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To investigate brain activity during the reinforcement learning process in social contexts
is a topic of increasing research interest. Previous studies have mainly focused on
using electroencephalograms (EEGs) for feedback evaluation in reinforcement learning
tasks by measuring event-related potentials. Few studies have investigated the time–
frequency (TF) profiles of a cue that manifested whether a following feedback is available
or not after decision-making. Moreover, it remains unclear whether the TF profiles of the
cue interact with different agents to whom the feedback related. In this study we used
the TF approach to test EEG oscillations of the cue stimuli in three agents (‘Self’, ‘Other’,
and ‘Computer’) conditions separately. The results showed that the increased central-
posterior delta power was elicited by the feedback unavailable cues more so than with
the feedback available cue within 200–350 ms after the onset of the cue, but only in the
self-condition. Moreover, a frontal-central theta oscillation had enhanced power when
following the feedback unavailable cue as opposed to the feedback available cue across
three agencies. These findings demonstrated that the cue for knowing an outcome
produced reward prediction error-like signals, which were mirrored by the delta and theta
oscillations during decision-making. More importantly, the present study demonstrated
that the theta and delta oscillations reflected separable components of the advanced
cue processing before the feedback in decision-making.

Keywords: delta, theta, reinforcement learning, agent, time–frequency.

INTRODUCTION

It is important for human beings to learn from external feedback after making a decision for
maximizing reward. In the past two decades, many researchers have adopted varied decision-
making tasks, in which feedback was available to facilitate participant behaviors (for reviews, see
Walsh and Anderson, 2012; Ullsperger et al., 2014). Nevertheless, it is quite common that a person
cannot get access to the feedback of his/her own decision-making in reality. Therefore, it would
be interesting to investigate how the brain response to a cue that informs whether the decision-
makers’ feedback will be shown or not. Despite plenty of literatures discussing the neural bases
of feedback learning, however, few studies have focused on the brain activity changes in human
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subjects when they receive a cue which indicated feedback
information will either be available, or not.

Given that the feedback information plays a key role in a trial-
and-error learning task, participant curiosity about feedback will
be evoked when feedback information is unavailable, according
to the information-gap theory (Loewenstein, 1994). Loewenstein
(1994) proposed an information-gap theory that epistemic
curiosity is aroused when an individual realizes a difference
between “what one wants to know” and “what one knows”. Kang
et al. (2009) have found that epistemic curiosity activates reward
circuitry in a functional magnetic resonance imaging (fMRI)
study. One of our previous studies shows that the participants
preferred to know others’ results in a gambling task, even when
to know this information was costly (Han et al., 2012). Thus,
it is plausible that curiosity will not be satisfied when feedback
information is unavailable. According to reinforcement learning
theories, the reward prediction error (RPE), i.e. differences
between expected and obtained reinforcements, can be used to
adjust associations between actions and corresponding reward
in decision-making (Schultz, 1997; Holroyd and Coles, 2002).
In a broader sense, RPE could be elicited in many situations in
which a mismatch between expected and actual outcomes occurs
(Kuss et al., 2011) and predict the “goodness” of on-going events
(Holroyd and Coles, 2002). Taking these two lines of research
together, we hypothesized that the cue of missing feedback will
generate RPE during reinforcement learning task and this signal
can be detected by electroencephalograph (EEG) activities in the
brain.

By recording EEG activity on the scalps of human participants,
previous event-related brain potentials (ERP) and time–
frequency (TF) studies have linked the feedback-related
negativity (FRN) component, frontal midline theta, and delta
oscillations with reward predication error signals originating
from the mid-brain dopamine system (Bernat et al., 2011,
2015; Foti et al., 2014; Li et al., 2016; Pornpattananangkul and
Nusslock, 2016). The FRN was observed in the frontal-central
region in a 200–350 ms time window after feedback stimulus
presented and showed larger amplitude following negative
feedback than following positive feedback (Miltner et al., 1997;
Holroyd and Coles, 2002). Due to the component overlapping
issue in traditional ERP studies, the FRN has been considered to
be affected by the P300 component (or later positive component)
which arises right after the former FRN (Sambrook and Goslin,
2015).

In our previous paper, we exploited a gambling task with
three agencies (Self, Other, and PC) involving, and manipulating,
a cue which indicated whether the results of three agencies’
gambling were unavailable or not (Han et al., 2013). We
observed that larger later positivity component (LPC) was
associated with unavailable cues compared to available cues.
Moreover, the LPC in the Other condition was correlated with
the interpersonal curiosity trait in participants (Han et al., 2013).
In fact, we hypothesized that the FRN component could be the
component of interest in that study (Han et al., 2013, p. 46).
One possibility behind the vanished FRN component might
be the overlapping from other late component as mentioned
above.

The TF method which focused on spectral characteristics
should help to separate the FRN from P300 (Bernat et al., 2011).
Earlier studies revealed that the P300 is composed mainly of
activity in the delta (<3 Hz) band (Bernat et al., 2007; Gilmore
et al., 2010) while the FRN is composed largely of activity in the
theta (4–8 Hz) range (Cohen et al., 2011). In addition to these
issues in FRN studies in particular, traditional ERP approaches
also lack the ability to detect the rich, complex information, about
oscillatory activity that varies in phase from trial-to-trial (Cohen
et al., 2007, 2011). Hence, we used the TF method to explore
the multi-dimensional neural dynamics of feedback information
cue processing. Recent studies have linked the theta and delta
frequencies with RPE in decision-making tasks (Foti et al., 2014;
Bernat et al., 2015). Therefore, we mainly focused on theta and
delta power in the present study.

Studies focused on feedback-guided learning have consistently
found that increasing theta power (4–8 Hz) was associated
with feedback that was worse than expected, i.e., negative RPE
(Cohen et al., 2007; Marco-Pallares et al., 2008; Hajihosseini
et al., 2012). Although these finding have often been replicated,
there were also inconsistent findings around whether the theta
power was sensitive to RPE in particular or unexpected events in
general (Cohen et al., 2007; Doñamayor et al., 2012; Hajihosseini
and Holroyd, 2013). With a dynamic reward-learning task and
associated computational model, Cavanagh et al. (2011) found
that medial-frontal theta was correlated with unsigned prediction
error but has an asymmetrical sensitivity to negative events.
Interestingly, the same group has found that the medial and
lateral frontal theta corresponded to the degree of negative
RPE and positive RPE in the service of behavioral adjustment
(Cavanagh et al., 2010). Taken these together, medial frontal theta
oscillation seems to be a good candidate index for the processing
of negative RPE in our study, in which, the two types of cue
occurred with equal probability.

The converged evidence showed that both waking and sleep
delta waves mainly originate from the medial frontal cortical
regions (for a review, see Knyazev, 2012), however, delta activity
was shown to be concentrated in more posterior regions on
the scalp (for a review, see Güntekin and Başar, 2015). Delta
oscillations have been implicated in the motivational relevance
of the task and the salience of the target stimulus (Knyazev,
2007, 2012) and appear to be associated with reward processing
(Knyazev, 2007; Cavanagh, 2015). In a dynamic reinforcement
learning task, Cavanagh found that delta activity at different times
reflected RPE and state prediction error separately (Cavanagh,
2015). More specifically, early delta activity, which constitutes
reward positivity, may correspond to a surprising reward
signal, while later delta activity, which contributed to the P300
component, appeared to associate with behavioral adjustments.
The finding that delta frequency was sensitive to positive RPEs
was also reported in a recent study, which used principal
components analysis (Sambrook and Goslin, 2016).

Based on the aforementioned literature, we reanalyzed the
data from our previous paper (Han et al., 2013) using the TF
approach and focused on the oscillation profiles of cues which
indicated whether the feedback will be available or not. We also
compared the TF distributions in three agents’ conditions in
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order to show whether the cue effect is only self-relevant or
related to any agent in general. We hypothesized that the cue
for showing feedback will elicit positive RPE, while that for no
feedback will generate negative RPE. Moreover, these RPEs could
be reflected by the medial frontal theta and delta oscillation.
In addition, a recent study, in which the researcher applied
the TF method to a classical gambling task, has demonstrated
that the theta and delta frequencies reflected different functional
significances in the outcome evaluation (Bernat et al., 2015).
According to this finding, we also hypothesized that the theta
and delta measures may have different sensitivities to agent and
cue-type.

MATERIALS AND METHODS

Previous non-overlapping results from this dataset are reported
elsewhere (Han et al., 2013). For more detailed information about
the experimental design, see Han et al. (2013).

Participants
Nineteen subjects participated in the experiment as volunteers.
One participant’s data was excluded because of excessive
movement artifacts. Thus, the data from 18 participants (eight
males) with ages ranging from 20 to 25 (M = 22.1 and SD = 1.4)
were taken for TF analysis. All participants were healthy and
right-handed. They all had normal, or corrected-to-normal,
vision and gave informed written consent before participation.
This study was approved by the local Ethics Committee.

Experimental Procedure
The participants were informed that they would participate in
a three-agent (Self, another participant called “Other”, and a
computer, called “PC”) on-line gambling game. Unknown to
the real participants, the “Other” participant was pretended
by a research assistant and his/her behavior was simulated by
computer. The “Other” participant was a stranger with the same
gender to the real participant and they were introduced to each
other before the experiment. Each trial began with a 500 ms
white fixation cross against a black background, followed by a
picture of two golden eggs which was displayed for 800 ms on
the screen. Then a phrase appeared on the two eggs to indicate
which agent’s turn it was next. “Your turn” means it was the
participants’ turn to make a decision between these two eggs,
while “A’s turn” and “PC’s turn” represented the other person’s
turn and the PC’s turn to make a selection, correspondingly.
Three agents could press either “F” or “J” to select the left
or right egg. Thereafter, a 500 ms confirmatory cue appeared
with a red circle to confirm the selection, followed by a blank
screen, which lasted randomly from 600 to 1000 ms. Then, a
yellow circle without a cross (available cue), or with a cross
inside (unavailable cue), was presented on the screen to indicate
whether the participant would see the feedback from this trial
or not. Participants were told that whether feedback was given
or not did not affect their cumulative monetary gain. For trials
with an unavailable cue, a “?” mark would appear instead of the
outcome.

There were 360 critical trials in total. The experiment was
conducted with two (available, unavailable) by three (Self, Other,
and PC) within-subject design and each condition was repeated
60 times. The order of the three agents’ actions was randomized
at the trial level. The participants had a 1-min break after each
group of 72 trials. All stimuli were presented by E-Prime Version
1.1 software on a computer.

Data Acquisition
Brain electrical activity was recorded at 64 scalp sites using tin
electrodes mounted in an elastic cap (Brain Product, Munich,
Germany), with a ground electrode placed on the frontal midline
and references placed on the left and right mastoids. Vertical
electrooculograms (EOGs) were recorded supra-orbitally and
infra-orbitally relative to the left eye. The horizontal EOG was
recorded as the difference in activity from the right vs. the left
orbital rim. The impedances of all of the electrodes were less
than 10 k�. The EEG and EOG were amplified using a 0.05–
100 Hz band pass and continuously digitized at 500 Hz/channel
for off-line analysis. Note that the following ERP and TF analysis
were time-locked to the onset of the cue stimuli before the final
feedback.

Data Analysis
Electroencephalograph data were imported and processed using
EEGLAB (Delorme and Makeig, 2004). Continuous EEG data
were band-pass filtered at between 1 and 40 Hz. EEG epochs
were extracted using a window analysis time of 2000 ms (1000 ms
pre-stimulus and 1000 ms post-stimulus) and baseline corrected
using the pre-stimulus time interval. Trials contaminated by eye-
blinks and movements were corrected using an independent
component analysis (ICA) algorithm (Delorme and Makeig,
2004). In all datasets, individual eye movements, showing a large
EOG channel contribution and a frontal scalp distribution, were
clearly observed in the removed independent components. After
pre-processing, these data were submitted to further TF analysis.

We were interested in the identification and characterization
of oscillatory activities induced by each stimulus. A wavelet
transform was used for the TF analysis in this study. The
EEG data from each single trial were convoluted by complex
Morlet wavelets W(t, f0) (Kronland-Martinet et al., 1987) having
a Gaussian shape both in the time domain SD σt and in
the frequency domain SD σf around its central frequency
f0 :W(t, f0) = A · exp

(
−t2/2σ2

t
)
· exp(2iπf0t), with σf = 1/2σt.

A wavelet family is characterized by a constant ratio
(
f0/σf

)
,

which should be chosen in practice to be greater than five
(Grossmann et al., 1989). The wavelet family used here was
defined by f0/σf = 7, with f 0 ranging from 1 to 30 Hz.
The time resolution of this method, therefore, increases with
frequency, whereas the frequency resolution decreases. After
that, the TF representations (absolute value of the wavelet
transform) of single-trial EEG data were averaged over single-
trials given each channel, each subject, and each stimulus.
Subsequently, the data from −200 to 800 ms were taken for
further analysis to avoid the edge effect of in the wavelet
transform used here. The baseline was then corrected for each
frequency bin.
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For the statistical analysis, the FRN-like amplitude, the theta
power within 200–350 ms and 400–700 ms was measured at FCz
where these activities peak (Holroyd and Coles, 2002; Li et al.,
2010, 2015, 2016), whereas the delta power within 200–350 ms
was measured at Cz and the delta power within 400–700 ms was
calculated at Pz based on the present scalp distributions of the
delta activity.

RESULTS

ERP Results
Note that we have reported the ERP results in a previous
study (Han et al., 2013); however, we used a narrow frequency
band (0.01–16 Hz) to filter the original data. To facilitate the
appropriate TF analysis using a wavelet transform in this study,
the continuous EEG data were filtered by the 1–40 Hz bandpass
filter during pre-processing.

As showed in Figure 1, the ERP data were measured as
the mean value of the difference wave between available and
unavailable conditions within the 200–350 ms time window
at FCz. These data were submitted to one way ANOVA with
agent (Self, Other, and PC) as within-subject variables. The
results showed that the main effect of agent was significant,
F(2,34) = 14.91, p < 0.001, and η2

= 0.47. The pair-wise
comparison suggested that the difference wave in the Self
condition (−2.58 ± 0.46 µV) was significantly larger than that
in the Other condition (−0.75 ± 0.5 µV and p < 0.001), and PC
condition (−0.26 ± 0.3 µV and p < 0.001). However, there was
no significant difference between the difference wave in the Other
condition and PC condition (p= 0.2).

TF Results within the 200–350 ms Time
Window
The TF representations and corresponding scalp distributions are
shown in Figures 2 and 3. A three-way ANOVA analysis was

carried out on the theta power at FCz with agent (Self, Other, and
PC), and cue-type (unavailable and available) as within-subject
variables. The results showed that the main effect of cue-type was
significant, F(1, 17) = 11.24, p < 0.005, and η2

= 0.40. Pair-
wise comparisons revealed that the theta power in the unavailable
cue condition (M = 7.74 × 104 and SEM = 1.14 × 104) was
significantly stronger than that in the available cue condition
(M = 5.42 × 104, SEM = 7.6 × 103, and p < 0.005).The main
effect of agent was not significant, F(1.6,28.5) = 1.36, p = 0.27,
and η2

= 0.07. The interaction effect between cue-type and agent
did not reach a significant level, F(2,34) = 2.66, p = 0.09, and
η2
= 0.14. The main statistical results were shown in Table 1.
The TF representations and corresponding scalp distributions

are shown in Figures 4 and 5. A three-way ANOVA analysis
was also conducted on the delta power at Cz with agent
(Self, Other, and PC) and cue-type (unavailable and available)
as independent variables. As shown in Figure 3, the main
effect of agent reached a significant level, F(1.2,20) = 11.03,
p = 0.002, and η2

= 0.39. The following test suggested that
the delta power in the Self-condition (M = 1.13 × 105 and
SEM = 2.33× 104) was significantly larger than that in the Other
condition (M = 3.98 × 104, SEM = 7.24 × 103, and p < 0.003),
and PC condition (M = 4.27 × 104, SEM = 9.78 × 103, and
p < 0.005). However, the delta power was not significantly
different between the Other, and the PC, conditions (p = 0.7).
The main effect of cue-type also reached a significant level,
F(1,17) = 4.96, p < 0.05, and η2

= 0.23. Pair-wise comparison
showed that the available cue induced a larger delta power
(M = 8.06 × 104 and SEM = 1.48 × 104) than the unavailable
cue (M = 4.99 × 104 and SEM = 1.13 × 104), p < 0.05.
More importantly, the interaction effect between agent and
cue-type was significant, F(1.4,23.2) = 6.04, p < 0.02, and
η2
= 0.26. The following analysis suggested that the delta

power following an available cue (M = 1.6 × 105 and
SEM = 3.38 × 104) was significantly larger than for an
unavailable cue (M = 9.23 × 104, SEM = 2.5 × 104, and

FIGURE 1 | (A) The grand average waves elicited by a unavailable cue (red) and an available cue (green) in Self, Other, and PC conditions at FCz. (B) The
corresponding scalp distribution of three difference waves between the event-related potential elicited by unavailable cue and available cue in three conditions
separately.
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FIGURE 2 | Time–frequency representation of two types of cues in three agents’ conditions at FCz. The upper panel showed the time–frequency
representation of Unavailable cue in three agents’ condition while the lower panel showed the time–frequency representation of Available cue in three conditions
separately.

FIGURE 3 | Scalp distributions of delta and theta elicited by the two types of cues in three agents’ conditions in the 200–350 ms time window.
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TABLE 1 | Statistical results: theta and delta power in two time-windows.

200–350 ms 400–700 ms

Theta Delta Theta Delta

Agent F = 1.36 F = 11.03∗∗ F = 3.4 F = 8.73∗∗

Cue-type F = 11.24∗∗ F = 4.96∗ F = 11.45∗∗ F < 1

Agent × Cue-type F = 2.66 F = 6.04∗ F = 3.09 F = 2.15

∗p < 0.05 and ∗∗p < 0.01.

p < 0.02) only in the Self-condition, however, there was no
notable difference between the delta power elicited by an available
cue and an unavailable cue in the Other condition (p= 0.46), and
PC condition (p= 0.45).

TF Results within the 400–700 ms Time
Window
Based on the ERP results in Han et al. (2013) and the ERP
waves as shown in Figure 1, we have also analyzed the theta
and delta profiles within the 400–700 ms time window. As
mentioned above, a three-way ANOVA was carried out on the
theta power at FCz with agent (Self vs. Other vs. PC) and
cue-type (unavailable vs. available) as independent variables.
Results revealed that the main effect of agent was not significant,
F(1.4,24.2) = 3.4, p = 0.07, and η2

= 0.17. However, the main
effect of cue-type reached a significant level, F(1,17) = 11.45,
p = 0.004, and η2

= 0.4. Pair-wise comparison showed that
a larger theta power was observed following an unavailable cue
(M = 1.05 × 104 and SEM = 3.65 × 103) than after an available
cue (M = 1.21 × 103 and SEM = 2.37 × 103). There was no
other significant interaction effect found (p= ns).

The statistical results for delta at Pz showed that the main
effect of agent was significant, F(1.3,22.7)= 8.73, p= 0.004, and
η2
= 0.34. Pair-wise comparison revealed that the delta power in

the Self-condition (M = 6.35 × 104 and SEM = 1.97 × 104) was
notably larger than that in the Other condition (M = 1.53 × 104

and SEM = 9.9 × 103, p = 0.003), and PC condition
(M = 1.37 × 104, SEM = 6.58 × 103, and p = 0.01), while there
was no significant difference between the latter two conditions
(p = 0.85). However, the main effect of cue-type was not
significant, F(1,17) < 1, p= 0.9, and η2

= 0.001. The interaction
effect did not reach a significant level, F(1.2,20.4)= 2.15, p= 0.16,
and η2

= 0.11.

DISCUSSION

In the present work, we have reanalyzed the data from our
previous ERP study using a TF approach. Basically, the present
work has extended our findings from the ERP results of a cue
which manifested whether the outcome of a decision will be
presented or not. In the previous study, we found that the LPC
amplitude was notably different between the “unavailable” and
the “available” conditions and linearly reduced from “Self”, to
“Other”, to “PC” conditions (Han et al., 2013). Here, we showed
that the main difference of ERP between the “unavailable” and
the “available” conditions appeared from about 200 ms following

cue presentation. The feature of these difference waves, and their
scalp distributions, suggested that the “unavailable” cue elicited
an FRN-like effect after 1 Hz high-pass filtering. These results
confirmed the current concerns that the FRN effect might have
been superimposed by the LPC component which is mainly
driven by the power of low-frequency activities (Sambrook and
Goslin, 2016). Moreover, the decomposition of EEG activity by
TF method allowed us to understand better how the experimental
manipulation affected the brain activities when processing these
advanced cues.

The present findings firstly expanded current understanding
of reinforcement learning processes in such a trial and error
task. A large number of studies have focused on the outcome
evaluation by time-domain and frequency domain (for reviews,
see Ullsperger et al., 2014). Much evidence converges to show
that FRN component, delta activity, and medial frontal theta
power, reflected the RPE signals in reinforcement learning
(Cohen et al., 2011; Cavanagh, 2015; Sambrook and Goslin,
2016). Our design and data reanalysis, to our knowledge, is
the first to have shown that the advanced cue before outcome
elicited similar RPE signals, which was reflected on frontal central
theta frequency and central posterior delta activity within the
traditional FRN time window. In fact, Bromberg-Martin and
Hikosaka (2009) found that macaque monkeys preferred to
seek advance information about the size of a water reward.
More importantly, their results showed that the same mid-
brain dopamine neurons response to primitive, and the desire
for advance, information about upcoming rewards, which they
termed as ‘cognitive reward’, was present. In line with this study,
another functional MRI study also found that cognitive feedback
activated similar dopaminergic regions as monetary reward in
an information-integration category learning task (Daniel and
Pollmann, 2010). Therefore, we speculated that an advanced cue
that indicated the information availability of upcoming monetary
reward may have also been processed as a cognitive reward in
human learning.

The theta oscillation profiles elicited by the advanced cue
replicated current TF studies which focused on negative and
positive feedback evaluation in a reinforcement learning task
(Marco-Pallares et al., 2008; Cavanagh et al., 2010; Foti et al., 2014;
Mas-Herrero and Marco-Pallarés, 2014; Bernat et al., 2015). The
enhanced theta band power has been associated with negative
RPE compared to positive RPE in reinforcement learning tasks
(Marco-Pallares et al., 2008; Cavanagh et al., 2010). Notably, the
theta power was divergent between the unavailable cue condition
and available cue condition within both of the two time windows
analyzed, however, the theta frequency was not sensitive to the
agent in the present context. This finding suggested that the
theta activity was related to the processing of missing “cognitive
reward” information in general. In our design, three agencies
have conducted the same gambling task in the laboratory.
Therefore, our participants could learn from their own feedback
directly, and from Other’s and PC’s feedbacks, by observational
learning (Bandura et al., 1966). Additionally, Holroyd and Coles
(2002) suggested that the RPE was conveyed from the mid-brain
dopamine system to ACC and is used as a “teaching signal”
to other regions for the purpose of improving performance
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FIGURE 4 | Time–frequency representation of two types of cues in three agents’ conditions at Pz. The Upper panel showed the time–frequency
representation of Unavailable cue in three agents’ condition while the Lower panel showed the time–frequency representation of Available cue in three conditions
separately.

FIGURE 5 | Scalp distributions of different delta power between unavailable cue and available cue in the Self condition.

(Sambrook and Goslin, 2015). Based on this background, we
proposed that the theta oscillation might be associated with an
RPE signal which was used to improve learning, including self-
relevant and observational learning. Another possibility is that
the theta oscillation is sensitive to general negative events, such
as the blocking of curiosity and satisfaction for Self, Other’s, and
the PC’s results here, and social rejection, in a previous study
(Cristofori et al., 2013).

In contrast to the theta frequency, the delta activities revealed
different patterns in the 200–350 ms and 400–700 ms time
windows. Larger delta power was observed following available
cue than after unavailable cue mainly at central electrodes,
however, this effect was mainly observed in the Self-condition

and only in the 200–350 ms period, which is the classical
FRN time window. The central delta activity in the first phase
replicated previous findings which demonstrated that enhanced
delta power was observed in positive feedback condition than
in negative feedback condition (Bernat et al., 2015; Cavanagh,
2015; Li et al., 2016). These results might support the statement
that the early central delta oscillation is related to positive RPE
signal, which generated from the dopamine system (Cavanagh,
2015).

Interestingly, the delta frequency in the late time window
(400–700 ms) reached maximum at posterior sites and only
affected by the agent factor. These results firstly demonstrated
that the late posterior delta oscillation reflected a different
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process compared to the early delta. The delta activities in
the 400–700 ms could mainly contribute the LPC amplitude
which was reported in our previous paper (Han et al., 2013).
According to an influential theory, late large positive deflection,
such as P3 reflected the activity of the neuromodulatory locus
coeruleus–norepinephrine system, which enhance the response
to motivationally significant events (Nieuwenhuis et al., 2005;
Nieuwenhuis, 2011). Based on this theory, we inferred that
the late posterior delta activity also reflected motivational
significance of self-relevant information and corresponding
attentional involvement. In specific, although the probabilities
of cue stimuli are equal among three agents, self-relevant cues
are more salient compared to Other’s cue and PC’s cue in such
a context. The higher motivational significance of self-relevant
information may be driven by ‘engaged curiosity’ as suggested by
Panksepp (1998).

Note that Bernat et al. (2015) recently suggested that theta
reflects most salient primary feedback while delta is sensitive
to both primary and second feedback attributes. Although both
their data, and our data, suggested that theta and delta reflect
different separable components in reinforcement learning tasks,
our study demonstrated that the delta, rather than theta, reflected
more salient and self-relevant stimuli. On the other hand, theta
power showed sensitivity to all of the negative events across
agencies over two time windows (200–350 ms and 400–700 ms).
These inconsistent findings may have been due to the different
paradigms and phases of interest in the two studies. Additionally,
several recent TF studies have found that frontal theta was related
to the unsigned RPE rather than negative RPE (Hajihosseini and
Holroyd, 2013). Given that the probabilities of the two types
of cues were equal in the present study, we could not provide
evidence to support this argument, leaving an open question for
future study: whether the theta power observed here would be
modulated by probability of cognitive reward, or not.

Limitations and Future Directions
Bromberg-Martin and Hikosaka (2009) suggested that modern
reinforcement learning theory should take ‘cognitive reward’ into

consideration. Our study further provided electrophysiological
evidence from human subjects that ‘cognitive reward’ can
generate similar RPE signals, which were indexed here by theta
and early delta power, as the primary and second rewards.
The processing of the cue information may alarm the system
into preparing for future feedback information with the aim
of optimizing reinforcement learning. As proposed by Holroyd
and Yeung (2012), humans need to learn context-specific
sequences of behavior to achieve a final goal through hierarchical
reinforcement learning. When a cue was established between
decision-making and feedback, the brain may have to adjust the
connection between response and reward during reinforcement
learning. The processing of an advanced cue may be part of
hierarchical reinforcement learning in a special context. The lack
of trials undertaken in the final feedback phase in the present
study, meant that this hypothesis could not be tested directly by
comparing the processing of cue and feedback. Future studies are,
therefore, required to test this hypothesis.
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