
HYPOTHESIS AND THEORY
published: 18 October 2016

doi: 10.3389/fpsyg.2016.01575

Frontiers in Psychology | www.frontiersin.org 1 October 2016 | Volume 7 | Article 1575

Edited by:

Andrea Ravignani,

Vrije Universiteit Brussel, Belgium

Reviewed by:

Makiko Sadakata,

Radboud University Nijmegen,

Netherlands

Rie Asano,

University of Cologne, Germany

Johan Loeckx,

Vrije Universiteit Brussel, Belgium

*Correspondence:

Geraint A. Wiggins

geraint.wiggins@qmul.ac.uk

Specialty section:

This article was submitted to

Auditory Cognitive Neuroscience,

a section of the journal

Frontiers in Psychology

Received: 07 March 2016

Accepted: 28 September 2016

Published: 18 October 2016

Citation:

Forth J, Agres K, Purver M and

Wiggins GA (2016) Entraining IDyOT:

Timing in the Information Dynamics of

Thinking. Front. Psychol. 7:1575.

doi: 10.3389/fpsyg.2016.01575

Entraining IDyOT: Timing in the
Information Dynamics of Thinking
Jamie Forth, Kat Agres, Matthew Purver and Geraint A. Wiggins *

Computational Creativity Lab, Computational Linguistics Lab, Cognitive Science Group, School of Electronic Engineering and

Computer Science, Queen Mary University of London, London, UK

We present a novel hypothetical account of entrainment in music and language,

in context of the Information Dynamics of Thinking model, IDyOT. The extended

model affords an alternative view of entrainment, and its companion term, pulse, from

earlier accounts. The model is based on hierarchical, statistical prediction, modeling

expectations of both what an event will be and when it will happen. As such, it constitutes

a kind of predictive coding, with a particular novel hypothetical implementation. Here, we

focus on the model’s mechanism for predicting when a perceptual event will happen,

given an existing sequence of past events, which may be musical or linguistic. We

propose a range of tests to validate or falsify the model, at various different levels

of abstraction, and argue that computational modeling in general, and this model in

particular, can offer a means of providing limited but useful evidence for evolutionary

hypotheses.
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1. INTRODUCTION

We propose a hypothetical anticipatory model of the perception and cognition of events in time. A
model of sequence learning and generation from statistical linguistics has been adapted to handle
the strongly multidimensional aspects of music, including musical time (Gabrielsson, 1973a,b;
Jones, 1976, 1981; Conklin andWitten, 1995; Pearce, 2005; Pearce et al., 2005). Multidimensionality
is a property also of language that can usefully be captured (Meck, 2005; Kraus et al., 2009;Wiggins,
2012a). The model is called IDyOT, (Information Dynamics of Thinking). IDyOT is a cognitive
architecture, after Baars’ (1988) GlobalWorkspace Theory: the aim is to capture asmuch as possible
of the framework of basic cognitive function in one uniform processing cycle.

We approach the perception and cognition of musical and lingustic timing from two
perspectives. Firstly, in the context of music, we discuss a conceptual space (Gärdenfors, 2000)
representation of metrical time (Forth, 2012). The approach enables precise specification of
metrical structures, hypothesized as patterns of entrainment that guide attention in musical
listening (London, 2012). This perspective can be understood as a top-down specification of a
theoretical notion ofmeter. Our second perspective is bottom-up: amechanism that we hypothesize
is capable of learning such a hierarchical representation of metrical time from exposure to the
statistical regularity inherent in music and everyday perceptual experience. Our argument is that
musical listening is coordinated by attentional patterns, which arise from a process involving
both endogenous generation and induction from perceptual information. Furthermore, we argue
that the same process underlies the temporal regulation of cognition in general, and we consider
evidence from the domain of natural language to substantiate this claim.
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IDyOT computes anticipatory distributions at multiple levels
of granularity with respect to the surface sequence, and we
hypothesize that the requirement for the temporal predictions
of the different levels to coincide is what creates the human
tendency toward cyclic (even if non-isochronous) meters in
music and poetry. Thus, the work presents a new perspective
on the debate between oscillatory and timer-based models (Hass
and Durstewitz, 2014). Further, we propose that the combination
of coinciding expectations at different levels of granularity
are responsible for the percept of meter, explaining the effect
modeled by London’s (2012) additive cycle approach to metrical
strength.

2. THEORY AND HYPOTHESES

Since IDyOT is a multi-faceted theory, we must decompose
it. Introductory descriptions are given by Wiggins (2012b) and
Wiggins and Forth (2015), and summarized below. Here, we list
our specific hypotheses, to map out the subsequent argument.

• We begin from the hypothesis, familiar in cognitive science,
that the brain/nervous system is an information processing
organ, embodied or in isolation. Specifically, our perspective
is that the brain/nervous system is a statistical information
processing system. More specifically still, our perspective is
that the brain/nervous system is a sequential predictor: not only
does it serve the function of quasi-probabilistically deducing
the sources and nature of stimulus received, but it also serves
to predict future events in the world. This sequential prediction
element differs from statistical models of cognition, whose
primary concern is deducing the likely cause of current input.

• We propose a particular perceptual learning mechanism,
related to but different from extant others, and conceived as
a cognitive architecture. It constructs a simulated, hierarchical
mental model of the perceptual history of an organism,
from which predictions about future states of the world, at
multiple levels of abstraction, can be generated. This, when
implemented, constitutes a testable hypothesis: its behavior
can be compared with extant humans and thus, it may be
falsified. Here, we focus on the temporal aspects of the model;
falsification in these terms might entail falsification of just the
temporal part of the model, or of its entirety, depending on the
exact outcomes.

• The underlying principle of the model is that of information
efficiency: everything the model does is aimed at reducing
the computational expense of processing the information to
which it is exposed. Thus, there are measures to optimize both
the storage and representation of information, and the use
of information in predicting future states of the world. We
suggest that this is a principle that is likely to hold in biology,
because cognitive substrate (nervous tissue) is very expensive
to grow and operate, and therefore that there is pressure to
optimize its utility. Evidence for this approach, in terms of
modeling current human behavior, is given by Pearce (2005)
and Pearce and Wiggins (2012).

• Our proposal offers a hypothetical account of the relationship
between cortical volume and mind function, including
temporal memory, and of why humans entrain in ways not

reliably observed in other species. This hypothesis may also
be tested by comparison with extant humans coupled with
analysis of brain volumes in other mammalian species, and
with evidence from the fossil record, using the methodology
in Section 5.

• Finally, the methodology espoused in Section 5may be applied
to any aspect of the model with support from empirical study
of current biology, to hypothesize about evolution, in two
ways: first, the relationships between known developments in
species (e.g., cortical volume) and parameters of the model
may be investigated; and, second, differently parameterized
versions of the model may be allowed to compete in a
simulated environment, testing the evolutionary value of its
various features.

In the following sections, we lay out the details of our motivation
and of the temporal aspects of IDyOT.

3. RHYTHM AND TIMING IN SEQUENTIAL
PERCEPTION

3.1. Prediction in Temporal Perception:
Concepts and Terminology
The key idea of IDyOT is that one route to evolutionary
success is for an organism to predict what is likely to happen
next in its environment, and that the ability to learn an
appropriate model of experience to inform such predictions
is an important cognitive ability of higher animals. Further,
we propose that the value of such prediction is increased
if the prediction of what is to happen is coupled with the
prediction of when it will happen. Playing music, alongside
many survival traits, requires the ability to judge precisely
where in time an action should be placed, usually anticipating
the exact moment with motor preparation so that timing of
sound and/or movement is correlated with other activity in the
world. It is self-evident that organisms without human-scale
cortical development are capable of impressive feats of prediction
coupled with synchronization: for example, chameleons catching
fast-flying insects, and dogs catching balls; what is not evident
in these organisms is the voluntary maintenance and repetition of
such behaviors in rhythmic synchronization with external stimuli.

Fitch (2013) surveys usages of terms relating to general
and musical timing. Our taxonomy describes the same broad
phenomena, but is different, and we must clarify our usage, and
how it differs from Fitch’s. Fitch argues that timing is an example
of hierarchical cognition, and we agree. However, as will become
clear later, in our model, concepts such as pulse, meter, while
certainly hierarchical, are explicated in terms of the underlying
predictive mechanism, and do not require separate explanations
of their own. Particularly problematic are Fitch’s notions of pulse
and entrainment. Pulse is introduced thus:

First, rhythmic cognition typically involves extracting a pulseİ

or tactusİ at a particular rate (the tempo) that serves

as a basis for organizing and structuring incoming sonic

events. (Fitch, 2013, p. 2)

and, later,
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An important characteristic of musical rhythm, . . . , is

isochronicity. (Fitch, 2013, p. 2)

Fitch (2013) also notes, later, that it is not the case that all
musics display a(n isochronous) pulse—South Asian and Middle
Eastern musics often do not have a pulse in this simplified
Western sense. This is problematic, because (in the absence of a
stated alternative) it implies that these musics have no “basis for
organizing and structuring incoming sonic events.” We believe a
different definition is required.

For us, entrainment is the key concept. Fitch’s definition runs
thus, in terms of his notion of pulse:

When listeners extract a pulse from the acoustic surface, and

adjust their own behavior to it (whether their own acoustic

output, in ensemble playing, or their movements, as in dance) this

is called entrainment. (Fitch, 2013, p. 3)

In this definition, entrainment is dependent on the presence of
a pulse, that is extracted and that is, by definition, isochronous.
Therefore, the movement of Indian physical performers that
is correlated with their culture’s non-isochronous music is not
entrained. Evidence suggests that this is a narrow definition
(Clayton, 2007).

The problem arises from the Western-centric notion that the
perception of pulse precedes rhythm and meter perception. We
suggest that the experience of pulse (isochronous or otherwise)
is not primary, but an epiphenomenon of the statistical structure
of music. Therefore, we define entrainment differently, allowing
our Indian dancers to be entrained:

Entrainment is the capacity to sustainedly synchronize with the

placement of extrinsic patterns of events in time. Autonomic

entrainment is the capacity of an organism to entrain without

intentional involvement (e.g., in fireflies); this is the kind of

entrainment that cannot be switched off by the organism

exhibiting it. Voluntary entrainment is the capacity of an

organism to entrain at a non-autonomic level (e.g., Snowball the

cockatoo: Patel et al., 2009; Schachner et al., 2009). Sustained

voluntary entrainment is the capacity of an organism to entrain

non-autonomically without extrinsic encouragement or reward

(humans are the only known example).

Musical entrainment can be extremely complicated, with
irregular rhythmic structures spanning cycles of several seconds,
(e.g., Greek folk music), or with simultaneous multiple levels
of synchronization at different speeds and with very subtle
deviations from a relatively simple regular beat which are highly
musically salient, (e.g., funk and rap). Equally complicated,
though different, entrainment is required for production and
comprehension of speech. It follows that entrainment is
extremely advanced in humans, even though it needs individual
development to reach the degrees of hierarchy and precision

found in musicians and dancers. Given that such rhythmic

sophistication is hard to motivate from a purely biological

evolutionary perspective (see e.g., Merchant and Honing, 2014;
Merchant et al., 2015, for discussion of such biological evolution),
either it must arise de novo from social evolutionary pressures;

or from a mechanism capable of capturing the simpler rhythms
experienced in the world, which is then able to construct
complexity as needed; or perhaps a combination of the two
(Bown, 2008; Bown andWiggins, 2009; Merker et al., 2009; Fitch,
2012; Bowling et al., 2013; Ravignani et al., 2013).

We propose that the last of these options is the case: a bottom-
up hierarchical perceptual construction of temporal sequence
accounts for rhythm and meter in music and language. It has
been selected for because it promotes predictive power which
enhances information processing and the action that results from
it. The enhancement is achieved by attentional orientation, which
we discuss next.

3.2. Attentional Orientation
The orientation of attention toward specific spatial locations,
objects or moments in time to optimize behavior has been
extensively investigated. Coull et al. (2000) describe two distinct
forms of attentional shift: endogenous, a top-down mechanism
initiated to meet cognitive demands, and exogenous, a bottom-up
mechanism stimulated by unexpected events.

Cherry (1953) investigated auditory selective attention (the
“cocktail party effect”) in experiments designed to reveal the
extent to which, and under what conditions, listeners could
disambiguate simultaneously spoken, but spatially-separated,
dialogues recorded by the same speaker. Wearing headphones,
subjects were asked to attend only to the speech signal delivered
to their right ear and to repeat the words while doing so.
Subjects could reproduce the spoken dialogue perfectly, and
when subsequently questioned, were largely unable to report any
detail from the unattended source, beyond general characteristic
such as speech vs. non-speech, and male vs. female speaker.
However, in a subsequent experiment, subjects performed the
same task but with stimuli consisting of a single speech signal
delivered independently to each ear with decreasing inter-ear
time delay. In this case, nearly all subjects reported that they
recognized that the two signals were the same when the delay
was in the region of 2–6 s, suggesting that unattended signals are
processed to some degree, and under certain conditions, are able
to impact on conscious awareness. This behavior is a necessary
consequence of the IDyOT architecture.

Cherry concluded that this mechanism was statistical in
nature, and that the brain stored transition probabilities, to be
able to estimate maximum-likelihood to guide perception and
overcome noisy signals. This was assumed to account for the
fact that even dialogues spoken by the same speaker, presented
simultaneously but non-spatially separated, could eventually
be disambiguated after multiple hearings (up to 10–20 times).
Further evidence is provided by a variant of the previous
experiment involving the recognition of cliché phrases. The
dialogues consisted entirely of concatenated cliché phrases.
Participants were reliably able to detect whole phrases at a time
with relative ease, presumably relying on highly likely word
transitions inherent to cliché phrases. However, between phrases,
no expectations could be generated, and participants were equally
likely to switch between dialogues at such phrase boundaries,
and were therefore unable to completely disambiguate the two
dialogues. The IDyOT prediction mechanism accords with this.
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In addition to spatial information, listeners can also use other
stimulus features, such as pitch, to orientate attention toward
particular events (Woods et al., 1991; Woods and Alain, 1993).
Semantic salience impacts selective attention, and top-down
attention is also mediated by location, pitch, timbre, intensity
(Shinn-Cunningham, 2008).

In the visual modality, Posner et al. (1980) developed a
reaction time paradigm to provide evidence in support of a
theoretical attentional framework consisting of a limited-capacity
attentional mechanism coupled with adaptive expectation of
where signals were likely to appear in the visual field.

Crucial to the temporal aspect of IDyOT developed below,
time itself is also a modulatory factor for attentional orientation.
Coull (2004, p. 217) distinguishes between temporal attentional
orienting (‘how attentional processing varies as a function of
time’) and temporal selective attention (‘how time perception
varies as a function of attentional selectivity’).

ERP evidence demonstrates that sounds presented at attended
times elicit a larger N1 than sounds at unattended times (Lange
et al., 2003; Sanders and Astheimer, 2008). Coull and Nobre
(1998) report the first direct comparison between the neural
correlates of spatial vs. temporal cues, revealing that both
temporal cues (when a target will appear) and spatial cues
(where it will appear) similarly improve reaction time, but that
hemispheric asymmetry is evident between the two conditions.
Similar findings are also reported by Nobre (2001) and Griffin
(2002). Nobre (2001, p. 1320) demonstrates that there is no
hardwired cue interval, but that “the utility of a warning cue
depends upon the specific temporal information it carries and
the degree of certainty.” A hypothesized relationship between
temporal uncertainty and attentional focus has long been the
subject of empirical investigation. Early work by Klemmer
(1956, 1957) proposed a model of the relationship between
reaction time and an information-theoretic measure of time
uncertainty. In processing language, preschool children and
adults employ temporally selective attention to preferentially
process the initial portions of words in continuous speech. Doing
so is an effective listening strategy since word-initial segments are
highly informative (Astheimer and Sanders, 2009, 2012).

3.3. Entrainment
Our argument, then, is that patterns of events in the world afford
entrainment, which in turn affords attention-orienting behavior,
if there is a perceptible regularity to the patterns’ occurrence,
across a range of time-scales. Regularity and periodicity are
therefore invariant qualities in perception over time, a fact
which sits neatly with the general principle that sequential
grouping of events enhances prediction and leverage and/or
understanding of causality. In music, the notion of perceptual
invariance is reflected in the language used to describe highly
periodic rhythms, which are sometimes referred to as stationary
(Shmulevich and Povel, 2000). More generally, the occurrence
of invariance in the natural world is highly suggestive of
intentional behavior, such as the distinctive footfalls of a
predator or chosen mate. Furthermore, an argument for the
evolutionary adaptive quality of entrainment can be made in
terms of social interaction and cohesion. To interact and to

co-operate successfully in the world, humans must be able
to synchronize movement. Synchronization requires accurate
temporal prediction to engage the necessary motor control prior
to an anticipated timepoint: successful co-ordination cannot be
based on reactivity (Trevarthen, 1999–2000; Clayton et al., 2004).
Crucially, our perception of temporal invariance and capacity
for entrainment allow us to direct attentional resources toward
probably-salient moments of time; thus, we better predict events
in the world and accordingly act more efficiently. Efficiency, in
this context, is a survival trait.

Entrainment capacity in non-humans has been supposed
to correlate with the capacity for vocal learning (Patel, 2006;
Schachner et al., 2009), though this is now contested (Wilson
and Cook, 2016). Even so, from this, and other evidence from
lingustics, it may be that entrainment is related to the process of
vocal imitation. This, in turn, is implicated in learning to speak
(Speidel and Nelson, 2012), which entails speech perception
(even prior to the development of semantic association and of
speech production). A reason for entrainment to be related to
all these things would be cognitive efficiency, according with
the underlying principle in IDyOT. Attending to speech, as to
anything else, is energetically expensive. If periods of attention
can be appropriately timed, by predicting when the next unit of
information from an interlocutor will appear, such as orienting
attention toward initial portions of words in continuous speech
(Astheimer and Sanders, 2012), the efficiency of attending is
optimized (Large and Jones, 1999). Further, it is easy to imagine
situations where the capacity for physical synchronization would
be of survival benefit to early humans: for example, the ability
to walk in step, but with irregular paces, to minimize the
audible traces of a hunting party. Further, shared entrainment
would be a necessary feature of effective sustained conversation,
because synchronized prediction in a listener greatly increases
the likelihood of successful information transmission. Models of
musical and language entrainment are similar, though language
seems to be more tolerant of expectation breach: an equally
hierarchical system of beats for linguistic synchronization is a
given in phonology (e.g., Hawkins and Smith, 2001; Hawkins,
2003).

Humans can entrain to a beat, even when it is irregular or
variable, and many find it difficult not to do so, when presented
with music that they find engaging. The phenomenon is studied
extensively in the music cognition literature, along with timing
and rhythm (e.g., Patel and Daniele, 2003; Cross and Woodruff,
2008; Cross, 2009; Repp, 2011; Fitch, 2012, 2013; London,
2012; Merchant et al., 2015). Some non-human species exhibit
temporary entrainment tomusic when encouraged to do so (Patel
et al., 2009; Schachner et al., 2009), and others, such as crickets,
exhibit synchronization via reflex response (e.g., Hartbauer et al.,
2005), but sustained self-motivated active entrainment seems to
be unique to humans (Wilson and Cook, 2016). Grahn (2012)
gives a useful survey of related research in neuroscience.

The question of whether such control is achieved by oscillators
or by interval timers remains open: Grahn (2012) presents
evidence for timer-based control, while Large and Jones (1999)
argue for oscillators. See Hass and Durstewitz (2014) for a wider
survey of contending models. Evidence from music, beyond the
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Western tendency toward regular binary or ternary divisions,
clearly undermines a naïve oscillator model in which phase-
locked oscillators simply oscillate to determine meter: otherwise,
fairly simple, naturally divisible meters such as 7

8 and the jazz
favorite 3

4+
3
8 would be at best problematic, and the long cycles

of groupings of irregular length found in Greek, Arabic and
Indian music would be inexplicable. Because our model operates
at a fairly high level of abstraction from the neurophysiology,
it is relevant to note that an oscillator can be implemented as
a timer, repeatedly triggered. Thus, at more abstract levels of
modeling, the distinction is only semantic, and the effect can
reasonably be simulated without addressing the detail of the
neural implementation. Then, a given temporal interval may be
represented by a parameter, forming a closed system with the
oscillator or timer that accepts it.

An important class of approaches to these issues lies in the
literature on Predictive Coding (e.g., Friston, 2010) and Bayesian
Inference (e.g., Tenenbaum et al., 2011). These approaches have
been investigated on the neuroscientific level by, for example,
Vuust et al. (2009), Vuust and Witek (2014), Vuust et al. (2014),
and Honing et al. (2014). Vuust et al.’s work, in particular,
presents neuroscientific evidence for a theoretical model with a
similar motivation to that presented here. As such, the present
work may offer a more detailed explanatory account of the
observed neurophysiological responses, as suggested by Maloney
and Mamassian (2009) and Wiggins (2011).

Next, we discuss rhythm and meter in language and music,
and the affective effects of expectation in pitch and rhythm, in
context of our definition of entrainment. There has been further
debate elsewhere over the relationship in the literature (e.g., Patel,
2008; Jackendoff, 2009; Fabb and Halle, 2012), which there is not
space to survey here.

3.4. Rhythm and Meter in Language
Speech naturally shows regularities in timing, their nature
varying across languages. Until recently the view was that
these rhythmic differences stem from isochrony—an even
distribution of certain segment types over time—with individual
languages either syllable-timed, mora-timed or stress-timed (e.g.,
Abercrombie, 1967). For example, whereas Italian speakers
appear to maintain approximately equal durations for each
syllable, English speakers tend to adjust their speech rate
to maintain approximately equal durations between stressed
syllables, even when multiple unstressed syllables are interposed:

(1) LOOK at that WEIRD THING in the FRIDGE

However, empirical evidence does not uphold this strict
typological division, with some languages falling somewhere
between syllable- and stress-timed (e.g., Dimitrova, 1997).
Instead, research suggests that all languages are effectively stress-
timed and that the apparent typological differences can be
accounted for via differences in stress prominence, syllable
complexity, and variability of duration of vowels and consonants
(Dauer, 1983; Grabe and Low, 2003; Patel and Daniele, 2003;
Patel, 2008). These differences lead to the impression of different
rhythmic classes and perhaps, via their effects on perception

and predictability, to the segmentation unit naturally used by
speakers and acquired by infants (Nespor et al., 2011). Indeed,
psycholinguistic evidence shows that rhythm and timing play a
role in perception, with rhythmic stress affecting attention given
to phonemes (Pitt and Samuel, 1990), expectations set up by
syllable stress or intonation patterns early in a sentence affecting
the perceived identity of ambiguous words later on (Dilley and
McAuley, 2008), and regularity in timing speeding up processing
(Quené and Port, 2005). Effects are also seen in production: even
infant babbling shows syllable timing patterns characteristic of
the language being learned (Levitt and Wang, 1991).

Rhythm and timing are, of course, not fixed, and here
expectation and predictability play a significant role. Information
content has effects both globally, with average speech rate
decreasing as information density increases across languages
(Pellegrino et al., 2011), and locally, with local speech rates and
prosodic prominence observed to vary with the predictability of
the current segment, both for syllables (Aylett and Turk, 2004)
and words (Bell et al., 2003).

A similar picture emerges when we look at timing effects
between speakers in dialogue. First, speakers affect each other
as regards the word- or segment-level timings discussed above:
both speech rate and information density converge amongst
interlocutors (Giles et al., 1991, give a summary), with some
evidence that degree of convergence is related to high-level
interpersonal factors such as the level of cooperation (Manson
et al., 2013). Second, conversational participants are apparently
experts in timing at the level of utterances or turns (segments
during which one speaker holds the conversational floor). Sacks
et al. (1974) show that turn-taking is far from random: the floor
can be taken or surrendered at specific transition relevance places,
and speakers and hearers are apparently aware of these and able
to exploit them. Stivers et al. (2009) show that these abilities are
cross-linguistic and cross-cultural: speakers and hearers manage
the timing of these transitions to avoid overlap, and minimize
silences; and experiments suggest that disruptions in natural
interaction timings are noticed by infants as young as 3 months
(Striano et al., 2006). Heldner et al. (2013) extend this to the more
specific idea of backchannel relevance spaces, showing that even
simple feedback vocalizations (e.g., “uh-huh”) are governed by
constraints of appropriate timing.

Crucially, studies of turn-taking show that inter-speaker
transition times are too short for this behavior to be reactive: if
we waited for the end of the previous turn to react, we simply
wouldn’t have enough time to plan, select lexical items and
begin to speak (requiring of the order of 600ms) within the
durations observed empirically (c. 200ms). We must therefore
predict the end (and content) of turns as we hear them, to
begin our own response (see Levinson and Torreira, 2015;
Levinson, 2016). Expectation is therefore key to turn-taking:
EEG experiments show correlates of turn-end anticipation
(Magyari et al., 2014), and models have been proposed based on
syllable-timed oscillators (Wilson and Wilson, 2005). However,
experiments suggest that this expectation is driven by factors
at many levels. Grosjean and Hirt (1996) show that prosody
helps listeners predict when a turn is going to end, although
its utility depends on language and on position in the sentence.
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However, De Ruiter et al. (2006) asked participants to predict
end-of-turn times with various manipulated versions of recorded
speech: their predictions were accurate when hearing the original
recordings, and when the intonation information was removed;
but accuracy dropped when only intonation information was
present and words could not be understood. Magyari and De
Ruiter (2012) showed similar results when asking participants
to predict the words remaining in a sentence. In machine
classification tasks, Noguchi and Den (1998) and Ward and
Tsukahara (2000), among others, show success in predicting
backchannel points using prosody; but in a general turn-
end detection task, Schlangen (2006) showed that combining
acoustic, lexical and syntactic information improved accuracy,
and Dethlefs et al. (2016) show that people’s tolerance of speaker
overlap depends on information density as well as syntactic
completeness. While prosody contributes information, then,
lexico-syntactic or higher levels must contribute as much if not
more.

It is clear, then, that rhythmic structure pervades language, but
that its perception and production are governed by expectation
both within and between speakers—with this expectation based
on information at a variety of levels. IDyOT theory proposes that
this expectation is generated by the same general mechanism as
that which affords musical meter perception, which is the topic of
the next section.

3.5. Rhythm and Meter in Music
A distinction commonly made in the literature is that between
musical meter and rhythm, although there is debate over the
extent to which they can be treated independently (Cooper
and Meyer, 1960; Benjamin, 1984; Hasty, 1997). London (2012,
p. 4) defines rhythm as involving “patterns of duration that are
phenomenally present in the music.” Duration here refers not
to note lengths, but to the inter-onset interval (IOI) between
successive notes. Rhythm therefore refers to the arrangement of
events in time, and in that sense can be considered as something
that exists in the world and is directly available to our sensory
system.

Meter can be thought of as the grouping of perceived beats
or pulses, simultaneously extracted from and projected on to a
musical surface, into categories, which is typically expressed as
the “regular alternation of strong and weak beats” (Lerdahl and
Jackendoff, 1983, p. 12). London strongly situates meter as the
perceptual counterpart to rhythm:

[M]eter involves our initial perception as well as subsequent

anticipation of a series of beats that we abstract from the rhythmic

surface of the music as it unfolds in time. In psychological terms,

rhythm involves the structure of the temporal stimulus, while

meter involves our perception and cognition of such stimuli.

(London, 2012, p. 4)

The experience of meter can, therefore, be considered as a
process of categorical perception, where the surface details of the
temporal stimuli, such as the particular structure of the rhythmic
pattern, or any expressive performance timing, are perceived with
reference to a hierarchical organization of regular beats. The

sensation ofmeter is induced from a stimulus in conjunction with
both innate and learned responses to periodic or quasi-periodic
stimuli.

Extending the notion of categorical perception, London
(2012) argues that meter is a form of sensorimotor entrainment,
that is a “coupled oscillation or resonance,” afforded by the
temporal invariances commonly present in musical structure.
For listeners, this is one mechanism by which attentional
resources can be directed toward predicted salient timepoints to
efficiently process complex auditory stimuli. For musicians, and
indeed any form of movement associated with musical stimuli,
entrainment is necessary for the co-ordination of physical
action.

London (2012) provides empirical support for his theory of
meter as entrainment from recent advances in neuroscience,
which shed light on the underlying biological mechanism of
rhythmic perception. Neuroimaging studies have discovered
patterns of neuronal activity sympathetic with metrical
entrainment, providing convincing evidence that metrical
perception is both stimulus driven and endogenous. Differing
EEG responses to trains of identical pulses are reported by
Brochard et al. (2003) and Schaefer et al. (2011) as evidence
for subjective metricization. Snyder and Large (2005) and
Iversen et al. (2009) both present findings that lend support
to endogenous neural responses correlating with accents
that are only loosely coupled with external stimuli, and in
the later study it is also demonstrated that the priming of
an endogenous meter has a predictable effect on subsequent
auditory responses. Nozaradan et al. (2011) present evidence
of measurable neural entrainment to perceived and imagined
meter.

The degree to which listeners can induce a sense of meter from
a rhythmic surface has also been shown to strongly affect ability
in reliably processing rhythmic information (Grube and Griffiths,
2009). Where a stronger sense of meter is induced, participants
could more accurately detect rhythmic deviations. In the same
experiment, the authors also provided evidence suggesting the
importance of closure at the endings of rhythmic stimuli in order
for listeners to report a stronger sense of perceived rhythmicality.
Open endings were shown to leave listeners feeling uncertain
about the structure of rhythmic stimuli, demonstrating how
the ends of sequences can influence the perception of the
whole.

Composers have long exploited our capacity to maintain

a metrical context (i.e., our capacity for sustained voluntary

entrainment), which is possible even in the presence of

conflicting musical stimuli. Syncopation is the intentional

rhythmic articulation of less salient metrical timepoints, which

in itself is evidence for our strong tendency for entrainment,

since if we could not independently maintain a sense of
meter the concept of “off-beat” would be meaningless. The
notion of a continuous oscillation in attentional energy
provides an account, importantly one with an empirically
grounded underlying mechanism, of the commonly held view
that meter concerns regular patterns of strong and weak
beats.
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3.6. Affective Responses to Expectation in
Timing
Huron (2006) argues that prediction, experienced as expectation,
is a driver of musical affect. Huron proposes that the feeling
of uncertainty, which corresponds with entropy in a predictive
distribution (Hansen and Pearce, 2014), makes a substantive
contribution to the aesthetic of music: changes in tension due
to changes in uncertainty resolving into expected certainty, or
denial of expectation, is sometimes called the “ebb and flow”
of music. Empirical evidence of this relationship is supplied by
Egermann et al. (2013): correspondence was found, by direct
and indirect response, between affective change and change
in information content as predicted by Pearce’s Information
Dynamics of Music (IDyOM) model (Pearce, 2005; Pearce and
Wiggins, 2012).

However, anticipation of what is coming next (followed by
the outcome and its concomitant affect) is only one aspect
of this response. Another key aspect is the entrainment that
allows groups of humans to perform music together, in perfect
but flexible, consistent time, in ways which have never been
demonstrated in other species.

An open question is why the act of entraining should produce
positive affect, as it does (Hove and Risen, 2009; Tarr et al.,
2015). One possible answer is that, because cognitive entrainment
is necessary for efficient speech communication (see Section
3.4), mutations that select for entraining capacity, and also
for exercising of that capacity are favored. Thus, a capacity
which is, presumably, grounded in fundamental cyclic behaviors
such as locomotion (Fitch, 2012), might be exapted to support
communication through speech, but also social bonding through
shared musical activity. Since speech and social bonding are
interlinked, and social bonding is crucial to human survival in
the wild, one can postulate a tight feedback loop between these
various factors, leading to the advanced capacity for musical and
speech rhythm in modern humans. This account places neither
music nor language as the progenitor: it would be the basis of
an evolutionary theory in which they develop in parallel from
a common root, possibly through shared mechanisms and/or
resources.

There remains something of a lacuna in the literature on
musical affect, with respect to specific small-scale deviations, as
in groove. It is to be hoped that a model like IDyOT will render
hypothesis formation in this area more readily achievable, and
thence empirical study may be enabled. However, in both speech
and language, affect is manipulated, intentionally or otherwise, by
both time and pitch—as in the frustrating denial of expectation
by a speaker who pauses too much, or by a performer whose
timing is poor. Kant (1952) proposes a theory of incongruity
for positive affective response in humor, and something similar
to this may apply here; however, we reserve this discussion for
future work.

Here, what is important is that the expectations generated
in time form a predictable, if locally irregular, structure, and
small variations in that structure are desirable, giving rise to
affective responses such as “feeling the groove” in music (Witek
et al., 2014) and “pause for emphasis” in language (Cahn, 1990).

This entails a representation in which a norm (the standard
beat, isochronous or otherwise) is directly implied, but in which
variation may be quantified so that further prediction and
associated affect may be modeled. Such a representation is the
subject of the next section.

3.7. A Conceptual Space of Rhythm and
Meter
3.7.1. The Theory of Conceptual Spaces

Gärdenfors (2000) proposes a theory of conceptual spaces as
a geometric form of representation, situated between sub-
symbolic and symbolic representation. The theory proposes that
concepts—entirely mental entities—can be represented using sets
of dimensions with defined geometrical, topological or ordinal
properties. The formalism is based on betweenness, from which a
notion of conceptual similarity is derived.

Gardenfors’ theory begins with an atomic but general
notion of betweenness, in whose terms is defined similarity,
represented as (not necessarily Euclidean) distance. This allows
models of cognitive behaviors to apply geometrical reasoning
to represent, manipulate and reason about concepts. Similarity
is measured along quality dimensions, which “correspond to
the different ways stimuli are judged to be similar or different”
(Gärdenfors, 2000, p. 6). An archetypal example is a color
space with the dimensions hue, saturation, and brightness. Each
quality dimension has a particular geometrical structure. For
example, hue is circular, whereas brightness and saturation
correspond with measured points along finite linear scales.
Identifying the characteristics of a dimension allow meaningful
relationships between points to be derived; it is important to
note that the values on a dimension need not be numbers—
though how an appropriate algebra is then defined is not
discussed.

Quality dimensions may be grouped into domains, sets of
integral (as opposed to separable) dimensions, meaning that every
dimension must take a value to be well formed. Thus, hue,
saturation, and brightness in the above color model form a single
domain. Each domain has a distance measure, which may be
a true metric, or otherwise, such as a measure based on an
ordinal relationship or the length of a path between vertices in
a graph. Thence, Gärdenfors’ definition of a conceptual space is
“a collection of one or more domains” (Gärdenfors, 2000, p. 26).
For example, a conceptual space of elementary colored shapes
could be a space comprising the above domain of color and a
domain representing the perceptually salient features of a given
set of shapes.

Since the quality dimensions originate in betweenness,

similarity is directly related to (not necessarily Euclidean)

proximity. Such spatial representations naturally afford
reasoning in terms of spatial regions. For example, in the

domain of color, a region corresponds with the concept red.

Boundaries can be adaptive, providing the formalism with an

elegant means of assimilating new knowledge, and the space itself

can be subject to geometrical transformation, such as scaling of
constituent dimensions, modeling shifts in salience. For purely
numerical dimensions, Gärdenfors (2000, pp. 24–26) tentatively
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suggests Euclidean distance for similarity in integral dimensions,
and the city-block metric for separable dimensions.

3.7.2. A Geometrical Formalization of Meter and

Rhythm
Forth (2012) formalized London’s theory ofmeter (London, 2012,
Section 3.5), seeking quality dimensions to express all the ways
in which metrical structure may be variable in perception. Forth
(2012) specifies two conceptual space representations of metrical
structure, denoted meter-p and meter-s, to enable geometrical
reasoning over metrical-rhythmic concepts. The simpler space,
meter-p, represents the periodic components of well-formed
hierarchical structures that correspond with metric entrainment.
It can accommodate all theoretically possible forms of metrical
structure, while entrainment itself is bounded by fundamental
psychological and physiological constraints (London, 2012). The
principal affordance of the geometry is direct computation of
similarity between musical rhythms with respect to a metrical
interpretation. In a genre classification task, exemplars of a range
of dance music styles were projected as points in each space.
Applying simple nearest-neighbor clustering over the points in
each space, classification accuracy of 76% and 81% was achieved
for meter-p and meter-s respectively, compared to the naïve
classification baseline of 22%.

The overall general spaces are quite high-dimensional, but
current thinking is that any individual actually uses a subspace,
attuned to their enculturation. Thus, someone enculturated
purely in Western rock would not have in their conceptual space
the dimensions required to capture, say, the Yoruba timeline,
explaining why even accomplished Western musicians must
learn to relate to such non-Western metrical structures. The
dimensionality of the spaces depends, also, on the number of
metrical levels instantiated in the overall metrical structure.
Therefore, musically less structured rhythms inhabit a lower
dimensional space; and, conversely, each space may be extended
by the addition of new dimensions corresponding to higher-level
groupings or lower-level beat subdivisions.

An important aspect of this representation is its ability
to abstract metrical structure from the tempo and expressive
variation of individual performances. While it is possible to
instantiate the representation to the point at which specific real
times are included, and thus actual performances are represented,
these times may be abstracted out. In this case, a point in the
abstracted subspace represents a schematic, regularized version,
whichmay capturemultiple performances of a given rhythm: and
so the region that the individual performances inhabit constitutes
a concept under Gärdenfors’ notion of convexity. The geometry
of the space then allows us to distinguish groove, inconsistent
timing errors, and tempo change because of their different
statistical properties: the first is a tightly defined point slightly
away from the regularized rhythm, the second is a cloud around
a regularized rhythm, and the third is a monotonic trajectory
around the regularized rhythm. These diagnostic properties
both provide support for the hypothetical representation
and afford a useful facility in the wider theory proposed
below.

4. IDYOT: THE INFORMATION DYNAMICS
OF THINKING

4.1. A predictive cognitive architecture
We now outline the IDyOT architecture. The aim of the current
section is to explain enough detail to allow the reader to follow
our account of the timing aspects. Further explanation is given
by Wiggins (2012b) and Wiggins and Forth (2015).

IDyOT implements Baars’ Global Workspace Theory (GWT;
Baars, 1988), affording a computational model of hypothetical
cognitive architecture. GWT is primarily intended to account
for conscious experience, and that is relevant to some aspects
of IDyOT theory. However, it is the underlying mechanism
that is of interest here, in our references to both theories.
A number of generators sample from a complex statistical
model of sequences, performing Markovian prediction from
context (Wiggins and Forth, 2015). Conceptually, each generator
maintains a buffer of perceptual input which may include mis-
perceptions and alternative perceptions due to the possibility
of multiple predictions matching ambiguous or noisy input,
expressed as symbols, whose origin is explained below. Each
buffer serves as a context for prediction of the next (as yet
unreceived) symbol; predictions are expressed as distributions
over the alphabet used to express the input. A buffered sequence
is flushed into the Global Workspace when it meets a chunking
criterion as described below. Figure 1 gives an overview; see
Wiggins (2012b), Wiggins and Forth (2015) for more detail.

IDyOT maintains a cognitive cycle that predicts what is
expected next, from a statistical model, expressed in terms of
self-generated symbols that are given semantics by perceptual
experience. IDyOT is focused on sequence, and this is in part
due to the musical focus of its ancestor, IDyOM (Information
Dynamics of Music: Pearce, 2005; Pearce and Wiggins, 2012).
IDyOM models human predictions of what will happen in
an auditory sequence, and takes account of information about
musical time in making its predictions. It is the most successful
model of musical pitch expectation in the literature (Pearce and
Wiggins, 2006), but it cannot predict when the next event will fall
in a statistically defensible way, and it is a static model, operating
over a body of data viewed as a fixed corpus: it has no interaction
with the world; it has no real-time element. The focus of this
paper is to extend the IDyOT model with timing, to show how
it accounts for musical meter, potentially in real time.

Figure 1 illustrates the cyclic (and hence dynamical) nature
of the IDyOT model. The generators sample from statistical
memory, synchronized by its own expectations of the perceptual
input, if some exists, that it receives. If there is no input,
the generators freewheel (Fink et al., 2009; Wiggins and
Bhattacharya, 2014), conditioned only by prior context, and this
is where creativity is admitted. In the current paper, we focus
on the perceptual input and synchronization. Perceptual input is
matched against generators’ predictions, and where a match leads
to a larger increase in uncertainty than other current matches,
the corresponding generator’s buffer is emptied into the Global
Workspace, which is in fact IDyOT’s memory adormed with
buffers along its leading edge (Figure 2). The previous buffer now

Frontiers in Psychology | www.frontiersin.org 8 October 2016 | Volume 7 | Article 1575

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Forth et al. Entraining IDyOT

FIGURE 1 | Overview of the IDyOT architecture. Generators synchronized to perceptual input sample, given previously buffered perceptual input (if any), from a

first-order, multidimensional Markov model to predict the next symbol in sequence, which is matched with the input. Predicted symbols that match are buffered by

each generator until it is selected on grounds of its information profile. The selected generator then flushes its buffer into the Global Workspace, which is the sum of

the structured hierarchical memory and a detector that searches for salient information, shown as “conscious awareness” here. This allows the resulting chunk of

sequence to be stored in the memory, to become part of the statistical model and thence to be used subsequently.

forms a perceptual chunk, linked in sequence with the previous
chunk. The model entails that at least some generators must
be working in all perceptual modalities at all times, including
sensory ones; otherwise nothing would be predicting for new
input in a given modality to match against. The process of
structure generation is explained in Figure 2.

As in parsing by competitive chunking (e.g., Perruchet and
Vinter, 1998; Servan-Schreiber and Anderson, 1990), IDyOT’s
chunking process breaks percept sequences into statistically
coherent groups, which tend to correspond with structurally
coherent sub-phrases, though not necessarily with traditional
linguistic categories. Chunking is the basic process by which
IDyOT manages its information, by analogy with human
perceptual chunking (Gobet et al., 2001). Once a chunk has
entered the Global Workspace, it is added to the memory and
becomes available to the generators for prediction. This generates
a positive feedback loop in which the chunks inform the statistical
model that in turn causes chunking, reinforcing the model.

Each chunk, having been recorded, is associated with a
symbol in the next-higher-level of the model, which in turn
adds to the overall predictive model, and each higher level is
subject to chunking. Each symbol corresponds with a point in
a conceptual space associated with its own layer, and each such
point corresponds with a region or subspace of the conceptual
space (Gärdenfors, 2000) of the layer below, defined by the lower-
level symbols in the chunk. Thus, two representations grow in
parallel: the first symbolic and explicitly sequential, driven by
data, providing evidence from which the second is derived; and

the second geometrical, mostly continuous, and relational higher
layer, providing semantics for the symbols of the first.

For symbol tethering (Sloman and Chappell, 2005), very low-
level conceptual spaces are a priori defined by the nature of
their sensory input (inspired by human biology); higher-level
ones are inferred from the lower levels using the information in
the sequential model. The exact nature of the conceptual spaces
involved is an interesting future research area. A measure of
similarity, borrowed from conceptual space theory (Gärdenfors,
2000), allows structures to be grouped together in categories,
giving them semantics in terms of mutual interrelation at each
layer, and tethering to the level below, eventually bottoming
out in actual percepts. Using this, a consolidation phase
allows membership of categories to be optimized, by local
adjustment, in terms of the predictive accuracy of the overall
model. Theoretically, the layering of models and its associated
abstraction into categories can proceed arbitrary far up the
constructed hierarchy. For clarity here, we restrict our example
to the number of layers necessary to describe simple musical
rhythms.

In summary, IDyOT’s memory consists of multiple structures,
of which those in Figure 3 are simplified examples, in parallel,
tied together by observed co-occurrences of feature values
expressed in multidimensional perceptual input sequences. The
whole constitutes a Bayesian Network, stratified in layers
determined by the chunking process, and constrained to predict
only to the subsequent symbol at each level and in each
modality. Note, however, that the subsequent symbol may
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FIGURE 2 | An illustration of the process of IDyOT structure building. (A) The input to IDyOT is a sequence of values, with three different features (thought of as

viewpoints after Conklin and Witten, 1995). In reality, the voice input would be an audio signal, but for the purposes of example, we start at the (abstract and

approximate) phoneme level. The sentence perceived here is “John loves Mary.” (B) The structure eventually developed by IDyOT, showing the hierarchical model

created by information-theroetic chunking, and the individual times associated with each chunk (as used in Figure 4) and the higher-level symbol that labels it. (C)

Five steps in the construction of the memory structure shown in (B). A generator is associated with each level of each viewpoint, and with each alternative reading of

the structure (though ambiguity is not shown here: see Wiggins and Forth, 2015, for details). Rather than move data around, new input, once matched perceptually, is

added directly to the memory, which serves as the substrate of the Global Workspace. As each chunk is constructed, there is a peak of information content, which

constitutes attentional energy in the system. Thus, as larger chunks are produced up the hierarchy, larger segments of text (and of the meanings with which they are

associated) enter the Workspace; this accods with the “spotlight” analogy of Wiggins (2012b).
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FIGURE 3 | An illustration of IDyOT learned representation of meter, for simple duple time, and its application to an experienced simple rock rhythm.

This structure is learned from exposure to meters of this form, optimized by IDyOT’s memory consolidation process. It is compared here with the conventional

music-theoretic 4
4
meter: the notation is restricted to quaver (eighth-note) values, to avoid giving the impression of a priori metrical structure. The score fragment

denotes an experienced rock rhythm. The learned model of meter implies stronger or weaker anticipation over the relevant time periods, the whole being

parameterized by the current basic unit. The model of the current rhythm (also learned, in the short term) also adds predictions. The rhythm shown here is a simple

rock beat, which is interesting because of the anticipated third beat in the measure, marked with ⋆ here. This is an example where an expectation of the background

model is denied and the resulting feeling of the missing beat is predicted.

represent something arbitrarily far in the perceptual future,
because higher-level, more abstract models predict in parallel
with, and conditioned by, more concrete ones, and each higher-
level symbol will subtend more than one lower level symbol.
From this model, IDyOT’s generators make predictions and their
outputs are selected on the basis of probabilistic matching with
input. The differences between generator outputs is caused either
by their predicting from different parts of the memory structure
(e.g., at different levels in the hierarchy), or from stochastic
choices licensed by the distributions with which they work.

4.2. Rhythm and Timing Expectation in
IDyOT
Figure 3 illustrates the pattern of structures that is learned as a
result of exposure to a broad range of 4

4 rhythms. (The model
will, of course, be much more complicated than this in general,
because other meters will be represented in the same network.)
The binary structure results because of a combination of musical
practice, in which event occurrences on metrically strong pulses
are more frequent than on weak ones, and because a balanced
tree representation of the structures is more information-efficient
as a representation than other kinds of representation. Thus, the
properties of the data to which IDyOT is exposed conspire with
its information-based criteria to provide a theoretical account
for the development of meter in humans. Any rhythm that

IDyOT encounters is processed in context of this background
model. The figure illustrates how the temporal expectations of
the different metrical levels fit together to produce weaker and
stronger temporal expectations at different stages in the meter,
with the perceived effect shown in the Metrical Structure and
Combined effect strength illustrations.

The IDyOT generators make predictions of what will be
perceived next, expressed as distributions over the relevant
alphabet. Each generator also makes a prediction of when the
relevant symbol will appear. Because more predictors from
different levels predict (what would musicologically be) strong
beats, the prediction at these points is correspondingly stronger,
and, in terms of qualia, this affords the experience of metrical,
hierarchical rhythm.

Section 3.7.2 outlines how the conceptual space of meter and
rhythm proposed by Forth (2012) affords generalization away
from the details of particular performances, to corresponding
patterns of entrainment, and allows the analysis of variation
in terms of its geometrical properties. Once such a space is
established, new time intervals can be represented within it, and
thence abstraction away from time interval to tempo becomes a
straightforward projection operation on the space, rather than a
matter of timing from the raw data alone, whichwould be difficult
to handle without the prior knowledge encoded in the metrical
model.
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Importantly, the mechanism is required for effective linguistic
communication with multiple individuals, who may have
variation in speed or in regularity in their own speech, and who
will certainly vary in speech speed from one to another; and for
combining expectations driven by information at multiple levels,
to allow accurate anticipation of lexical timing and sentence or
turn-end timing simultaneously. Exactly the same hierarchical
process can apply in both modalities.

Thus, IDyOT affords a method by which sequences of time
periods may be derived from a base level of measured temporal
units, which allows the construction of the metrical space from
tabula rasa. Exposure to sufficient metrical data will cause
the construction of hierarchical representations of meter, the
hierarchies summing the durations of their subtended sequences,
summarizing the rhythms in the data, as illustrated in Figure 3.
The relationship between the basic unit, and the structures
composed upon it by chunking, may be expressed by locating a
rhythm as a point in the conceptual space defined in Section 3.7.
Because the perceptual tendency is to integrate all concurrent
rhythmic input, even when it is not obviously coherent, into
a percept of one single rhythm (as in polyrhythms) the entire
rhythmic structure that is audible at any point in time may
be represented as exactly one point—or, if it is sufficiently
uncoordinated as not to be perceptible as a rhythm, then as no
point at all. Thus, the entire IDyOT Global Workspace resonates
with the resultant temporal beat of its input, or descends
into confusion when multiple conflicting rhythmic inputs are
present.

The abstract, static representation afforded by the conceptual
space, however, does not account for the on-going, dynamic
percept of rhythmic beat: rather, it provides the parameters that
configure it. In IDyOT, the on-going experience is accounted
for, instead, by the predictive anticipation of the generators
that use the memory at any point in a perceptual sequence
to generate expectations. Consider a regular, Western rock
beat, as illustrated in Figure 3, as processed by an IDyOT
with extensive exposure to this kind of relatively foursquare
rhythm.

First, we discuss predictions at the metrical level. At this
level, the predictions of the part of the model representing
the current rhythm are mostly in line with those of the more
general metrical predictions, and therefore the expectations are
reinforce: evidence confirms the estimating of the basic unit,
and the predictions can be correspondingly more certain. This
corresponds with a human feeling the beat strongly. However,
there is one place in this rhythm where a specific musical effect
is noticeable, that does not accord with simple prediction: on
the third beat of the first measure, a strongly expected beat
is not present in the rhythm (marked with ⋆ in Figure 3).
Affectively, this loud rest (London, 1993) lies in strong contrast
to the second measure of the rhythm, where the expectation
is fulfilled. This rhythm, therefore, creates its musical effect
by subverting the metrical expectation of the listener, and
IDyOT is able to predict this effect: unexpected occurrences
draw attention, and thus the listener is kept interested in the
beat.

4.3. A hypothetical Mechanism Underlying
Entrainment
Entrainment in IDyOT is a direct consequence of attentional
dynamics. Following Nobre (2001), IDyOT embodies a
multifaceted view of attention, in which there is no “unitary
homuncular attention system” (Nobre, 2001, p. 1326). The
understanding of attention becomes distributed activation in
neural assemblies, not a single function of the brain.

The mechanism with which IDyOTmakes predictions of time
is the novel contribution of this paper. We consider temporal
predictions to be generated by the same kind of statistical process
that governs the prediction of other attributes, such as the
likelihood of particular musical pitches or phonemes of speech.
However, temporal predictions are integral to the behavior of
the cognitive system itself, in time. Temporal predictions are
hypothesized as drivers or regulators, coordinating, but also
influenced by, the generation of predictive distributions in
other domains, which collectively constitutes the generation of
expectations. The interaction between generated expectations and
sensory input leads to the construction of representations in
memory, which in turn conditions subsequent expectations.

Measuring time necessitates the ability to relate distinct
moments across time, and a mechanism by which the distance
between such markers can be determined. Although the actual
mechanism is the subject of much debate (for an overview see
Hass andDurstewitz, 2014), we assume a neuronal representation
of the passing of time to be available in the brain. We assume a
functional means by which moments in time can be related with
respect to this underlying clock, and that the neural encoding
forms the basis for the estimation of time intervals, which may be
related to activation in brain areas such as the pre-supplementary
motor area and frontal operculum (Coull, 2004).

Hypothesizing an intervallic representation of time
underlying the cognitive processing of temporal information
may appear obvious. However, considering the question of
why and how this may be the case illustrates and supports
our wider position regarding the importance of prediction
and efficiency of representation in perception and cognition.
Analogous to the derivation of intervallic representations of
pitch from absolute representations of pitch, an intervallic
representation of time is more compact in terms of both alphabet
size and resulting statistical model than a monotonic time-line.
Furthermore, intervallic representations are invariant under
translation, directly affording comparison, forming the basis for
the identification of higher-level structure. We conjecture that
the same mechanisms of chunking and representation learning,
previously described as the core mechanisms underlying the
processing of symbol sequences within the IDyOT cognitive
architecture are directly applicable to the modeling of time,
and in turn, underlie the real-time temporal dynamics of the
cognitive system.

Multiple independent IDyOT generators continuously predict
sensory input, at each level of the metrical hierarchy induced by
the chunking process. There must be a sufficient number, making
predictions at sufficient frequency, to be useful to the organism in
any given situation, subject to the constraint of available cognitive
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resources. In the auditory domain, we take the lower bound of
20 ms (the approximate minimum IOI at which listeners can
reliably discern the correct ordering of two successive onsets:
Hirsh, 1959), to determine the highest frequency at which the
architecture must run—but note that this could result from
generators running at this frequency, or from sufficiently many
generators running more slowly, but coordinated to support this
temporal resolution.

IDyOT generators exhibit weakly coupled behavior, because
they infer their timings from the single hierarchical memory;
however, no direct coupling mechanism is assumed between
individual generators. Following the global workspace theory, we
hypothesize that coupling behavior emerges as the phenomenal
experience of meter via the role played in the architecture by
the global workspace itself, through which all communication
between generators is mediated.

It is parsimonious to argue that temporal expectations, in
whatever modality, are generated in accordance with general
predictive principles, which are sensitive to the statistical
regularities, or invariances, of sensory input. The finite resources
of cognition act as a global constraint on temporal structure,
which in the limit tend toward maximizing efficiency. Therefore,
we argue that the same kind of predictive temporal dynamics
exists in both music and language, following the temporal
structure of intentional and communicative behavior. In both
cases, time is used to optimize attention and maximize
communicative potential. In both cases the features of the stimuli
condition temporal prediction, which in turn drive the prediction
of these features in time.

Thus, conceptual space representations are learned because
they are efficient, and they are constrained by embodiment, and
therefore take a common form across a species, but are variable
across culture. Thence, we hypothesize that the mechanism
underlying entrainment is a process of modeling observable
patterns, which may (in a natural organism) be associated with
the cause of the patterns, and thus given meaning.

The specificmechanism proposed is an extension of the event-
by-event prediction used in extant statistical models of music and
language. As each event is detected, the next one is predicted,
the prediction being expressed as a distribution over the symbols
of the dimension being predicted. In IDyOT, differently, this
distribution changes with time, time being substantially more
granular than the inter-event interval. It can be calculated as
follows. Instead of merely determining the observed likelihood of
each of the possible symbols in context, IDyOT treats each piece
of evidence differently, counting not only the symbols, but also
the expected time of occurrence. The result may be viewed as an
overlay of distributions in time, one for each symbol, with the
overall distribution across the alphabet at any point calculated
by looking up the value of each symbol at that point. This is
illustrated in Figure 4; it affords one of the means of testing the
IDyOT model, laid out in the next section.

To summarize: in IDyOT, the experience of pulse, defined
by Fitch (2013) as a primary cognitive construct, emerges as
an epiphenomenon of our more general notion of entrainment:
it results from the superposition of multiple, regular strong
expectations. Importantly, this theory explains how pulse can be

imagined, rather than being a response elicited by actual sound,
and how the intrinsic experience of pulse can continue beyond
an audio stimulus. IDyOT’s mechanism also accounts for loud
rests (see Figure 3) and other effects such as the jolt experienced
by listeners enculturated into simple Western rhythms when
presented with simple non-isochronous time signatures such
as 7

8 . Perhaps most important, it explains how untrained
children from middle Eastern cultures can clap easily along
to rhythms that advanced Western musicians sometimes find
challenging: because the rhythms are learned, and the learned
model affords the entrainment, not some simple oscillatory
mechanism.

Thus, entrainment in IDyOT is a more general concept: it
emerges epiphenomenally from hierarchical time prediction over
sequential structures. The strength of predictions is determined
by memorized hierarchical information, leading to the multiple
different strengths of expectation required to explain the
experienced complexity of rhythm in both music and language,
from simple pulse up to the extreme rhythmic complexity found
in Arabic, Indian and African musics, and the complexity of
rhythm in language from everyday argot to the most carefully
performed poetry or rap.

5. METHODOLOGY: STUDYING
EVOLUTION THROUGH COMPUTATIONAL
SIMULATION

A perennial problem for evolutionary accounts of biological
development is that of distinguishing them from Just-So Stories
(Kipling, 1993), because they are untestable. Here, we propose
a methodology in which computational models of cognitive
process afford a means of testing hypotheses about evolutionary
development. While it is clear that in silico simulation is not the
same as running in vivo experiments over evolutionary time, it
can help to supply evidence for argument, if it is done rigorously.

To see this, one must understand that the computational
model in question is not merely a predictor from data. That is,
it is not an attempt to neutrally machine-learn structure in data
and classify on that basis, or to search for arbitrary correlations.
Rather, it is in its own right an overarching theory about the
functional process of mind, which may be decomposed into
several related aspects, one of which (timing) is the current topic.
Different aspects of the theory are testable in different ways, and
only though a comprehensive programme of experimentation—
first concentrating on individual aspects in isolation, then in
combination—can a full understanding of the wider theory be
established. From the current perspective, then, IDyOT is a
theory; the aspect under scrutiny is its timing mechanism, and
this drives our current hypothesis formation.

Given adequate evidence that themodel is correct with respect

to current biology, the evolutionary affordance of the approach

becomes available. Once the model has been shown to be an

acceptable predictor of empirical observations of the behaviors

it claims to capture, its parameters may be changed so as to
simulate the effect of changes known to have occurred in the
relevant species over evolutionary time: e.g., size of organism
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FIGURE 4 | The process of generating IDyOT dynamic distributions over an imaginary alphabet of three symbols, α, β, and γ . The left side of the figure

shows the time distribution for each symbol as generated from observed experience. These distributions may be notionally superposed, giving the bottom right

diagram—however, note that this is for the purposes of illustration only: it is not intended to represent a combined distribution of any kind. Instead, given the

superposition of temporal distributions, instantaneous ones may be generated, cutting “across” the temporal ones, the examples shown here being at t = 1, 2,3. The

resulting model is similar to a Markov renewal process (Ross, 1992), but extends the idea to hierarchical structure.

and/or nervous system, availability of food, or other intrinsic or
extrinsic factors.

To be clear: we do not claim that thismethodology can directly

simulate evolution in all its complexity, but we do claim that it

can supply useful answers to carefully posed questions that have a
bearing on the evolution of the aspects of present-day organisms
that the model is shown to simulate.

6. TESTABLE HYPOTHESES

The IDyOT model affords more than one opportunity for
exploration of human rhythmic behavior in language and
music, and its evolution. First, the model must predict human
behavior as currently observed, in both modalities. Because
IDyOT is multidimensional, it is also possible in principle
to study the effects of combining music with language,
for example, in lyrics. Second, the model should be used
to generate behavioral predictions, from which surprising
examples can be extracted (Honing, 2006). These can then
be tested against human behavior, further developing the
model and adding to knowledge of that behavior. Thirdly,
and more important in context of the current paper,
parametric constraints may be placed on the model to explore
hypothetical evolutionary pressures and help understand
their effects. (Of course, this is only a valid approach if
the model is demonstrated to be a good model of current
humans.)

6.1. Metheds to Validate IDyOT As a Model
of Current Cognition
There is a variety of empirical tests for music and language
which may serve as validation of the IDyOT approach. For
example, an IDyOTwith greater hierarchical depth of processing,
or more training examples, may be used to predict listeners with
differing degrees of expertise or development, respectively; one
hypothesis, for example, would be that there is a cutoff in terms
of hierarchical memory depth beyond which language will be
dysfunctional. In music, an IDyOT exposed to a large corpus
may process musical structure at a higher level than an IDyOT
exposed to a small corpus, in the same way that expert listeners
tend to perceivemusic in terms of more semiotic structure; in this
case, IDyOT’s behavior could be compared with existing results
on human behavior. In addition to modeling listeners with more
or lessmusical training, IDyOTmay be used tomodel themusical
perception and expectations of listeners with different cultural
backgrounds. Further, IDyOT may be used to model subjective
metricization, to test whether an encultured IDyOT exhibits the
same subjective metricization behavior as similarly encultured
humans.

In contrast to specifically modeling listeners with divergent
expectations (afforded from different cultural backgrounds or
degrees of musical expertise), IDyOT may be used to simulate
interaction between “average” listeners, or those of a comparable
hypothetical listening background. Exposing trained IDyOTs to
conversational dialogue should afford predictions of the timings
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associated with observed turn-taking and of human judgments
in end-of-turn prediction experiments. Similarly, it should be
able to generate expressive timing for synthesized speech that
correlates with human affective response to timing deviations.

In similar vein, timing may be used to disambiguate language
incrementally, as follows. Consider the following discourse
fragments1:

1. There was a bank at the corner.
/DE: wAz @ baNk @t D@ "kO:n@/

2. There was a bang, catching my attention.
/DE: wAz @ baN "katSIN m2I @"tEnS@n/

In fragment 1, the onset of the final /k/ phoneme of “bank”
will appear somewhat earlier than the initial /k/ of “catching”
in fragment 2, and thus the predicted meaning of the two
sentences may changed at this very low level, as in the very
eagerly predictive Cohort Theory (Marslen-Wilson, 1984) and
its descendents. IDyOT theory predicts this and models the
effect of the change in time explicitly, as illustrated in Figure 4.
Note, however, that, on balance, semantic implication is usually
somewhat stronger in disambiguating, as discussed by Wiggins
and Forth (2015).

In the domain of music, IDyOT may be run as a
participant in a tapping synchronization study, with the
hypothesis that human-human pairings are indistinguishable
from human-computer or computer-computer pairings. This
sort of experiment would not only confirm the accuracy of the
underlying mechanisms of IDyOT, but demonstrate the validity
of the model when scaled up to behavioral interaction. More
generally, we would hope that other known effects such as the
scaling of timing errors proportionally to duration magnitude
would be an emergent property of IDyOT’s processing of sensory
input, or that IDyOT can model how temporal predictions are
modulated by non-temporal factors such that surprise, attention,
high-level expectation from top-down knowledge.

In addition to modeling production and synchronization,
as in a tapping study, IDyOT may be used to simulate
human perceptual characteristics, such as the perception of
similarity. Hypotheses could examine the formation of the
model’s geometrical space and probabilistic scaling of dimensions
by testing whether the high level patterns captured by IDyOT are
reflective of schematic perception of rhythmic variations, or of
generalization and classification of linguistic information.

Another avenue of research with regard to language would
be to test anomalies in perception and/or in the signal itself.
And because IDyOT theory proposes that attention is regulated
by information contained within the signal, its predictions
can be experimentally validated with methods such as EEG
(e.g., ERP Mismatched Negativity—MMN—analyses) or eye-
tracking measurements, as these techniques capture the real-time
dynamics of information processing. In one such experiment,
IDyOT should be able to reliably detect a deviant item within
a repetitive sequence, and therefore should accurately predict
MMN response in oddball paradigms (Näätänen et al., 2007), for

1This example is oversimplified from a phonologist’s perspective, because the /aN/

in “bank” and “bang,” would in reality change subtly to reflect what is coming next,

but it serves to make the point here.

example. Rather than predicting neural response to anomalies,
one may also predict human cognition at the behavioral level, by
exposing a trained IDyOT to garden-path sentences, as discussed
previously, or to semantically equivalent sentences which vary
in hierarchical periodic temporal structure. In this later case,
one would test whether IDyOT produces temporal responses
comparable to humans (e.g., who make different end-of-sentence
predictions). And finally, rather than testing ambiguous or
unexpected sentence endings, one may also expose a trained
IDyOT to nonsense words, to see whether the model, like
humans, creates perceptual chunks, perceptually imposing more
regularity in time than exists in the signal.

In the music information retrieval literature (see www.ismir.
net), there is significant interest in so-called “beat tracking”—
the automated detection of beat in (mostly popular) music,
for the purpose of finding similar music for listeners. This
not unsuccessful literature (e.g., Dixon, 2001, 2007; Davies
and Plumbley, 2007) affords a rich vein of models against
which to compare IDyOT’s entrainment mechanism. Similarly,
psychological (Povel and Essens, 1985) and neuroscientific (Patel
and Iversen, 2014) comparators exist.

6.2. Predicting Behavior from IDyOT
Following Honing (2006), once a model has been validated, the
researcher should push the model toward the extremes of its
parameters, to discover unexpected predictions about human
behavior. This is a valuable step in testing and exploring a model’s
performance, because surprising predictions (1) may inform
us about hitherto unknown (or not well understood) human
cognitive mechanisms, and (2) will further validate themodel in a
broader range of behavioral contexts, by pushing the boundaries
of what is known, not simply modeling expected behavior.

6.3. Correspondence with Neural Function
Our methodology is to model cognitive function abstracted
from its substrate. However, it is useful to consider cognitive
predictions in context of their hypothetical neurophysiological
implementation, even though they are separated from it.

The function of IDyOT, however abstract, entails memory

representations that increase in size with time. These

representations, though not literal recordings of sensory

experience, are very high-dimensional, because they connect

all aspects of all features of sensory input together, where

correlated. Unless one admits mysticism or quantum theory

at the physical level of the brain (which we do not), this very

dense interconnectedness entails the availability of brain volume

which is strongly supralinear with respect to time, because

every neural assembly (Hebb, 1949) has to be connected to
every other relevant neural assembly, across modalities, between
senses, and so on. This, we claim, is a necessary requirement
of the established ability for veridical memory: we could not
remember detail of a sonata or soliloquy unless it were so at
some level of abstraction (notes/chords and words, respectively).
Various antidotes to this effect may be proposed. For example:
the low level detail of the memory may be discarded in favor
of more abstract representations; or the layering of structures
may be restricted to a given number of layers; or the connections
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between correlated sensory features may be limited; and so on.
This affords a rich plethora of detailed hypotheses that may be
tested in relation to comparative brain size of extant species
with various cognitive capacities. This, in its own right, may
be expected to elucidate the quality of the model in respect
to these capacities; subsequently, in careful comparison with
similar extinct species, it may be possible to chart a path relating
increase in brain size with the development of successively more
advanced cognitive capacities.

For example, it is known that dogs can perceive, remember,
and associate meaning with words (that is, sequences of
phonemes). But there is no evidence that they can compose
words into meaningful phrase interpretations; indeed, quite the
contrary. Our model would produce this effect when limited to
only a few layers of chunking above the audio: sequences of
phonemes, such as “walkies” would be memorable, but longer
composed phrases and sentences would not. On the other hand,
our theory affords much deeper construction when more layers
are allowed (Wiggins and Forth, 2015).

Given this evolutionary account, one can formulate
experiments based on IDyOT’s ability to learn sequential
structures (such as language or music) in which dependent
variables relate to cortex volume: for example, the depth of
layering can be limited, or the alphabets of the various layers
can be limited, or both. These restrictions would be expected to
limit the ability of the system to learn, and thence to predict.
This approach, in particular, allows us to distinguish IDyOT
from models whose parameters (e.g., node number in neural
networks) are less specifically related to the function of the
theory.

6.4. Evolving IDyOTs
From a modeling perspective, evolution may be thought of as a
long-term parameter search within the IDyOT architecture and
processing framework. When multiple IDyOTs exist in a genetic
system, evolving freely, some will discover parameterization
that allows for more efficient, evolutionarily adaptive behavior
than others. Studies could be constructed such that IDyOTs
with different temporal-predictive capacities will compete to
survive, while the parameters of well-synced models are passed
on to future generations by simulated breeding. The algorithmic
parameters and probabilistic weightings underlying predictive
processing may be randomly varied across agents to see which
variations yield the most adaptive IDyOTs. Then, again, those
whose predictions facilitate accurate communication or behavior

may pass their algorithmic idiosyncrasies on to their IDyOT
children.

In particular, parameters such as depth of hierarchy and
retention of detail in symbol creation can be varied, and
their effect on the predictions of the system studied. The
most interesting possibility here is modeling the evolution of
the neocortex: in the style of Bown and Wiggins (2005), an
evolutionary computation system may be set up that allows
simulation of not only cognitive function, but also the behavior
of populations. Thus, evolution may be simulated quite literally
in silico, albeit at a functional level, and the relationship between
biological affordances and effects studied in ways that are not
accessible in vivo.

7. SUMMARY

In this paper, we have presented a novel model of timing in
a predictive cognitive architecture. We have described in some
detail how the temporal predictions allow efficient processing
of ambiguous and/or noisy perceptual signals, and we have
related the mechanisms to both linguistic and musical rhythm.
Finally, we have proposed methods by which the approach will
be evaluated, which constitutes the future work of the IDyOT
project.
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