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Most research into the neural mechanisms of humor has not explicitly focused on the

association between emotion and humor on the brain white matter networks mediating

this connection. However, this connection is especially salient in gelotophobia (the fear

of being laughed at), which is regarded as the presentation of humorlessness, and two

related traits, gelotophilia (the enjoyment of being laughed at) and katagelasticism (the

enjoyment of laughing at others). Here, we explored whether the topological properties

of white matter networks can account for the individual differences in the laughter-related

traits of 31 healthy adults. We observed a significant negative correlation between

gelotophobia scores and the clustering coefficient, local efficiency and global efficiency,

but a positive association between gelotophobia scores and path length in the brain’s

white matter network. Moreover, the current study revealed that with increasing individual

fear of being laughed at, the linking efficiencies in superior frontal gyrus, anterior cingulate

cortex, parahippocampal gyrus, and middle temporal gyrus decreased. However, there

were no significant correlations between either gelotophilia or katagelasticism scores or

the topological properties of the brain white matter network. These findings suggest

that the fear of being laughed at is directly related to the level of local and global

information processing of the brain network, which might provide new insights into the

neural mechanisms of the humor information processing.

Keywords: gelotophobia, diffusion tensor imaging, graph theory, brain network, connectome

INTRODUCTION

Laughter is an innate human emotional expression (Ruch and Ekman, 2001). Different types
of laughter have different social consequences: while warm smiles facilitate social interactions,
scornful laughing or ridiculing often leaves the target of the laughter having anxiety and pain (Chen
et al., 2011). Different people also experience laughter differently: while some people enjoymocking
others, a few enjoy being laughed at. Long-term clinical observations suggest that early and repeated
experiences of being mocked and laughed at in childhood and youth are causally associated with
the fear of being laughed at, a symptom called gelotophobia (Titze, 2009). Continued experience
of gelotophobia may lead to an individual’s lack of liveliness, spontaneity, and joy (Titze, 2009).
Moreover, individuals with a high gelotophobia score have difficulty perceiving and interpreting
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their own emotions (Papousek et al., 2009; Weiss et al., 2012);
they do not discriminate between playful teasing and nature
teasing (Platt, 2008). In addition, individuals with gelotophobia
reported experiencing shame and fear more frequently, feeling
happy more seldom during a typical week (Platt and Ruch,
2009). Hence, they would less likely enjoy their positive emotions
while having high degrees of social anxiety, social phobia, and
shame-bound anxiety. EEG research indicated loose functional
coupling of prefrontal and posterior cortex in individuals with
gelotophobia when expressing anger and aggression (Papousek
et al., 2016).

In terms of the personality, gelotophobia positively correlated
with introversion and neuroticism and negatively correlated with
agreeableness and openness (Ruch et al., 2008; Chen et al., 2011,
2013). Individual with high gelotophobia would be introvert and
emotionally instable, while not open to new experiences and be
friendly with people.

Ruch et al. (2009) and Ruch and Proyer (2009) examined
the psychometric properties of gelotophobia, and identified two
related characters and their correlations with gelotophobia:
gelotophilia (the enjoyment of being laughed at) and
katagelasticism (the enjoyment of laughing at others). So
far, research has shown that gelotophobia negatively correlated
with gelotophilia but positively associated with katagelasticism
(Ruch and Proyer, 2009; Chen et al., 2011).

Previous studies of humor processing have identified the
cognitive components of humor processing and their associated
neural mechanisms (Ozawa et al., 2000; Goel and Dolan, 2001).
In two recent fMRI studies, Chan et al. (2012, 2013) divided
the cognitive processes of humor comprehension into three
stages: the incongruity stage, which engages the right middle
temporal gyrus (MTG) and right medial frontal gyrus (MFG);
the solution stage, which is anchored in the left superior frontal
gyrus (SFG) and the left inferior parietal lobule (IPL); and the
elaboration stage, which includes the left ventromedial prefrontal
cortex (vmPFC), the bilateral amygdala, and the bilateral
parahippocampal gyri. To date, however, very few studies
have specifically examined the emotional functions of humor
processing, or applied this knowledge of laughter-related brain
networks to investigate the underlying neural mechanisms of
laughter-related behavioral traits (i.e., gelotophobia, gelotophilia,
and katagelasticism). This is surprising given the observed
relationship between gelotophobia and humor processing.

The human brain is a complex network, both structurally
and functionally, and consists of densely connected neural units
(Sporns et al., 2005; Sporns, 2011). Advances in diffusion imaging
techniques have made it possible to clearly delineate white
matter (WM) tracts, which allows the modeling of the human
brain as a complex network with graph-theoretical analytic tools
(Hagmann et al., 2008; Bullmore and Sporns, 2009; Gong et al.,
2009). Graph theoretical approaches have been applied effectively
to characterize the topological architectures of whole-brain WM
networks (Rubinov and Sporns, 2010). Using such approaches,
recent studies have made significant progresses in describing
the relationship between brain topological characteristics and
cognitive function (Li et al., 2009; Wen et al., 2011). Researchers
have also begun investigating the relationship between WM

structure and individual traits. Specifically, the technique of
diffusion tensor imaging (DTI) has enabled researchers to
correlate WM structure with aspects of personality, creativity,
and other psychological traits (Takeuchi et al., 2010, 2012;
Xu and Potenza, 2012). However, no work in this direction
that has examined structural or functional brain properties in
terms of network models and their potential relationship to
laughter-related performances (i.e., gelotophobia, gelotophilia,
and katagelasticism). In this study, we attempt to fill this gap
in the literature by using DTI and graph-theoretical network
analyses.

The present study first attempt to investigate the connection
between fear to be laughed at and network topological properties
within few direct references. Based on the close relationship
between fear to be laughed at and personality (Ruch et al.,
2008), we refer to the openness personality positively connect to
integrated efficiency of default mode network (Beaty et al., 2016)
which includes the dorsolateral and ventral medial prefrontal
cortex, posterior cingulate cortex, inferior parietal lobule, lateral
temporal cortex, hippocampal formation (Buckner et al., 2008); it
means when individual was more opened to new things, and the
regions of default mode network worked better, and vice versa.

To address these issues, the present studymakes a first attempt
to explore the correlations between topological properties
of the structural brain network underlying laughter-related
traits, including gelotophobia, gelotophilia, and katagelasticism.
Previous research has indicated significant relations among
the laughter-related traits and personality traits (Chen et al.,
2011); gelotophobia positively correlated to neuroticism but
was negatively associated to extraversion, agreeableness and
openness whereas for gelotophilia, it was positive correlated to
extraversion and openness. With regard to the negative relation
between katagelasticism and agreeableness. In additions, past
research on the relation between five-factor personality (Xu and
Potenza, 2012) and white matter integrity also pointed out that,
fractional anisotropy was negatively related to neuroticism but
positively related to openness and agreeableness. In particular,
according to the positive relationship between openness and
global efficiency of default mode network (Beaty et al., 2016);
we hypothesized that the WM network efficiency would
differ significantly between individuals with distinct profiles of
gelotophobia, gelotophilia, and katagelasticism characteristics.
Given the different characteristics of laughter toward oneself and
others, we further expected that the network efficiency would
decrease with the fear of being laughed at and the enjoyment
of laughing at others, but increase with the enjoyment of being
laughed at.

METHODS

Subjects
Thirty-one neurologically healthy volunteers (18 females;
24.74± 2.48 years old; range, 20–30 years old) were included
in this study (see Table 1). All participants were recruited from
National Taiwan Normal University and had no history of
neurological or psychiatric disorders. Participants were asked to
refrain from ingesting caffeine and alcohol for the 24 h preceding
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TABLE 1 | Demographic of subjects and PhoPhiKat scores.

Category Data Range

Gender (Male/Female) 13/18 –

Age, years 24.74 ± 2.48 21–30

Education, years 16.06 ± 0.96 14–18

Gelotophobia 2.23 ± 0.42 1.33–3.13

Gelotophilia 2.68 ± 0.42 1.53–3.67

Katagelasticism 2.00 ± 0.39 1.27–2.87

the experiment. The study was approved by the Research Ethics
Committee of National Taiwan University Hospital. All of the
subjects gave their written informed consent to participate before
the study.

PhoPhiKat Score
Before the experiment, participants completed the Chinese
version of the PhoPhiKat-45 (gelotophobia, gelotophilia, and
katagelasticism; Chen et al., 2011), a questionnaire translated
from the German version (Ruch and Proyer, 2009) that has been
successfully used to assess gelotophobia (e.g., “When strangers
laugh in my presence I often relate it to me personally”),
gelotophilia (e.g., “When I am with other people, I enjoy making
jokes at my own expense to make the others laugh.”), and
katagelasticism (e.g., I enjoy exposing others and I am happy
when they get laughed at). The questionnaire had 45 items, with
15 items devoted to each category of gelotophobia, gelotophilia,
and katagelasticism. A 4-point scale was used (1 = “strongly
disagree”; 2 = “disagree”; 3 = “agree”; 4 = “strongly agree”)
for each item, and the larger the accumulated points under
a category, the higher the participant has the corresponding
characteristic. The Cronbach α consistency coefficient was 0.85,
indicating a high degree of internal consistency. Further, the
mild correlations with criterions (i.e., humor-style, aggressive
behavior, personality, and self-esteem) were found (rs > 0.50),
suggesting a moderate validity of the measurement (Chen et al.,
2011).

MRI Acquisition
Images were acquired with a 3T scanner (Siemens Trio, Siemens
Medical Solutions USA) at National Taiwan University Hospital,
Taiwan. DTI were acquired by using a single-shot echo planar
imaging-based sequence with sensitivity encoding and the
following parameters: a parallel imaging factor of 2.0; coverage
of the whole brain; 2.5-mm slice thickness with no inter-slice
gap; 60 axial slices; TR = 11,000 ms; TE = 98 ms; 30 optimal
non-linear diffusion weighting directions with b = 1000 s/mm2

and five additional images without diffusion weighting (i.e., b
= 0 s/mm2); average, 3; acquisition matrix, 96 × 96; field of
view (FOV), 256× 248mm2. A T1-weightedMPRAGE sequence
was used to acquire high-resolution anatomical images of the
entire brain with the following parameters: TR = 1560 ms, TE
= 3.68 ms, flip angle = 15◦, field of view = 256 × 256 mm2,
and matrix size = 256 × 256; 192 sagittal slices; 1 × 1 × 1 mm3

resolution.

Data Preprocessing
The preprocessing pipeline for each subject is composed of the
following steps: brain extraction, correction for eddy-current
distortion and simple head-motion, correction for b-matrix
(Leemans and Jones, 2009), and computation for diffusion tensor
and fractional anisotropy. All of the image preprocessing was
implemented by a pipeline tool for diffusion MRI (PANDA;
Cui et al., 2013) that has utilized the FMRIB Software Library
(FSL; Smith et al., 2004), Pipeline System for Octave and
Matlab (PSOM; Bellec et al., 2012), Diffusion Toolkit (Wang
et al., 2007) andMRIcron (http://www.mccauslandcenter.sc.edu/
mricro/mricron/).

Construction of Binary White Matter
Connectivity Networks
Figure 1 illustrates the flowchart of WM brain network
construction. The first step is to determine two basic network
elements, nodes and edges, as defined below.

Network Node Definition
In this study, the automated anatomical labeling (AAL, Tzourio-
Mazoyer et al., 2002) atlas was used to segment the cerebral
cortex of each subject into 90 regions (45 for each hemisphere)
without the cerebellum. Each region represents a node of the
DTI-based WM network. The detailed parceling processes were
implemented according to the procedure proposed by Gong and
colleagues (Gong et al., 2009). Briefly, the T1-weighted image was
first non-linearly normalized to theMNI space by FMRIB’s Linear
Image Registration Tool (FNIRT, FSL, http://www.fmrib.ox.ac.
uk/fsl/). Next, the fractional anisotropy image of each subject was
co-registered to the individual T1-weighted image. Finally, the
inverse transformations from the previous two steps were applied
to the atlas, resulting in native-space GM parcellations for each
subject.

Network Edge Definition
In this study, the deterministic fiber assignment continuous
tracking (FACT) algorithm was applied to reconstruct whole-
brain WM tracts (Mori et al., 1999) by the Diffusion toolkit
(http://trackvis.org), which is embedded in PANDA (Cui et al.,
2013). Specifically, the tracking procedure terminated if the turn
angle of the fiber was greater than 45◦ or the fiber entered a
voxel with the fractional anisotropy less than 0.2. Two region
pairs, A and B, were considered structurally connected (i.e.,
having an edge) if there existed at least three tracts with terminal
points in both regions A and B (Bai et al., 2012). Combining the
above definitions of the nodes and edges, we attained for each
subject a 90 × 90 binary network whose elements indicated the
existence/absence of an edge between any pair-wise regions.

High-Resolution Brain Network
Previous research showed that brain graphmetrics are dependent
on the resolution of the network (i.e., network size) (van den
Heuvel et al., 2008; Wang et al., 2009; Zalesky et al., 2010;
Bai et al., 2012). To explore the validity of our results, we
further subdivided the AAL template into 1024 ROIs with equal
size [i.e., high-resolution (H-1024)] (Zalesky et al., 2010; Bai
et al., 2012) and constructed the brain networks accordingly.
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FIGURE 1 | Flow chart of the DTI-based WM brain network construction. (A) and (C) are the subject-specific AAL-based parcellation and H-1024 parcellation

in the diffusion native space, respectively; (B) shows the white matter fibers reconstructed by deterministic tractography; (D) and (E) are the AAL-based and H-1024

binary network matrix, respectively; (F) and (G) are the 3D representation of the anatomical brain network, which was shown using the in-house BrainNet Viewer

package (http://www.nitrc.org/projects/bnv/; Xia et al., 2013).

Similar to the low-resolution AAL (L-AAL) networks, the H-
1024 networks were examined with respect to the relationships
between PhoPhiKat scores and network metrics.

Network Analysis
Graph theoretical measures were used to characterize the
topological architecture of the WM brain networks derived
above. In the current study, both global network metrics and
nodal metrics were computed. The global network metrics
were computed for the mean clustering coefficient (Cp), the
characteristic path length (Lp), the normalized Cp (γ ), the
normalized Lp (λ), small-worldness (ζ ), global efficiency (Eglob),
and local efficiency (Eloc). The nodal network metric was
computed only for the nodal efficiency (Enodal). These graph-
theoretical network metrics were calculated by using the
GRETNA package (http://www.nitrc.org/projects/gretna/).

Clustering Coefficient Cp
The clustering coefficient of a network characterizes the
segregation ability of the network by calculating the global mean
of the clustering coefficients over all nodes, where the clustering
coefficient of a node is defined as the ratio of the number of
existing connections among the node’s neighbors over all of their
possible connections (Bullmore and Sporns, 2009).

Characteristic Path Length Lp
The characteristic path length is used to characterize the optimal
routing for information transmission. The characteristic path

length of a graph refers to the averaged shortest path lengths
across all nodes, where the shortest path length of a node i is
computed as the average number of distinct edges along the
shortest path between nodal i and all other nodes in the networks.
The characteristic path length of a network is computed as
follows:

Lp =
1

N(N − 1)

∑

i∈G

∑

j∈G

1

Lij

where N is the number of nodes in the graph G, and Lij is the
shortest path length between nodes i and j.

Small-Worldness ζ

The concept of small-worldness in network science was originally
proposed by Watts and Strogatz (Watts and Strogatz, 1998).
Specifically, a network is considered a small-world network if it
has similar shortest path lengths but higher clustering coefficients
than degree-matched random networks. Typically, a small-world
network should meet the following criteria: ζ = γ/λ > 1, where
γ = Cpreal/Cprandom > 1, λ = Lpreal/Lprandom ≈1, where Cpreal

and Lpreal are clustering coefficient and characteristic path length,
respectively, of the real brain network, andCprandom and Lprandom

are the averaged values of the 100 matched random networks,
which are the same as the real network in the number of nodes,
edges, and degree distribution. The random rewiring procedure
depicted by Maslov and Sneppen (Maslov and Sneppen, 2002)
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was used here to produce the 100 matched random networks for
each subject.

Global Efficiency Eglob
Global efficiency is a global measure of the parallel information
transfer ability of the whole network. It is computed as
the average of the inverse of the “harmonic mean” of the
characteristic path length (Latora and Marchiori, 2001):

Eglob =
1

N(N − 1)

∑

i6=j∈G

1

Lij

where N is the number of nodes in the graph G, and Lij is the
shortest path length between nodes i and j.

Local Efficiency Eloc
Local efficiency quantifies the network’s ability to tolerate faults,
corresponding to the efficiency of the information flow between
the nearest neighbors of the node i (Latora and Marchiori, 2001).
The local efficiency of a network is computed as follows:

Eloc =
1

N

∑

i∈G

Eglob(Gi)

where Gi is the sub-graph composed of the nearest neighbors of
node i and the connections among them.

Nodal Efficiency Enodal
Nodal efficiency is a measure of the nodal capacity to
communicate with other nodes of the network. The nodal
efficiency for a given node (Enodal) was defined as the inverse of
the harmonic mean of the shortest path length between this node
and all other nodes in the network (Achard and Bullmore, 2007):

Enodal(i) =
1

N − 1

∑

i6=j∈G

1

Lij

where Lij is the characteristic path length between node i and
node j.

Statistical Analysis
To explore the relationship between the topological parameters
(Cp, Lp, ζ , Eloc, Eglob, and Enodal) of WM brain networks and
PhoPhiKat scores, general linear models (GLM) were applied
with age, gender and years of education as covariates. Specifically,
the GLM is as follows: Y = β0 + β1 × X + β2 × Age + β3 ×

Gender + β4 × Education, where Y is the topological parameter
and X the PhoPhiKat score. The correlation was determined by
examining the null hypothesis of β1 = 0. The threshold value for
establishing the significance of correlation was set at p < 0.05 for
the global metrics, p < 1/N (corrected for multiple comparisons)
for the nodal metrics of the AAL-based networks.

RESULTS

Small-World Properties of Brain Networks
The structural brain networks of all subjects showed a small-
world architecture. More specifically, when compared with a

matched random network, the WM networks had comparably
shortest path lengths but higher clustering coefficients (ζ =

3.54 ± 0.32), suggesting that the overall topological properties
were preserved regardless of the scores from the scales for
gelotophobia, gelotophilia, and katagelasticism.

PhoPhiKat Scores and Network Properties
The GLM analysis showed a significant negative association
between gelotophobia scores and the clustering coefficient
(r =−0.40, p = 0.037), local efficiency (r = −0.48, p = 0.01),
and global efficiency (r = −0.42, p = 0.027) after controlling
for age, gender, and years of education, and a significant
positive association with the characteristic path length (r =

0.41, p= 0.029, see Figure 2). However, there were no significant
correlations between gelotophilia or katagelasticism scores and
the topological properties of the WM network.

We further investigated the specific brain regions associated
with the tendency of an individual to fear being laughed at.
Figure 3 shows the 3D surface visualizations of the results
implemented using the Brain Net Viewer (www.nitrc.org/
projects/bnv; Xia et al., 2013). As can be seen, significant
correlations between gelotophobia scores and nodal efficiency
were found in the inferior occipital gyrus (r=−0.62, p< 0.0001).
Notably, we corrected for age, gender and years of education
when computing the correlation, and we used p < 0.05/90 to
correct for multiple comparisons.

High-Resolution Structural Brain Networks
In addition to the analyses of AAL-based networks, we further
analyzed the relationship between the high resolution-based H-
1024 network and the PhoPhiKat scores. Consistent with findings
from the AAL-based networks, there were no relationships
between gelotophilia or katagelasticism and brain network
properties, but there were significant negative associations
between gelotophobia scores and local efficiency (r=−0.36, one-
tailed p = 0.03) and global efficiency (r = −0.41, p = 0.028; see
Figure 4). As shown in Figure 5, significant correlation between
the nodal efficiency and gelotophobia score was found in right
cuneus (r = −0.70, p < 0.001, uncorrected), parahippocampal
gyrus (r = −0.67, p < 0.001, uncorrected), anterior cingulate
and paracingulate gyri (r = −0.61, p < 0.001, uncorrected), and
middle temporal gyrus (r = −0.50, p = 0.007, uncorrected).
Furthermore, a significant positive association was also found
between the characteristic path length and gelotophobia score
(r = 0.41, p = 0.032). The only difference between the high
resolution-based networks and the AAL-based networks seems
to be that gelotophobia score showed no correlation with the
clustering coefficient (r =−0.24, p= 0.214).

DISCUSSION

Gelotophobia refers to the experience of intense fear felt by
an individual when being laughed at (Titze, 1996, 1997).
Gelotophobia can cause significant problems in people’s
lives, leading them to be socially inept, cold, mean-spirited,
or depressed. However, the neural mechanisms underlying
gelotophobia are not well-understood, as there has been no
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FIGURE 2 | The correlation between gelotophobia score and global metrics derived from AAL-based WM network. (A) Clustering coefficient, (B) path

length, (C) local efficiency, and (D) global efficiency. For all plots, we used linear regression to remove the influence of age, gender and years of education from brain

network metrics.

FIGURE 3 | The spatial distribution of cortical region showing a significant association between nodal efficiency in the right inferior occipital gyrus

and gelotophobia score (p < 0.05/90).
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FIGURE 4 | The correlation between gelotophobia score and H-1024 WM network metrics. (A) Clustering coefficient, (B) path length, (C) local efficiency, and

(D) global efficiency; For all plots, we used linear regression to remove the influence of age, gender and years of education from brain network metrics.

research designed to address this question. The present study
is a first attempt to uncover the neuro-cognitive mechanisms
underlying gelotophobia and related laughter-related traits
from the perspective of brain networks. Specifically, we aim at
understanding how WM structure in the human brain subserves
human laughter-related processing, given the role of WM in
facilitating neural processing and communication across areas of
the cortex and between cortical and subcortical regions.

The main finding of this study is the existence of a strong
association between the topological metrics of the WM brain
network and gelotophobia scores at both the global and the
nodal level. For the global metrics, our results revealed a
significant negative association between gelotophobia scores and
the clustering coefficient, local efficiency and global efficiency;
for the nodal metric, we observed a strong positive association
between gelotophobia scores and the path length of the structural
brain networks. Given that both global and local efficiency
metrics significantly and negatively associated with gelotophobia
scores, we suggest that an individual’s fear of being laughed at
related to the level of local and global information processing of
the brain network. In other words, less efficiently connected brain
structures show a higher level of gelotophobia. Part of our finding
is also supported by a further analysis with High-resolution
structural brain networks. Present study is a first attempt for
discussing the connection between fear to be laughed at and

WM network topological properties. Individual with fear to be
laughed at had higher hostility and less stable emotion status, less
interest to new things (Ruch et al., 2008). Our results are similar
with the findings between openness personality and integrated
efficiency of default mode network. Although the AAL network
that we use is different from default mode network, but the
finding still supports a decrease global efficiency of WM network
among individual with gelotophobia which would not intend to
open to new experience.

In addition to the overall correlations between brain network
metrics and the gelotophobia score, our data also revealed that
the more an individual fears being laughed at, the lower the
connecting efficiencies the individual displays in right inferior
occipital gyrus (IOG). IOG is relevant to emotions recognition;
functional MRI result indicated a higher activation in right
IOG during the process of identifying an anger face (Fusar-Poli
et al., 2009). On the other hand, DTI results found a positive
correlation between the mean diffusion (MD) of inferior frontal
occipital fasciculus的mean diffusion (MD) and openness (Xu
and Potenza, 2012). In particular, individuals with fear to be
laughed at had less interest to trying something new (Chen et al.,
2011), it was consistent to the finding that IOG and fear to
be laughed at had negative connection. Although EEG research
result could not provide detail information of brain regions,
but it indicated the weakness of brain function for people with
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FIGURE 5 | The spatial distribution of cortical regions showing a significant association between nodal efficiency and gelotophobia score (p < 0.01,

uncorrected) in an H-1024 network. Note that three regions (the ACC, PHG, MTG) appeared in a bilateral manner and the CUN. R, right hemisphere; ACC, anterior

cingulate cortex; CUN, Cuneus; PHG, parahippocampal gyrus; MTG, middle temporal gyrus.

fear to be laughed at, which supports our finding, a negative
connection between nodal efficiency and trait of fear to be
laughed at. However, present study did not collect data about
personality of participants; we could not investigate moderate
effect of personality between fear to be laughed at and brain
network. It’s worthwhile for further study.

The present findings suggest that gelotophilia and
katagelasticism were not significantly correlated with nodal
efficiency of the WM network. It is possible that clearly
defined neural networks exist only for gelotophobia because
this condition was defined based upon rigorous long-term
observations among patients by Titze (2009) and was a clinical
syndrome concluded by qualitative analysis. In contrast,
gelotophilia and katagelasticism were developed as expanded
and ancillary concepts by theoretical generalizations about
gelotophobia. The correlations between gelotophobia and
mental traits are much stronger than the ones between
gelotophilia, katagelasticism and mental traits (Ruch and Proyer,
2009; Chen et al., 2011); thus, significant associations between
topological properties of the WM network and gelotophilia or
katagelasticism could not be found.

There remain two methodological issues that we should
consider for future follow-up research. First, we used the number
of fibers as the weighting factor in the construction of the
graphs, rather than other measures such as average fractional
anisotropy (FA), mean diffusivity (MD), or a combination of
such measures. FA and MD are measures of different aspects
of the fibers; e.g., FA is relevant to fiber “integrity (magnitude

of diffusion of water molecules in the brain)” whereas number
of fibers is relevant to fiber “quantity.” Whether analyses based
on FA, MD, and similar measures will provide similar brain
network patterns as we showed in this study needs further
investigation. Second, we built two spatial resolutions of the
WM network in the present study, L-AAL and H-1024, to
analyze the relationship between typological properties of the
networks and the PhoPhiKat laughter-processing scores. There
were some discrepancies in the regions that were correlated with
gelotophobia between the L-AAL and H-1024 WM networks.
Such discrepancies may be moderated by differences in the
graph properties under the subregions of some anatomical
structures. It revealed that constructing high-resolution WM
network can provide a useful way to support or validate L-AAL-
based WM network analyses. Therefore, graph analyses with
different spatial resolutions in the future should be conducted
with an aim to provide a more comprehensive picture of the
topological properties of brain networks in the clinically normal
and disordered populations.

CONCLUSION

The present study revealed significant correlations between
gelotophobia and the underlying organization of the cortical
anatomical network within the superior frontal gyrus, anterior
cingulate cortex, parahippocampal gyrus, and middle temporal
gyrus. Our study provides new insights into the structural
substrates that underlie the individual personality trait of
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fear of being laughed at. These findings reveal patterns and
efficiency of brain networks in gelotophobic individuals and at
the same time provide significant implications for evaluating
clinical populations with reference to altered connectivity in the
neuroanatomy of the relevant populations.

AUTHOR CONTRIBUTIONS

C-LW and SZ collected and analyzed the data and wrote the
initial draft of the manuscript. Y-CC assisted in literature review
and discussion. H-CC designed this study. YH, GG, and PL
monitored and supervised all aspects of the study. All authors
approved the final version of the paper.

ACKNOWLEDGMENTS

We wish to thank the National Science Council for funding
this project via the following grants: Neuropsychological Traits
of Mathematically and Scientifically Talented Student with and
without Asperger’s Syndrome and Training Effect of Sense of
Humor on Them in Taiwan (NSC100-2511-S-003-059-MY3).
The work was also supported by the Ministry of Education,
Taiwan, under the Aiming for the TopUniversity Plan at National
Taiwan Normal University. Finally, we would like to thank
the International Research Intensive Center of Excellence of
National Taiwan Normal University and the National Science
Council, Taiwan, R.O.C. for their support (NSC104-2911-I-
003-301).

REFERENCES

Achard, S., and Bullmore, E. (2007). Efficiency and cost of economical brain

functional networks. PLoS Comput Biol. 3:e17. doi: 10.1371/journal.pcbi.

0030017

Bai, F., Shu, N., Yuan, Y., Shi, Y., Yu, H., Wu, D., et al. (2012). Topologically

convergent and divergent structural connectivity patterns between patients

with remitted geriatric depression and amnestic mild cognitive impairment.

J. Neurosci. 32, 4307–4318. doi: 10.1523/JNEUROSCI.5061-11.2012

Beaty, R. E., Kaufman, S. B., Benedek, M., Jung, R. E., Kenett, Y. N., Jauk, E.,

et al. (2016). Personality and complex brain networks: the role of openness to

experience in default network efficiency. Hum. Brain Mapp. 37, 773–779. doi:

10.1002/hbm.23065

Bellec, P., Lavoie-Courchesne, S., Dickinson,. P., Lerch, J. P., Zijdenbos, A. P., and

Evans, A. C. (2012). The pipeline system for Octave and Matlab (PSOM): a

lightweight scripting framework and execution engine for scientific workflows.

Front. Neuroinform. 6:7. doi: 10.3389/fninf.2012.00007

Buckner, R. L., Andrews-Hanna, J. R., and Schacter, D. L. (2008). The brain’s default

network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci.

1124, 1–38. doi: 10.1196/annals.1440.011

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.

doi: 10.1038/nrn2575

Chan, Y., Chou, T., Chen, H., and Liang, K. (2012). Segregating humor

comprehension and elaboration process of verbal jokes: an fMRI study.

NeuroImage 61, 899–906. doi: 10.1016/j.neuroimage.2012.03.052

Chan, Y. C., Chou, T. L., Chen, H., Yeh, Y., Lavallee, J., Liang, K. C., et al. (2013).

Towards a neural circuit model of verbal humor processing: an fMRI study of

the neural substrates of incongruity detection and resolution. NeuroImage 66,

169–176. doi: 10.1016/j.neuroimage.2012.10.019

Chen, H., Chan, Y., Ruch, W., and Proyer, R. (2011). Evaluating the reliability and

validity of a traditional Chinese version of the PhoPhiKat-45. Psychol. Testing

58, 119–145.

Chen, H., Chan, Y., Ruch, W., and Proyer, R. (2013). “Laughing at others and

being laughed at in Taiwan and Switzerland: a cross-cultural perspective,” in

Humour in Chinese life and culture: Resistance and control in modern Times,

Vol. 2, eds J. M. Davis and J. Chey (Hong Kong: Hong Kong University Press),

215–229.

Cui, Z., Zhong, S., Xu, P., He, Y., and Gong, G. (2013). PANDA: a pipeline

toolbox for analyzing brain diffusion images. Front. Hum. Neurosci. 7:42. doi:

10.3389/fnhum.2013.00042

Fusar-Poli, P., Placentino, A., Carletti, F., Landi, P., Allen, P., Surguladze, S., et al.

(2009). Functional atlas of emotional faces processing: a voxel-based meta-

analysis of 105 functional magnetic resonance imaging studies. J. Psychiatry

Neurosci. 34, 418–432.

Goel, V., and Dolan, R. (2001). The functional anatomy of humor: segregating

cognitive and affective components. Nat. Neurosci. 4, 237–238. doi:

10.1038/85076

Gong, G., Rosa-Neto, P., Carbonell, F., Chen, Z., He, Y., and Evans, A.

C. (2009). Age and gender-related differences in the cortical anatomical

network. J. Neurosci. 29, 15684–15693. doi: 10.1523/JNEUROSCI.2308-

09.2009

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J.,

et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol.

6:e159. doi: 10.1371/journal.pbio.0060159

Latora, V., and Marchiori, M. (2001). Efficient behavior of small-world networks.

Phys Rev Lett. 87, 198701–198704. doi: 10.1103/PhysRevLett.87.198701

Leemans, A., and Jones, D. K. (2009). The B-matrix must be rotated when

correcting for subject motion in DTI data. Magn Reson Med. 61, 1336–1349.

doi: 10.1002/mrm.21890

Li, Y. H., Liu, Y., Qin, W., Li, K. C., Yu, C. S., and Jiang, T. Z. (2009). Brain

anatomical network and intelligence. PLoS Comput. Biol. 5:e1000395. doi:

10.1371/journal.pcbi.1000395

Maslov, S., and Sneppen, K. (2002). Specificity and stability in topology of protein

networks. Science 296, 910–913. doi: 10.1126/science.1065103

Mori, S., Crain, B. J., Chacko, V. P., and van Zijl, P. C. (1999). Three-dimensional

tracking of axonal projections in the brain by magnetic resonance imaging.

Ann. Neurol. 45, 265–269.

Ozawa, F., Matsuo, K., Kato, C., Nakai, T., Isoda, H., Takehara, Y., et al. (2000).

The effects of listening comprehension of various genres of literature on

response in the linguistic area: an fMRI study.NeuroReport 11, 1141–1143. doi:

10.1097/00001756-200004270-00001

Papousek, I., Ruch, W., Freudenthaler, H., Kogler, E., Lang, B., and Schulter,

G. (2009). Gelotophobia, emotion-related skills and responses to the affective

states of others. Pers. Indiv. Differ. 47, 58–63. doi: 10.1016/j.paid.2009.

01.047

Papousek, I., Schulter, G., Rominger, C., Fink, A., and Weiss, E. M. (2016).

The fear of other persons’ laughter: Poor neuronal protection against

social signals of anger and aggression. Psychiatry Res. 235, 61–68. doi:

10.1016/j.psychres.2015.11.049

Platt, T. (2008). Emotional responses to ridicule and teasing: should gelotophobes

react differently? Humor 21, 105–128. doi: 10.1515/HUMOR.2008.005

Platt, T., and Ruch, W. (2009). The emotions of gelotophobes: shameful, fearful

and joyless? Humor 22, 91–110. doi: 10.1515/humr.2009.005

Rubinov, M., and Sporns, O. (2010). Complex network measures of brain

connectivity: uses and interpretations. Neuroimage 52, 1059–1069. doi:

10.1016/j.neuroimage.2009.10.003

Ruch, W., Beermann, U., and Proyer, R. (2009). Investigating the humor of

gelotophobes: does feeling ridiculous equal being humorless? Humor 22,

111–143. doi: 10.1515/humr.2009.006

Ruch, W., and Ekman, P. (2001). “The expressive pattern of laughter,” in Emotion,

Qualia, and Consciousness, ed A. W. Kaszniak (Tokyo: World Scientific

Publisher), 426–433.

Ruch, W., and Proyer, R. T. (2009). Extending the studying of gelotophobia:

on gelotophilies and katagelasticsits. Humor 22, 183–212. doi:

10.1515/HUMR.2009.009

Frontiers in Psychology | www.frontiersin.org 9 October 2016 | Volume 7 | Article 1637

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Wu et al. Brain Networks Underlying Gelotophobia

Ruch, W., Proyer, R. T., and Popa, D. E. (2008). “The fear of being laughed at

(gelotophobia) and personality,” in Series Humanistica, ed G. Baritiu (Cluj-

Napoca: Romania), 53–68.

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T.

E., Johansen-Berg, H., et al. (2004). Advances in functional and structural

MR image analysis and implementation as FSL. NeuroImage 23(Suppl 1),

S208–S219. doi: 10.1016/j.neuroimage.2004.07.051

Sporns, O. (2011). The human connectome: a complex network. Ann.

N. Y. Acad. Sci. 1224, 109–125. doi: 10.1111/j.1749-6632.2010.

05888.x

Sporns, O., Tononi, G., and Kötter, R. (2005). The human connectome: a

structural description of the human brain. PLoS Comput. Biol. 1:e42. doi:

10.1371/journal.pcbi.0010042

Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sassa, Y., Nagase, T., et al. (2012).

The association between resting functional connectivity and creativity. Cereb.

Cortex. 22, 2921–2929. doi: 10.1093/cercor/bhr371

Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima,

A., et al. (2010). White matter structures associated with creativity:

evidence from diffusion tensor imaging. NeuroImage 51, 11–18. doi:

10.1016/j.neuroimage.2010.02.035

Titze, M. (1996). The Pinocchio complex: overcoming the fear of laughter. Humor

5, 1–11.

Titze, M. (1997). “The comical as a shame-generating factor,” in Shame: A Humor

Emotion, eds R. Kühn,M. Raub andM. Titze (Opladen:Westdeutscher Verlag),

169–178.

Titze, M. (2009). Gelotophobia: the fear of being laughed at.Humor 22, 27–48. doi:

10.1515/HUMR.2009.002

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,

Delcroix, N., et al. (2002). Automated anatomical labeling of activations

in SPM using a macroscopic anatomical parcellation of the MNI MRI

single-subject brain. NeuroImage 15, 273–289. doi: 10.1006/nimg.20

01.0978

van den Heuvel, M. P., Stam, C. J., Boersma, M., and Hulshoff Pol, H. E.

(2008). Smallworld and scale-free organization of voxel-based resting-state

functional connectivity in the human brain. NeuroImage 43, 528–539. doi:

10.1016/j.neuroimage.2008.08.010

Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., et al. (2009).

Parcellation-dependent small-world brain functional networks: a resting-state

fMRI study. Hum. Brain Mapp. 30, 1511–1523. doi: 10.1002/hbm.20623

Wang, R., Benner, T., Sorensen, A. G., andWedeen, V. J. (2007). Diffusion toolkit: a

software package for diffusion imaging data processing and tractography. Proc.

Intl Soc. Mag. Reson.Med. 15:3720.

Watts, D. J., and Strogatz, S. H. (1998). Collective dynamics of ’small-world’

networks. Nature. 393, 440–442. doi: 10.1038/30918

Weiss, E. M., Schulter, G., Freudenthaler, H. H., Hofer, E., Pichler, N., and

Papousek, I. (2012). Potential markers of aggressive behavior: the fear of other

persons’ laughter and its overlaps with mental disorders. PLoS ONE 7:e38088.

doi: 10.1371/journal.pone.0038088

Wen, W., Zhu, W., He, Y., Kochan, N., Reppermund, S., Slavin, N., et al. (2011).

Discrete neuroanatomical networks are associated with specific cognitive

abilities in old age. J. Neurosci. 31, 1204–1212. doi: 10.1523/JNEUROSCI.4085-

10.2011

Xia, M., Wang, J., and He, Y. (2013). BrainNet Viewer: a network visualization

tool for human brain connectomics. PLoS ONE 8:e68910. doi: 10.1371/

journal.pone.0068910

Xu, J., and Potenza, M. (2012). White matter integrity and five-factor

personality measures in healthy adults. NeuroImage 59, 800–807. doi: 10.1016/

j.neuroimage.2011.07.040

Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yücel, M., Pantelis, C., et al.

(2010). Whole-brain anatomical networks: does the choice of nodes matter?

NeuroImage 50, 970–983. doi: 10.1016/j.neuroimage.2009.12.027

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Wu, Zhong, Chan, Chen, Gong, He and Li. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 10 October 2016 | Volume 7 | Article 1637

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

	White-Matter Structural Connectivity Underlying Human Laughter-Related Traits Processing
	Introduction
	Methods
	Subjects
	PhoPhiKat Score
	MRI Acquisition
	Data Preprocessing
	Construction of Binary White Matter Connectivity Networks
	Network Node Definition
	Network Edge Definition
	High-Resolution Brain Network

	Network Analysis
	Clustering Coefficient Cp
	Characteristic Path Length Lp
	Small-Worldness ζ
	Global Efficiency Eglob
	Local Efficiency Eloc
	Nodal Efficiency Enodal

	Statistical Analysis

	Results
	Small-World Properties of Brain Networks
	PhoPhiKat Scores and Network Properties
	High-Resolution Structural Brain Networks


	Discussion
	Conclusion
	Author Contributions
	Acknowledgments
	References


