17). Examining the data sets for
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FIGURE 3 | Box plot of the attraction rate as a function of both the number of clusters and the relative cluster sizes (A), as a function of both the

number of observations and the distance between the clusters (B), and as a function of the distance between the clusters and the cluster size (C).

which an incorrect number of clusters was chosen, too few
clusters (two or three) are selected when the true number is
four, and three, four or five clusters when the true number
of clusters equals two. In some cases an additional group
in between the true clusters is formed, containing elements
of the different true clusters. In other cases, a pair of true
clusters is merged, or exactly the opposite, one true cluster
is distributed across different groups. Sometimes the obtained
cluster assignment is not clearly related to the true underlying
clustering.

Examining the characteristics of the 36 data sets for which
the number of clusters was not correctly identified, it mainly
concerns data sets having 4 clusters (29 data sets—81%), a
smaller number of time points per person (for 50 time points
per person: 22 data sets—61%; for 100 time points per person:
11 data sets—31%; for 500 time points per person: 3 data
set—8%), a smaller number of persons (for 30 persons: 17
data sets—47%; for 60 persons: 12 data sets—33%; for 120

persons: 7 data sets—19%), and a smaller distance between the
clusters (highly similar cluster condition: 27 data sets—75%;
similar cluster condition: 6 data sets—17%; highly dissimilar
cluster condition: 3 data sets—8%). The influence of the
relative cluster sizes is less clear: 9 data sets belong to the
equal sizes condition (25%), 13 data sets to the unequal with
minority condition (36%), and 14 data sets to the unequal with
majority condition (39%).

Conclusion
The first simulation study demonstrated a good performance
of the ALS procedure, given the correct number of clusters.
Initializing the procedure with 100 random starts and 1 rational
start proved more than sufficient to avoid ending in a local
minimum. In line with our hypotheses, the performance is
worse in more difficult conditions. All manipulated factors
except for the innovation covariance matrix affected at least
one of the assessment criteria. Especially too few observations
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FIGURE 4 | Box plot of the ARI as a function of both the number of observations and the distance between the clusters.

per person and a small distance between the clusters were
detrimental. Manipulating the variance-covariance matrix of the
innovations hardly influenced the results, so the algorithm is to
some extent robust to violations of the stationarity assumption.
The second simulation study showed that the CHull model
selection strategy performs reasonably well. Moreover, when
the true number of clusters is identified correctly, the cluster
assignment is almost always correct also. Again, as expected,
performance deteriorated in the more difficult conditions of our
design.

APPLICATION

In this section, we apply the clusterwise VAR(1) model to
time series data on depression-related symptoms of young
women. This is in line with the recently proposed new view
on psychiatric disorders, in which investigating the dynamics
between the symptoms is considered as the key to understanding
such disorders (Kendler et al., 2011; Borsboom and Cramer,
2013). The clusterwise VAR(1) model is suited to study these
temporal dynamics, and in particular, to identify persons with
similar dynamics. In the current application, we will analyze
a subset of data from the COGITO study (Schmiedek et al.,
2009). Specifically, we focus on the depression-related symptoms
of the 52 younger females in the study (a VAR(1) analysis
of the data of one of these women is presented in Bulteel
et al., 2016)3 . The variables were measured with 4- or 8-point

3We selected the younger subgroup, because for the older subgroup in this sample
negative affect hardly occurs (Brose et al., 2015), which is an important constituent
of depression. As explained, our technique requires sufficient variance of the
variables involved to yield meaningful results.

Likert scales4 . Measurements were made on about 100 close-to-
daily occasions, up to six measurements a week, with a mean
number of observations of 101 (SD = 4, ranging from 87 to
109). Depression severity was also assessed in the study, by
computing the sum scores on the German version of the Center
for Epidemiologic Studies Depression Scale (CES-D; Hautzinger,
1988).

To study the (co)variation of variables across time, sufficient
within-person variance is by definition required (Ram et al.,
2013). A first inspection of the data revealed that some of the
variables had little or no variance for a number of persons.
Therefore, we first discarded the variables physical symptoms,
cognitive problems and restlessness, of which the scores of most
participants equaled the participant modus in at least 90% of
the measurement occasions (based on Ram et al., 2013). The
remaining symptoms are: Rumination (8-point scale), feeling
guilty (8-point scale), feeling unhappy (8-point scale), feeling
downhearted (8-point scale), loss of activation (8-point scale),
loss of interest (8-point scale), sleep quality (8-point scale), and
loss of energy (4-point scale). Next, we removed all persons
for which at least one of the remaining variables had a lack of
variability, according to the 90% rule introduced above, retaining
28 participants in our analysis.

Next, we investigated whether the clusterwise VAR(1) model
assumptions were met. 70% of the adjacent measurements were
1 day apart, 16% 2 days, 7% 3 days, and the remaining 7%
4 or more days. To satisfy the assumption of equidistant time
intervals, we only analyzed the data with precisely 1 day between

4In the social and behavioral sciences, variables measured on an ordinal scale are
often treated as if they were measured on a continuous scale. In the context of
other models, it was already demonstrated that this assumption is acceptable in
case of sufficient categories (i.e., at least five to seven; e.g., Muthén and Kaplan,
1985; Mîndrilã, 2010; Rhemtulla et al., 2012).
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FIGURE 5 | Box plot of the Euclidian distance (denoted Norm) between the true and the estimated VAR(1) coefficients as a function of both the

number of clusters and the number of observations (A), of both the number of clusters and the distance between the clusters (B), of both the number

of clusters and the relative cluster sizes (C), of both the number of time points per person and the number of persons (D), and of both the number of

observations per person and the distance between the clusters (E).

adjacent measurements. The data was further examined by
means of time series plots and descriptive statistics, in order to
detect clear violations of the stationarity assumption. Because
the means of the depression-related symptoms differed across
persons, we decided to apply themodel to centered data. Figure 6
shows the time series data (before centering) of one of the
women.

Clusterwise VAR(1) analyses with 100 random starts and
1 rational start were fitted to the data, with the number of

clusters ranging from one to six. Figure 7 plots the sum of
squared prediction errors vs. the number of clusters. The CHull
method indicates that the st-value is maximized for two clusters
(more specifically, the st-values equal 1.73, 1.18, 1.33, and
1.03 for models with 2 up to 5 clusters). Thirteen participants
are assigned to the first cluster, and fifteen to the second
cluster.

To shed light on what distinguishes both clusters we forecast
the time points following a particular set of symptom scores.
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FIGURE 6 | Time series plots of the depression-related symptoms on 100 measurement occasions for one of the study participants.

FIGURE 7 | Scree plot of the number of clusters vs. the sum of squared

prediction errors for the 28 selected participants from the COGITO

study. Note that the y-axis does not start at 0.

The symptom scores were chosen such that they reflect the
most common score patterns or states (i.e., the goal was to
determine realistic combinations of variable scores). To this end,

we computed the quartiles of each variable. Each score was then
recoded as follows: code 1 if the original score was lower than
the first quartile of that variable, 2 if the score was between the
first and the second quartile, 3 for the scores situated between
the second and the third quartile, and 4 for scores higher than
the third quartile. Examining the frequency of the coded score
patterns, it appeared that having relatively low scores for (almost)
all variables (i.e., lower than the first quartile, thus code 1) or
having relatively large scores for (almost) all variables (i.e., higher
than the third quartile, thus code 4) were the most common
states. As a proxy on the original scale for these states, we used
all first quartiles and all third quartiles respectively as the variable
scores. Starting from these two conditions, we calculated the
10 days ahead predictions showing how the dynamic interplay
influences the course of each variable for both clusters (see
Figures 8A,C). Obviously, the predicted scores for both clusters
eventually equal the mean value (i.e., 0 in case of centered data).
The difference between the clusters lies in the persistence of the
influence of the initial state. The effect lingers on for Cluster 2,
whereas the influence more rapidly disappears for Cluster 1. This
means for instance that a person of Cluster 2 who feels guilty at a
specific point in time is more likely to indicate feeling guilty at the
next occasion as well compared to a person of Cluster 1. Cluster
2 thus seems to be more resistant to change. For completeness,
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FIGURE 8 | Ten days ahead predicted scores for the eight different depression-related symptoms. The solid lines show the predictions for the first cluster,

and the dotted lines for the second cluster. The starting condition (i.e., zero days ahead) in (A) is that each variable score equals its first quartile, in (B) that each

variable score equals its second quartile, and in (C) that each variable score equals its third quartile.

we added the predictions starting from the second quartiles as
scores for the variables in Figure 8B. It confirms that persons in
the second cluster need more time to return to their baseline (i.e.,
the mean values). In other words, the initial state more strongly
predicts subsequent scores. Persons of the first cluster “recover”
more quickly.

In addition, the R2 for each depression-related symptom
as criterion variable is shown per cluster in Figure 9. A high
R2 implies that the variable scores at the previous time point
determine to a large extent our predictions. In line with the
findings above, the R2 is consistently higher for the second
cluster. It thus seems likely that persons in the second cluster can
get more stuck in the depression-related symptoms. Therefore,
the first cluster can be considered as the group of “flexible
responders,” and the second cluster as a group of “rigid
responders.” In accordance with recent findings in the literature
that revealed the role of an inert affective system for depression
one can think of these persons as being at risk (e.g., van de
Leemput et al., 2014).

To validate the clustering, we examined the relation between
the obtained partitioning of the women and the CES-D sum
scores. We conducted a nonparametric Mann–Whitney U test
to examine if the participants of one of the clusters tend to have

higher depression scores. This was the case for the group of “rigid
responders” indeed (z = 2.05, p = 0.04).

In summary, the application of the novel clusterwise VAR(1)
approach to real data yielded a meaningful result. A sample
of young women were clustered in accordance with their
dynamic patterns of depressive symptoms, and the clustering
solution seems to reveal important individual differences of
women belonging to either cluster. Moreover, the obtained
partitioning of the women was related to their depression
scores.

DISCUSSION

In this paper, we have proposed a new method to simultaneously
cluster persons according to their VAR(1) regression coefficients,
and fit a shared VAR(1) model to all persons within a cluster.
A first benefit of our approach is that, in contrast to multilevel
VAR(1) models (Bringmann et al., 2013), it captures qualitative
rather than quantitative differences. Second, unlike sequential
approaches (e.g., Zheng et al., 2013), our method optimizes
one single loss function and pools, while updating the VAR(1)
parameters, the data of all the persons within a cluster, which
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FIGURE 9 | Bar plot of the proportion of explained variance R² for each

of the eight symptoms, using the following labels: rum, rumination;

guilt, feeling guilty; unhappy, feeling unhappy; down, feeling

downhearted; loss_act, loss of activation; loss_int, loss of interest;

sleep, sleep quality; and loss_en, loss of energy.

is known to improve the estimation of the VAR(1) parameters
(Frühwirth-Schnatter and Kaufmann, 2008). Finally, in contrast
to AR based techniques, our method is able to take multivariate
dynamical relations into account.

The performance of the estimation procedure was assessed
in a simulation study, showing good results for both recovery
of the clustering and the coefficients. The results of a second
simulation study revealed that the CHull model selection strategy
performs reasonably well in indicating the appropriate number of
clusters.

The empirical data example showed how different temporal
dynamics between depression-related symptoms could be found
for a group of young women. In particular, two clusters were
identified. One cluster, containing about half of the women,
returned fast to their mean values and were therefore labeled
as the group of “flexible responders.” For the second cluster,
which contained the remaining participants, the influence of
what happened on the previous time points lingers; these women
where called the group of “rigid responders.”

Several directions for future work can be identified. First,
our current implementation of the clusterwise VAR(1) model
cannot handle missing data. As our method does not require
an equal amount of observations per person, we made use of
listwise deletion in the application, as is mostly done in case
of time series data. Other approaches for dealing with missing
data are described and evaluated in Liu and Molenaar (2014).
However, these methods either yield biased results, or require a
large subset of complete data. Future research on this topic is thus
recommended.

Second, it is straightforward to apply the proposed clusterwise
extension to VAR models of an order higher than one, as long
as the models of the different clusters have the same order.
The development of an extension that would allow to end up

with a VAR model of a different order for each cluster, would
be more interesting however. It is for instance conceivable that
measurements up to the second lag predict the current scores for
one particular cluster, whereas a VAR model of order zero (i.e.,
without lagged variables) is sufficient for another cluster as no
temporal dynamics are present for this group.

Third, if assumptions can be made regarding the size and
the direction of the contemporaneous effects, the procedure can
be extended to SVAR models as well. We would like to point
to the exploratory SVAR based clustering method developed by
Gates et al. (2014). In contrast to our ALS approach minimizing
a single loss function, it concerns a stepwise procedure which
however does not require to specify a priori hypotheses
about the instantaneous relations between the variables. It
would be interesting to compare the performance of both
methods.

Fourth, though computationally demanding, mixture
extensions of multilevel VAR could be an interesting direction
for future work, because such an extension would allow to
capture quantitative as well qualitative as differences. For
univariate AR models, a Bayesian approach to estimate a
clusterwise multilevel AR model was proposed by Frühwirth-
Schnatter and Kaufmann (2008). Also in the context of standard
(i.e., independent observations rather than time series data)
multilevel regression models, mixture variants, were developed
(Verbeke and Lesaffre, 1996; Proust and Jacqmin-Gadda, 2005).
These approaches are not without difficulties, however, as the
algorithms may fail to converge, if initial values are specified
incorrectly (Proust and Jacqmin-Gadda, 2005).

Furthermore, a VAR model does not take measurement
error into account. Instead, the stochastic part of the model
consists of innovations. The influence of these innovations goes
beyond a particular moment in time. By contrast, measurement
error is specific to a measurement occasion (e.g., accidently
indicating a wrong answer on a questionnaire). Future research
could extend the clusterwise VAR model to include this type of
error. A discussion on this topic and examples of autoregressive
models taking measurement error into account is presented in
Schuurman et al. (2015).

Finally, the clusterwise VAR(1) model could not only identify
persons with similar dynamics, but also assist clinicians in
assigning a tailored treatment. For now, the predictions as such
offer no indications on when or how to treat persons, however.
Further examining the possibilities and potential of the approach
for clinical practice is recommended.

In conclusion, studies in psychology increasingly investigate
within-person processes. To parsimoniously capture qualitative
differences in these intraindividual dynamics, we presented
a clusterwise extension of the frequently used VAR(1)
model.
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