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Healthy or pathological states of nociceptive subsystems determine different

stimulus-response relations measured from quantitative sensory testing. In turn,

stimulus-response measurements may be used to assess these states. In a recently

developed computational model, six model parameters characterize activation of nerve

endings and spinal neurons. However, both model nonlinearity and limited information

in yes-no detection responses to electrocutaneous stimuli challenge to estimate model

parameters. Here, we address the question whether and how one can overcome these

difficulties for reliable parameter estimation. First, we fit the computational model to

experimental stimulus-response pairs by maximizing the likelihood. To evaluate the

balance between model fit and complexity, i.e., the number of model parameters, we

evaluate the Bayesian Information Criterion. We find that the computational model is

better than a conventional logistic model regarding the balance. Second, our theoretical

analysis suggests to vary the pulse width among applied stimuli as a necessary condition

to prevent structural non-identifiability. In addition, the numerically implemented profile

likelihood approach reveals structural and practical non-identifiability. Our model-based

approach with integration of psychophysical measurements can be useful for a reliable

assessment of states of the nociceptive system.

Keywords: nociceptive processing, quantitative sensory testing, parameter estimation, parameter identifiability,

model-based experiments

1. INTRODUCTION

The human nociceptive system provides the neurophysiological basis of pain sensation. Following
injury or disease, changes in peripheral, and central subsystems could lead to abnormal nociceptive
function, e.g., hyperalgesia (Sandkühler, 2009). Long-term alterations in different subsystems can
cause persistent pain, reducing quality of life (Voscopoulos and Lema, 2010). Efficient treatments
could benefit from improved diagnosis of states of relevant nociceptive subsystems (Woolf and
Max, 2001; Wilder-Smith, 2002; Arendt-Nielsen and Curatolo, 2013). Such a differential diagnosis
might be achieved by reliably estimating physiologically meaningful parameters of the nociceptive
system.
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Several experimental paradigms have been proposed to provide
information about states of nociceptive subsystems. For example,
high throughput technologies can provide rich data about protein
expression from pain-related biochemical networks in dissected
tissue of animals (Niederberger and Geisslinger, 2008). For
clinical practice on human patients, more efforts are still needed
to transfer insights from those animal studies. In contrast,
psychophysical approaches, e.g., quantitative sensory testing
(QST) are non-invasive and can be conducted on human subjects
within limited time (Cruz-Almeida and Fillingim, 2014). This
makes QST useful for diagnosis of the nociceptive system and its
malfunctioning in clinical practice (Walk et al., 2009). However,
to dissect contributions of different nociceptive mechanisms,
both a well-designed stimulus modality and physiology-based
interpretation of limited QST measurements are required.

In general, the human nociceptive pathway first involves
peripheral Aδ and C nociceptors. When these nociceptors
are activated, their fibers convey the nociceptive information
to neurons in the dorsal horn, where resultant activation is
transmitted to supraspinal sites. To specifically assess Aδ-fiber-
mediated nociceptive function, one can apply low-intensity
electrocutaneous stimulation with an intra-epidermal needle
electrode (Inui et al., 2002; Doll et al., 2014). The use of low
amplitudes is compatible with a detection task (Doll et al.,
2014; Yang et al., 2015), where delivered stimuli are pulse
trains characterized by four controllable stimulus properties:
the amplitude (A), the number of pulses (NoP), the inter-pulse
interval (IPI), and the pulse width (PW). This newly developed
experimental paradigm enables to measure various stimulus-
response relations by applying stimuli with various values of
stimulus properties, collecting a set of binary responses to
electrocutaneous stimuli. This imposes a requirement to choose
their values by considering time scales of peripheral and central
nociceptive subsystems. First, a single-pulse stimulus with a
relatively short PW (<1 ms) can recruit Aδ nociceptors without
repetitive recruitment. Varying the PW adjusts the strength of
overall peripheral activation, i.e., the number of recruited fibers.
Changing the stimulus amplitude can also adjust this strength. In
contrast to single-pulse stimuli, a pulse-train stimulus introduces
temporal summation of the post-synaptic neuronal activity
(van der Heide et al., 2009). Furthermore, Gescheider et al. (1999)
reported a decreased detection threshold of vibro-tactile stimuli
when decreasing IPI. The same authors explained that due to
superposition of neural responses. To diagnose sensory function,
conventional studies focus on psychophysical characteristics,
e.g., detecting hyperalgesia by observing decreased thresholds
(Walk et al., 2009). These thresholds are often determined by
using a two-coefficient logistic psychometric function, which
describes the detection probability with respect to the amplitude
with fixed temporal properties (Treutwein, 1995; Doll et al.,
2014). As a generalized linear model, in general, logistic
regression can uniquely determine all regression coefficients
and the resultant detection threshold. However, as this model
does not straightforwardly account for sensory mechanisms,
further efforts are required to interpret these intermediate
estimates. In view of a variety of different proposed psychometric
curves (Treutwein, 1995), the validity of the logistic curve is

questionable, hampering further physiological interpretability
of threshold estimates. In addition, more coefficients will be
introduced, as the number of different combinations of temporal
stimulus properties increases, yielding a potential overfit to a
limited number of stimulus-response pairs.

In contrast to this conventional approach, we recently
proposed two computational models to represent essential
mechanisms in both peripheral and central nociceptive
subsystems (Yang et al., 2015). Their states are characterized
by six model parameters. The physiologically meaningful
interpretation of these parameters offers potential for a
mechanism-based diagnosis of the states of nociceptive
subsystems. Our previous studies demonstrated qualitative
agreements between model-based thresholds and experimental
thresholds (Yang et al., 2015, 2016). Of the two models, the
probabilistic hazard model (HM) is computationally more
convenient for parameter estimation. Furthermore, the number
of parameters in the HM is constant regardless of the stimulus
set, i.e., all combinations of stimulus properties. Fitting a dataset
measured from a detection task with four combinations of
temporal parameters, the HM is a simpler model than the logistic
regression model with eight regression coefficients. Also, the
model-based psychometric function could substantially differ
from a symmetric logistic function. However, it has not been
studied whether the logistic regression model and the HM have
different fits to experimental datasets.

Given reasonable replication of data by one model, reliable
estimation is desired for the purpose of diagnosis and further
usage of the parameter estimates. The uncertainty of estimates
could be substantial, hampering assessment of the states of
nociceptive subsystems. To address this uncertainty, parameter
identifiability analysis is essential. Parameter non-identifiability
is classified as structural and practical non-identifiability, which
have different causes. The former manifests itself as non-unique
estimates of model parameters. Equivalently speaking, changes
in some non-identifiable parameters can be compensated by
changes in other parameters, yielding equally optimal fits to
data regardless of measurement accuracy. To analyze structural
identifiability, most approaches are based on differential algebra
(Ljung and Glad, 1994; Bellu et al., 2007). Based on Lie algebra,
a recent study (Merkt et al., 2015) argued that structural non-
identifiablity results from symmetries in differential equations
with time-varying measurements. In case of a structurally non-
identifiable model, one can resolve this by reducing or rebuilding
the model. Alternatively, one can enrich measurements to
eliminate structural non-identifiability. For that, persistence
of excitation of subsystems is required for input signals
(Miao et al., 2011). In contrast to structural non-identifiability,
practical non-identifiability arises from limited information
in data contaminated with noise. Hence, approaches based
on differential-algebra are not applicable to assess practical
identifiability. In contrast, the profile likelihood (PL) approach
can be applied to real data to reveal both structural and practical
non-identifiability (Raue et al., 2009, 2014).

For the nociceptive detection task, first, no study has evaluated
and compared the abilities of both the logistic regression model
and the HM to replicate measured data. Model comparison
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should consider the balance between model fit and complexity,
i.e., different numbers of parameters for each model. For this,
the Bayesian Information Criterion (BIC) is applicable (Kass and
Raftery, 1995; Kingdom and Prins, 2010). Second, parameter
identifiability has not been addressed for the nonlinear HM
using binary detection responses to electrocutaneous stimuli
from human subjects. To prevent structural non-identifiability,
one should formulate prerequisites for the stimulus set. In
addition, a limited number of measured data points could cause
practical non-identifiability for model parameters. The pragmatic
PL approach is expected to reveal parameter identifiability for
the HM using binary detection responses to electrocutaneous
stimuli.

To address these challenges, we start with a brief description
of the experimental data, the logistic regression model and the
HM.Next, we optimize their model fits to the data bymaximizing
the likelihood. We check the goodness of fit of the HM for
multiple datasets. Based on the BIC, we assess the balance
between model fit and complexity for the HM, and compare
this with the logistic regression model. After that, we employ
the profile likelihood approach to assess parameter identifiability,
where some necessary conditions on stimulus sets for structurally
identifiable models are formulated based on theoretical analysis.

2. EXPERIMENTS AND MODELS

We consider a psychophysical experiment with datasets
measured from healthy human subjects, focusing on Aδ-
fiber-mediated nociceptive subsystems. We outline how we
analyze these datasets. Next, we describe a conventional logistic
regression model to fit stimulus-response pairs. After that, we
briefly introduce the computational model representing both
peripheral and central nociceptive subsystems.

2.1. Nociceptive Detection Task and
Datasets with Stimulus-Response pairs
A single detection experiment lasts for 10 min, providing
around 200 stimulus-response pairs {S,R}, where S is the
electrocutaneous stimulus and R is a binary response: detected
(R = 1) or not-detected (R = 0). We refer to this
collected set of binary responses to electrocutaneous stimuli as an
elementary dataset. Stimulus S is delivered by an intra-epidermal
needle electrode (Doll et al., 2014). For each applied stimulus,
together with the current amplitude (A), three temporal stimulus
properties: the number of pulses (NoP), the interpulse interval
(IPI) and the pulse width (PW), determine the pulse train. In
each 10 min experiment, four different combinations of temporal
properties were used. For the same combination (NoP, IPI, PW),
amplitudes were selected according to an adaptive probing
procedure (Doll et al., 2014, 2016). For each combination,
the number of stimuli was equal. Depending on whether each
temporal property varied among four combinations, there are
two designs of stimulus sets: with or without a variation of the
PW denoted by TS1 and TS2, respectively, see Table 1.

Using these two designs, two different groups of 15 healthy
subjects were recruited, respectively (Doll et al., 2016). For each

TABLE 1 | Two designs with four combinations of temporal stimulus

properties for the electrocutaneous pulse-train stimulus.

Design Index A B C D

TS1 NoP [#] 1 1 2 2

IPI [ms] – – 10 50

PW [ms] 0.42 0.84 0.42 0.42

TS2 NoP [#] 1 2 2 2

IPI [ms] – 10 50 100

PW [ms] 0.42 0.42 0.42 0.42

If NoP = 1, then the IPI is undefined.

subject, the above-described 10 min detection experiment was
conducted on 2 consecutive days, which we refer to as Day
1 and 2. We note that these datasets have been published in
the previous studies to investigate effect of temporal parameters
to either detection threshold (Yang et al., 2015) or detection
probability (Doll et al., 2016) on a group level. As motivated
above, our work focuses on mechanism-based assessment of the
system parameters instead of merely psychophysical terms, e.g.,
detection thresholds.

Here, we briefly describe how we will use these datasets in
the following sections. For the design with TS1, we consider all
available 30 datasets, i.e., 2 for each of 15 subjects, to address
the ability how well the logistic regression model and the hazard
model replicate data. To address estimation and identifiability
of parameters of the HM, we start with 15 elementary datasets
measured on Day 1. For the nonlinear HM, estimation and
identifiability of parameters could be hampered by the limited
amount of information from a single 10 min experiment. For
such cases, we propose criteria to combine datasets from Day
2 with their counterparts of Day 1 for the same subjects for
further estimation. For the design with TS2, we only use one
representative dataset (measured from subject D9001 on Day
1) to demonstrate structural non-identifiability together with a
theoretical analysis in the section of identifiability analysis. In
total, we consider 31 elementary datasets.

2.2. The Logistic Regression Model
By convention, psychophysical studies often employ logistic
regression to study the stimulus-response relation (Treutwein,
1995). With fixed stimulus properties NoP, IPI, and PW, the
detection probability Pr(R = 1|S) is proposed to be a logistic
function of the applied amplitude A (Doll et al., 2014). The
pair of regression coefficients β0 and β1 characterizes the logit
transformation as,

logit(Pr(R = 1|S)) := log

(

Pr(R = 1|S)

1− Pr(R = 1|S)

)

= β0+β1A. (1)

Considering four combinations of temporal properties in
TS1, the logistic regression model contains eight regression

coefficients β: = ∪j{β
j
0,β

j
1}, with j = 1, 2, 3, 4 corresponding to

four combinations A–D of TS1 see Table 1. Each pair of β
j
0 and
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β
j
1 characterizes the logit of the detection probability as,

logit(Pr(R = 1|Sji)) = β
j
0 + β

j
1Aji. (2)

where Aji is the applied amplitude of the stimulus Sji with the
jth combination of temporal stimulus properties. Given a set of
stimulus-response pairs, the coefficients can be determined using
the GLMFIT routine in MATLAB.

2.3. The Hazard Model
We denote the model-based psychometric function, i.e., the
conditional probability to detect stimulus S, as 9(S): = Pr(R =

1|S). A single trial may be simulated by drawing a random
number ξ from a standard uniform distribution. The response
is R = 1 when ξ < 9(S), indicating that the stimulus is detected,
and R = 0 otherwise.

Here, we briefly describe the model, for more details see (Yang
et al., 2015). Peripheral activation by the electrical stimulus is
described by the threshold-linear function

[fA − α1]+ := π(fA − α1)H(fA − α1), (3)

where

fA := A

(

1− exp

(

−
PW

τ1

))

, (4)

and H(·) is a Heaviside step function; τ1 and α1 are the
time constant and the activation threshold of afferent fibers,
respectively. Next, through synaptic connections, an excitatory
post-synaptic current I∗p (t) is induced

I∗p (t) =
[fA − α1]+

τs

NoP−1
∑

k= 0

exp

(

−
t − k IPI

τs

)

H(t), (5)

with time constant τs = 1.5 ms (Gabbiani et al., 1994). This
drives the post-synaptic potential x(t) of a secondary dorsal horn
neuron, which we model as a leaky integrator

τ2ẋ = −x+ I∗p (t), x(0) = 0. (6)

The value of the time constant τ2 is roughly several tens of
milliseconds (Prescott and Koninck, 2002; Weng et al., 2006).
This noise-free post-synaptic potential is converted into an
instantaneous firing rate through a non-homogeneous Poisson
process (Plesser and Gerstner, 2000)

λ(t) = λL

(

1+ exp

(

αL − x(t)

σL

))−1

. (7)

Here, the lumped parameters αL, σL, and λL represent the
threshold, the slope parameter and the maximal firing rate,
respectively. The expected value of the number of spikes during a
trial interval of duration T is,

λT =

∫ T

0
λ(t)dt. (8)

The binary response R equals one given sufficient activity in
the central nociceptive subsystem. We assume that sufficient
activation implies at least one secondary neuron generated an
action potential during the trial interval T. So the model-based
psychometric function evaluated at the parameters θ is given by

9θ = 1− exp(−λT). (9)

As Equation(6) is linear, we obtain an analytical, but complex,
formula for 9θ .

Our model contains six lumped parameters θ =

(α1, τ1, τ2,αL, σL, λL), which depend on more than 10 physical
quantities, characterizing peripheral, and central nociceptive
components. Regarding meaning of lumped parameters, α1

and τ1 merely quantify peripheral characteristics, and τ2 and
λL merely describe the central properties. But αL and σL
are compound characteristics of both subsystems. Figure 1

illustrates the dependence of the psychometric curves on
parameters. We vary values of single lumped parameters to
either 0.8 or 1.2 fold of their reference values, which was set
as θ = (α1 = 0.1, τ1 = 0.1, τ2 = 50,αL = 0.022, σL =

0.0021, λL = 0.4020) as used in Yang et al. (2015). We remark
that the psychometric functions are monotone with respect
to three parameters: α1, τ1, and αL. In addition, as known
from model development in Yang et al. (2015), the obvious
functional dependence makes most of physical quantities non-
identifiable. Hence in our work, we focus on estimation and
identifiability of the lumped parameters rather than physical
quantities.

3. MODEL FITTING AND EVALUATION

Here, we formulate the likelihood function based on binary
responses. We achieve an optimal fit of the HM by maximizing
the likelihood function and check the goodness of fit to data.
To evaluate the balance between model fit and complexity, we
compute and compare the Bayesian Information Criterion of the
HM and the logistic regression model.

3.1. Optimal Model Fitting of the HM by
Maximizing the Likelihood Function
To quantify the goodness of model fit to data, the likelihood is
given by

L(θ) = Pr(Data|θ), (10)

where the Data contain a sequence of stimuli and binary
responses. The inter-stimulus interval varied from 2 to 5 s which
is much larger than the time constants in the nociceptive system
(Mogyoros et al., 1996; Prescott and Koninck, 2002; Weng et al.,
2006). Hence, we assume the trials were independent. Grouping
all stimuli with the same stimulus properties, we compute the
binomial coefficient from the corresponding responses, and its
confidence interval (Clopper and Pearson, 1934).

As the same stimulus amplitudes could be applied multiple
times, we represent the detection probability as a function of
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FIGURE 1 | Effects of parameter variations on the psychometric curves. We set temporal properties of stimulation as NoP = 1 and PW = 0.42 ms. In each

panel, psychometric curves evaluated at reference values, decreased or increased values of single parameters are shown in black, blue or red, respectively. The panel

indices (A–F) correspond to indices 1–6 for single parameters, respectively.

FIGURE 2 | Fitting performance of the HM and the logistic model with the optimal values of parameters to three representative sets of experimental

stimulus-response pairs using TS1, see Table 1. The titles of three columns indicate the subject IDs and the measurement day. Panels (A–D) correspond to the

combinations A–D of design TS1 in Table 1.

the amplitude, see the black dots in Figure 2. The independence
among trials simplifies the likelihood (Equation 10) as

L(θ) =
nD
∏

k= 1

9
Rk
k
(1− 9k)

1−Rk , (11)

where9k is the model-based psychometric function value for the
applied stimulus Sk evaluated at θ , and k = 1, 2, . . . , nD with

nD the total number of stimuli. By maximizing the likelihood
function, one obtains the optimal values of parameters

θ̂ = argmaxθ∈2L(θ) = argminθ∈2 − log L(θ), (12)

where 2 is the parameter space. We restrict 2 to be a
hypercubic domain with the lower and upper boundaries of
model parameters given in Table 2. Our choice of the boundaries
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TABLE 2 | Lower and upper boundaries of the feasible parameter space.

Model

parameter

α1 [mA] τ1 [ms] τ2 [ms] αL [A/s] σL [A/s] λL [kHz]

Lower

boundary

10−6 10−2 2 10−5 10−8 10−3

Upper

boundary

1 3 103 1 0.1 102

for τ1, τ2, and λL is based on experimental studies (Mogyoros
et al., 1996; Prescott and Koninck, 2002; Weng et al., 2006).
For the other three, their lower boundaries approach zero. We
set the upper boundary of α1 to one. We motivate this choice
as when α1 > 0, the threshold-linear function (Equation 3)
hardly produces effective activation for the applied amplitudes
contrary to the observed dependency of detection probability on
amplitudes, see Figure 2. The upper boundaries of αL and σL are
set to relatively high values.

Given the nonlinear nature of the HM, multiple local optima
of parameters could exist in the likelihood landscape. To find
the global optimum, we employ a Monte Carlo method with
multiple starting values. We generate a set of Ns = 100 starting
values {θs} in 2 using Latin hypercube sampling (McKay et al.,
2000). For each starting value, we use Trust-Region-Reflective-
Newton method to obtain the local minimum θf (Coleman and
Li, 1996). After applying this local optimization for all starting
values, we take the estimate θ̂ = θf with the minimal − log L(θf )
according to Equation (12). This numerical optimization is
implemented in MATLAB 2014b with the LSQNONLIN routine.
In our study, the LSQNONLIN routine is applicable for this
optimization purpose, because the negative log-likelihood can
be formulated as a sum of square of components, where each
component is a psychometric function value. Each component
can be rewritten as square of the square root of the psychometric
function value (or one minus this value). In this way, it can
be considered as a nonlinear least squares problem. It is also
possible to implement the optimization with the FMINCON

routine. We prepare MATLAB scripts to compare the two
routines, see the folderComparison_fmincon_lsqnonlin
in Supplementary Material 2. Here, we give several remarks
regarding optimal model fitting and parameter estimation.

First, the local optimization should be efficient, so that the
ranked likelihood after optimization shows a step-like pattern
(Raue et al., 2013). We observe such patterns in our estimation
results based on experimental data, see Supplementary Figure 3.

Second, this multiple-starting-value optimization scheme
with Ns = 100 does not necessarily yield the optimal fit, i.e., the
lowest − log(L). To check whether Ns = 100 is sufficiently large,
one can sample more starting values, and re-optimize with those
samples. If we do not observe any substantially more optimal fit,
we consider Ns = 100 sufficient to obtain the optimal fit. In
Section 4, we employ this strategy as a validation procedure by
implementing a profile-likelihood approach with more samples
within 2.

Third, we clarify two aspects: how well a model replicates
observations and how reliable parameter estimates are, although

the optimal model fit and parameter estimates are always
achieved simultaneously from Equation (12). On one hand,
plausible models are expected to give a good fit to observations
with a relatively small − log(L̂). One can perform a likelihood-
ratio-based test to evaluate goodness of fit to measurements, see
e.g., García-Pérez and Alcalá-Quintana (2015a,b). The idea is
to compare the purposed HM model and the saturated model
(which contains parameters just being detection probabilities
based on binomial fit at each amplitude) by the ratio of likelihood
denoted by G2. The p computed from a χ2 distribution will
inform whether the HM can fit the data. On the other hand,
good replication of data does not imply sufficient identifiability of
parameters. For nonlinear models with relatively small − log(L̂),
the reliability of parameter estimates could be questionable due
to either limited amount of data or an insufficiently rich stimulus
set (Raue et al., 2009). We address these two aspects separately.
We apply the above-mentioned model fitting and parameter
estimation to all 31 elementary datasets. With the obtained
optimal fitting for data with TS1, we address model plausibility
in the following subsection. Regarding reliable estimates, the
first prerequisite is to obtain estimates θ not lying on the
boundary of 2. There are two influential factors: (i) the model
structure and (ii) to what extent the observations from a single
elementary experiment on Day 1 represent characteristics of
nociceptive processing of the subject. In case estimates end up
on the boundary of 2, the model should be refined, which is
beyond the scope of this work. Here, for the stimulus set with
TS1, we try to improve the second factor by combining/adding
measurements from the same subject on Day 2, if the two
elementary datasets are qualitatively similar. We visually inspect
the similarity of the stimulus-response pairs on Day 2 to those
on Day 1. For this, we propose two exclusion criteria: either the
applied amplitudes were clearly shifted or one or more detection
probabilities differed without overlapping confidence intervals.
With one combined dataset, we estimate parameters again and
check whether they become interior estimates. In case of interior
estimates using TS1, we further quantify parameter identifiability
in section 4.

3.2. The Balance between Model Fit and
Complexity
During the development of a computationalmodel, one desires to
obtain good model fit to experimental observations. We perform
a likelihood-ratio-based goodness test to check how good the HM
can replicate data. In addition, to prevent overfitting with too
many free parameters, one needs to reduce the complexity during
model development. To assess the balance between model fit and
complexity, we propose to use Bayesian Information Criterion
(Kingdom and Prins, 2010) given by

BIC = −2 log(L̂)+ nP log(nD), (13)

where L̂ is the optimal likelihood evaluated with parameter
estimates β̂ and θ̂ for the logistic regression model and the HM,
respectively. In addition, nD is the number of observations and
nP is the number of model parameters. For the logistic regression
model (Equation 2), nP = 8; for theHM, nP = 6. The first term of
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the BIC in Equation (13) provides a measure of goodness of fit of
the model to stimulus-response pairs. The second term penalizes
the BIC for the number of parameters. BIC is a relative measure
as the optimal likelihood and nP depend on a specific dataset.
Hence, for the purpose of model selection given the same dataset,
the smaller the value of the BIC is, the more plausible the model
is. We compute 30 pairs of BIC-values for both models with 30
elementary datasets with TS1. We check whether HM has a better
balance of model fit and complexity with the hypothesis: the
probability that HM has a smaller BIC than the logistic regression
model is >0.5. For that, we perform a one-tail binomial test.

3.3. Results
First, we visualize the fit of the HM and the logistic model to
three representative sets of experimental data using TS1. We
present stimulus-response measurements in Figure 2. The black
dots represent the experimental detection probabilities. The red
curves show the predictions of detection probabilities based on
θ̂ in the HM. The blue curves are the predictions based on the
regressed coefficients β̂ in the logistic regressionmodel (Equation
2). Row labels A–D correspond to combinations A–D of TS1,
respectively. In the Supplementary Material, we visualize the
fitting performance of both models for all 30 datasets using TS1.
According to computed statistics about the goodness of fit about
the HM, there are only 2 of 30 cases with rejected fit, see Tables
S1, S2 in the Supplementary Material.

Second, Figure 3 shows difference in BIC-values between
the HM and the logistic model for 30 datasets from 2-day
experiments on 15 subjects. In case of a negative difference, the
HM is preferred, while a positive difference favors the logistic
model. There are 24 cases where the HM has a smaller value of
BIC compared to the logistic regression model. The binomial test
yields p < 0.001, suggesting that theHM is better than the logistic
regression model.

Third, for estimation results using data on Day 1, we find that
10 out of 15 estimates lie on the boundary of 2. After checking
the similarity of 10 corresponding pairs of datasets, there are
five cases where we can combine the pairs of datasets. For two
of these five combined datasets, we obtain interior estimates θ̂ .
For the other three subjects, even with these additional datasets,

the estimates still lie on the boundary of 2. Hence, for the
design with TS1, five elementary datasets on Day 1 and two
combined datasets yield interior estimates, for which we will
address parameter identifiability.

4. IDENTIFIABILITY ANALYSIS

Even though we obtained reasonable fit of the data to the
HM, it is not guaranteed that the estimates of parameters are
uniquely determined, i.e., identifiable. Here, we start with a brief
description of the profile likelihood approach with emphasis on
how it can reveal various types of (non-)identifiability. Next,
we perform identifiability analysis for the hazard model in
two aspects. First, a condition on combinations of temporal
stimulus properties necessary for structural identifiability follows
from a theoretical analysis. Equivalently speaking, we derive a
sufficient condition for a structurally non-identifiable HM. In
addition, we provide an analytically tractable quantification of
the set identifiability of non-identifiable parameters, i.e., the
range over which the structural non-identifiability exists. These
findings are illustrated by results from the PL approach with
one experimental dataset using TS2. Second, to address practical
(non-)identifiability, we present the PL results for seven datasets
using TS1. When practical non-identifiability occurs, we perform
a model-based study to efficiently choose stimulus properties for
improved parameter identifiability.

4.1. Profile Likelihood Approach
The profile likelihood is a univariate function with respect to each
single parameter θ i with i = 1, 2, . . . , nP,

PL(θ i) = max
θ {/i}∈2{/i}

L(θ), (14)

where {/i}: = {1, 2, . . . , i− 1, i+ 1, . . . , nP} and nP is the number
of parameters (Raue et al., 2009). Fixing one parameter at a
specific value θ∗i , the value PL(θ

∗
i ) is determined as the maximal

likelihood by tuning the remaining nP − 1 parameters θ {/i}, i.e.,

θ̂ {/i} = argmaxθ∈2 with θi=θ∗i
L(θ). (15)

FIGURE 3 | Difference of Bayesian Information Criterion between the HM the logistic model with the measured dataset on the two study days. For each

single dataset, a negative difference suggests the HM is preferred, while the logistic model is preferred when the difference is positive. Note that each dataset contains

about 200 data points without combining datasets from the same subject.
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The details on the computation of the PL are given in Appendix
A. One may notice that the formula of the PL (Equation 14)
is similar to the formula to obtain the maximal likelihood
(Equation 12). As more local optimizations are involved, the
PL approach can be considered a validation procedure for the
obtained estimates and optimal model fit.

Typically, the likelihood is nonzero around the maximum,
because the observations are noisy and the uncertainty
propagates into the parameter estimates. This could result in
parameter uncertainty in the parameter space. For identifiability
analysis, the PL approach is applicable to assess uncertainty of
parameters of any (non)linear model, provided the likelihood
is computable (Raue et al., 2009). Before we directly step to
the nonlinear hazard model, we discuss how it works for a
conventional linear regression model and then nonlinear models
in general.

For linear regression, −2 log(PL) obeys a quadratic relation
with a single regression coefficient. In the sequel, we define
−2 log(PL) as LPL. For all coefficients, all parabolas have the same
vertical value of vertices −2 log(L̂). The width of the parabola
depends on the data quality. In general, increased data length
or decreased noise strength will yield a narrower width. The
narrower the parabola is, the less uncertain the estimate for the
single coefficient is. In the other case, the parabola will become
a horizontal line where the corresponding coefficient is non-
identifiable. To quantify such uncertainty, one can determine
confidence intervals of the coefficient due to the fact that LPL
approximately follows the χ2-distribution with one degree of
freedom (Uusipaikka, 2008). Given a desired significance level
α, the confidence intervals of one particular coefficient are given

by
{

θi| − 2 log (PL(θi)) ≤ −2 log (L̂)+ χ2
α

}

. When α = 0.95,

the offset is χ2
α = 3.84. When α approaches zero, the lower

and upper boundaries of the confidence interval coincide with
the maximum likelihood estimate. For the extreme situation
when −2 log(L̂) is a horizontal line over the entire range of
that parameter, confidence intervals are always unbounded for
any significance level. Note that this should be considered as
structural non-identifiability for a linear regression model, as the
LPL is either a horizontal line or a parabola opening upwards.

The shape of LPL helps to determine structural identifiability
for a nonlinear model. In general, LPL could depend in a
different way, i.e., not quadratically, on a single parameter. When
a unique global minimum LPL for one parameter exists, this
parameter is structurally identifiable. In contrast, structural non-
identifiability manifests itself as multiple different values of θ

with the same optimal fit, diminishing the value of the estimate
for further use. Those minima may be isolated in the parameter
space for a nonlinear model. However, in general situations,
multiple global minima form some manifold in the parameter
space. As a result, LPL plots of some parameters will be flat.
In case that such a manifold extends to boundaries of some
parameters, the flatness in corresponding LPL plots will span the
entire range of parameters. In other cases, the flatness of the LPL
plot spans a narrower interval for the corresponding parameter.
For this, Schmidt (2015) used the concept of set identifiability
to deal with parameters that are structurally identifiable only

up to a specific interval. Here, we stress the similarity
between conventional structural non-identifiability and set
identifiability in terms of a flat LPL. So, our study considers
set identifiability as one particular example of structural non-
identifiability. Determining this range can help to understand
the specific parameter identifiability. Given the model structure,
one can study structural identifiability. Several studies derived
sufficient or necessary conditions for structurally identifiable
for models with specific structures (Gargash and Mital, 1980;
Saccomani and Cobelli, 1993; Bazanella et al., 2012). For our
hazard model, such sufficient and/or necessary conditions for
structural identifiability have not been explored. On one hand,
sufficient conditions can guaranteemodel identifiability, but such
requirements could be too strict to be met in practice (Bellman
and Åström, 1970; Chiş et al., 2011). On the other hand, finding
necessary conditions prevents to measure input-output relations
with insufficient excitation of subsystems, which is helpful before
conducting expensive experiments, e.g., on human subjects.

Next, for structurally identifiable parameters, practical non-
identifiability could arise from the limited amount of information
from existing observations. Similar to the linear case, one can
define the confidence interval as

CIα(θi) =
{

θi ∈ (θ li , θ
u
i )| − 2 log (PL(θi)) ≤ −2 log (L̂)+ χ2

α

}

,

(16)

where θ li , θ
u
i are the lower and upper boundaries of parameter

θi, respectively. Here, the probability α accounts for the true
parameter value lies within the confidence interval based on
profile likelihood (Kreutz et al., 2012). A χ2-distribution is
used to approximate the profile-likelihood-based confidence
interval, and the study (Kreutz et al., 2012) also checked PL-
based intervals with empirically generated intervals from a
Monte Carlo simulation. Here, we discuss a few cases for the
six parameters in the hazard model. Moreover, we present all
results in the Supplementary Material. In general, we showed
that χ2-distribution can approximate the empirical one from
simulations. When α → 0, the confidence interval becomes
just the maximum-likelihood estimate. However, with a fixed
α, when LPL was not restricted to the threshold χ2

α , the
parameter becomes practically non-identifiable. To address
practical identifiability, we need to treat each dataset case by case,
because the PL reflects the likelihood landscape.

4.2. Structural and Practical
Non-identifiability in the HM
In the case of the nonlinear HM, structural and practical non-
identifiability could occur. First, structural non-identifiability
could arise from a qualitatively insufficient stimulus set, i.e.,
(A,NoP, IPI, PW) rather than observed stimulus-response pairs
contaminated with noise. Such insufficiency results in non-
unique parameter estimates. As one trivial example, when only
amplitudes below the peripheral activation α1 are applied,

this implies A
(

1− exp
(

−PW
τ1

))

< α1 for any value of

PW. No matter how the combinations of temporal stimulus
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properties are chosen, one can expect that α1 is structurally non-
identifiable due to over-parameterization in case of activation
below threshold in Equation (3). Hence, a prerequisite for a
structurally identifiable HM is to apply some amplitudes above
α1. In addition to this trivial case, in Section 4.2.1, we derive
analytically a necessary condition on the PW for structural
identifiability. We also quantify the set identifiability for such
a structurally non-identifiable case. To illustrate this structural
non-identifiability, we show the numerically evaluated results
using one experimental dataset in Section 4.2.2. Second, as
practical identifiability depends on datasets, we perform the PL
approach with seven cases with interior estimates using TS1, with
numerical results in Section 4.2.2.

4.2.1. Theoretical Analysis for Structural

Non-identifiability in the HM
In detection task with pulse-train stimuli, we use a relatively large
IPI (≥ 10 ms) compared to the time constant for peripheral
activation (Mogyoros et al., 1996). Then the PW is the only
effective temporal property to control peripheral activation. In
case that the PW is invariant for all stimuli, changes of parameters
for central processing may be compensated by other parameter
changes for peripheral activation. This hampers separation of
their contributions to the overall nociceptive function, leading to
non-identifiable parameters. Such a suspicion deserves a rigorous
study for structural identifiability. There are two questions:
whether a stimulus set with identical PW definitely introduces
structurally non-identifiable parameters, i.e., is it necessary
to use multiple values of PW for structural identifiability.
If so, how to quantify the set identifiability for resultant
structurally non-identifiable parameters? To answer the first,
we perform a theoretical analysis with the hazard model. Our
strategy is to search for a redundant quantity with respect to
θ . The cascaded structure in the HM facilitates our search.
By investigating peripheral activation (Equation 3) together
with synaptic transmission (Equation 5), and processing and
activation of secondary neurons (Equations 6, 7), one can find
that redundancy of θ exists in the instantaneous firing rate
for secondary neurons λ(t). For example, given two vectors of
different parameter values θ (1) and θ (2) satisfying


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(1)
1

)
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(1)
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(2)
1

)

σ
(2)
L

,

τ
(1)
2 = τ

(2)
2 , λ

(1)
L = λ

(2)
L ,

(17)

the HM can produce the same λ(t) given any arbitrary values
of t, NoP, and IPI. Given this, all quantities depending on
λ(t), including the likelihood function (Equation 11), become
redundant. Suppose that one obtains θ̂ from the numerical
optimization in Section 3, according to Equation (17), a
distinct parameter vector, i.e., a spurious solution, θ∗ =

(α∗
1 , τ

∗
1 , τ

∗
2 ,α

∗
L , σ

∗
L , λ

∗
L) with two restrictions:

(i) τ ∗2 = τ̂2, λ∗L = λ̂L, and

(ii)
α∗
1

α̂1
=

α∗
L

α̂L
=

σ ∗
L

σ̂L
=

1− exp
(

−PW
τ∗1

)

1− exp
(

−PW
τ̂1

) , (18)

will have the same optimal fit. The restriction (i) in Equation
(18) implies that the parameters τ2 and λL could be structurally
identifiable. However, four parameters α1, αL, σL, and τ1 in (ii) of
Equation (18) are structurally non-identifiable. We conclude that
it is necessary for structural identifiability to use multiple values
of PW in the experimental stimulus parameters.

With detected structural non-identifiability, we investigate
whether and how the restriction (ii) can affect the set
identifiability. By denoting the ratio between the spurious values
of the estimates of α1, αL, and σL

r∗ :=
1− exp

(

−PW
τ∗1

)

1− exp
(

−PW
τ̂1

) , (19)

we obtain α∗
1 = r∗α̂1, α∗

L = r∗α̂L, and σ ∗
L = r∗σ̂L according to

Equation (18). Given obtained θ̂ , α∗
1 , α

∗
L , and σ ∗

L depend on r∗.
One can find that r∗ is a decreasing function of τ ∗1 ∈ (τ l1, τ

u
1 ).

Hence, one has r∗ ∈ (rl, ru), where rl =
1−exp

(

− PW
τu1

)

1−exp
(

− PW
τ̂1

) and ru =

1−exp

(

− PW

τ l1

)

1−exp
(

− PW
τ̂1

) . Using the ratio between the boundaries of r∗, one

can find the interval for the parameter with set non-identifiability

r :=
ru

rl
=

1− exp

(

−PW

τ l1

)

1− exp
(

−PW
τu1

) . (20)

With PW = 0.42 ms, τ l1 = 10−2 ms, and τu1 = 3 ms in Table 2,
we obtain r = 7.6545. However, we expect the ratio between
the boundaries for τ1 is 3/0.01 = 300, i.e., non-identifiability
spanning the entire range. To illustrate our theoretical analysis,
we employ the profile likelihood approach to the elementary
dataset from subject D9001 on Day 1 using the setting TS2. We
expect flatness to exist in the LPL plot with respect to each of
those four parameters. For α1, αL, and σL, the flatness should
only span a finite interval with the ratio of the range of 7.6545.
So, for any positive value of τ1, we find that α1,αL, and σL are
structurally non-identifiable due to a single value for PW for all
stimuli. The LPL is flat over the entire parameter range. With a
narrower range [τ l1, τ

u
1 ] for τ1, the LPL around the estimate could

be flat over a smaller range.

4.2.2. Illustrative Examples with Numerical Results of

Profile-Likelihood Approach
Applying the PL approach, we present the possible types of
parameter identifiability from the existing experimental datasets.
First, to validate results of optimal fits and estimates obtained
in Section 3, we perform the PL approach to the 15 elementary
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datasets on Day 1 using TS1. We compare PL results to the
optimization results in Section 3. The PL approach gives identical
estimates and optimal fit for 12 datasets. For the other three cases,
we find negligible differences in optimal fits, i.e., −2 log(L̂), see
details in the Supplementary Material. In addition, qualitatively
the estimates are similar, i.e., estimates from the PL approach still
stay on any boundary of 2 similar to those from the multiple-
starting-value scheme. This validates our usage of datasets for
both model comparison and identifiability analysis.

Second, to illustrate the structural non-identifiability, we show
LPL for subject D9001 using the setting TS2 in Figure 4. The 95%
confidence interval of each parameter is indicated by the region
below the horizontal dashed line with the offset χ2

95 = 3.84, see
Figures 4A–F. As we expect from Equation (18), the flatness of
LPL at theminimal value occurs for parameters α1, τ1, αL, and σL.
For τ1, the flatness spans its entire range. On the other hand, for

α1, αL, and σL, the flatness of LPL at theminimum spans a shorter
interval. The ratio between the upper and lower boundaries of
this interval is about 7.6545. This agrees with the computed value
from Equation (20).

Third, for the identifiable case, we show−2 log (PL) for subject
D9450, see Figure 5. The intersections of −2 log (PL) with the
dashed horizontal line are the bounds of the 95% confidence
interval. All six model parameters are practically identifiable
at least up to the 95% confidence level. We have checked
the difference between the empirical confidence interval and a
χ2-distribution using a simulation study, see Section 3 in the
Supplementary Material.

Fourth, we give an example of practical non-identifiability
with the combined dataset from subject D4443, see Figure 6.
The LPL extends to the lower boundary of α1, indicating
severe practical non-identifiability. Given the unbounded 95%

FIGURE 4 | Profile likelihood plot for the structurally non-identifiable case using the dataset containing about 200 data points using the setting TS2
from subject D9001. Red crosses indicate the estimated values of parameters from the multiple-starting value optimization. The horizontal dashed line marks 95%

confidence intervals. Panels (A–F) correspond to six system parameters α1, τ1, τ2, αL, σL, and λL, respectively.

FIGURE 5 | Profile likelihood plot for subject D9450 with about 200 data points using the setting TS1. Red crosses indicate the estimated values of

parameters from the multiple-starting value optimization. The horizontal dashed line marks 95% confidence intervals. Panels (A–F) correspond to six system

parameters α1, τ1, τ2, αL, σL, and λL, respectively.

FIGURE 6 | Profile likelihood results with about 400 points measured from two-consecutive-day measurements on the subject D4443 using the setting

TS1. Red crosses indicate the estimated values of parameters from the multiple-starting value optimization. The horizontal dashed line marks 95% confidence

intervals. Panels (A–F) correspond to six system parameters α1, τ1, τ2, αL, σL, and λL, respectively.
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confidence intervals of τ2, the time constant τ2 is also practically
non-identifiable. In addition, we observe that profile likelihoods
of the parameters αL, σL, or λL have multiple local minima.
Taken together, it indicates that the existing experimental data is
insufficient to constrain model parameters. More measurements
are required to further constrain the parameters toward narrower
confidence intervals.

In addition to the results above for two datasets in Figures 5,
6, for the design ofTS1, we summarize PL results for datasets with
interior estimates in Supplementary Material. They consist of
four elementary datasets and one combined dataset. We suspect
that practical non-identifiability results from a limited amount
of observations in the current 10 min detection task. As the PL-
based parameter identifiability stems from noisy measurements,
relatively noisy data hamper practical identifiability. For the
five elementary datasets from Day 1 with interior estimates,
detection probabilities from subject D9450 (Figure 2) exhibit
a more monotone pattern with respect to amplitude than the
other datasets (from D4523, D4543, D8846, and D9798). This
may explain why the results for subject D9450 exhibit the best
identifiability among the five. We notice that there is a case
with severe practical non-identifiability for α1 with data from
subject D4443, shown in Supplementary Figure 6A. In contrast
to the stimulus set with TS2, we did not observe that a single
parameter was severely non-identifiable for all the seven cases.
This indicates that a stimulus set with all stimulus properties
varied, e.g., TS1, may facilitate structural identifiability.

5. DISCUSSION

In our study, we integrated experimental data with the
hazard model for parameter estimation and identifiability of
physiological parameters of human nociceptive processing. We
obtained good fits with the HM to data according to statistics
for goodness of fit. Based on BIC, comparison with the logistic
regression model suggested a better balance between fit and
complexity for the HM. By applying the profile likelihood
approach, we demonstrated that it was possible to achieve
parameter identifiability using 10 min measurements contains
about 200 stimulus-response pairs, but not always. For structural
identifiability, our theoretical analysis provided a necessary
condition about the pulse width.

In conventional psychophysical studies, stimulus-response
pairs are usually fitted to logistic and similar models (Treutwein,
1995). There are few studies to estimate physiology-based model
parameters using psychophysical data, see e.g., Alcalá-Quintana
and García-Pérez (2013). To the best of our knowledge, our
study is the first to demonstrate the estimation of multiple model
parameters characterizing peripheral and central nociceptive
subsystems using binary responses to electrocutaneous stimuli.
In addition, our study demonstrates the applicability of the PL
approach with stimulus-response measurements and its merit
to assess both structural and practical identifiability. As this
study is a starting point for a mechanism-based diagnosis of the
status of nociceptive systems, we have analyzed the hazard model
of essential nociceptive subsystems, i.e., peripheral activation

and processing by spinal neurons in the dorsal horn. In the
present study about the HM, statistics from goodness of fit
show reasonable results in general. However, this study did not
account for other effects, e.g., non-stationarity of nociceptive
processing as reported in Doll et al. (2014, 2016). On one
hand, the non-stationary was not reported on individual level
quantitatively. On the other hand, experimental properties
like inter-stimuli intervals and intensities could play roles on
presence of non-stationarity like habituation in a detection task
(von Dincklage et al., 2013). A next step to explore neuronal
or psychological mechanisms for possible non-stationarity in
nociceptive processing could be to extend the hazard model with
time-varying physiological parameters in peripheral and central
subsystems, i.e., α1 and αL, respectively. With such extended
models, one may perform model comparison with the HM to
speculate time-varying processes to contribute to observed non-
stationary effects.

In this study, we compared the BIC-values from the two
models using datasets with TS1. Although, in 24 out of 30
cases, the HM had smaller BICs than those from the logistic
regression model, we notice this may be attributed to the
difference in the model complexity rather than the difference
in model fits, see Figure 3. This indicates that the fit by
the logistic regression model to data is not worse than that
from the HM, although the logistic regression model does
not explicitly represent nociceptive mechanisms. Our present
study did not present the BIC of the HM using a group of
datasets with TS2. Given structural non-identifiability shown
in Figure 4, via model reduction by fixing τ1 to a constant
value, one can expect that the reduced model would still have
the same optimal fit −2 log (L̂) as the six-parameter hazard
model. For the (reduced) HM, the BIC-value will further
decrease, leading to a better balance between model fit and
complexity. In our present study, only for the design TS2,
we provided an analytically derived assessment of parameter
identifiability in the HM together with an illustrative example
with numerical simulations. The present study did not answer
which combinations of temporal properties will achieve optimal
identifiability for parameters at an arbitrary value. This is
partly challenged by the non-linearity of the physiology-based
model, for which pure simulations with one set of parameter
values might not be comprehensive. So, a future study with
both analytical derivation and simulations might be useful to
get thorough understanding of the effects of combinations of
temporal properties. Future work could consider the choice
of stimulus properties in order to resolve practical non-
identifiability in a model-based study. In addition, one could
choose a frequentist (Steiert et al., 2012) or adapt a Bayesian
framework (Myung et al., 2013) in the exploration of stimulus
settings.

Typically, for dynamical models representing biochemical
processes, PL plots of structurally non-identifiable parameters
were flat for the entire interval, which is restricted by pre-
defined lower and upper boundaries (Raue et al., 2009). In our
identifiability analysis of the hazard model with six parameters,
first, we show that a stimulus set with invariant PW results in
four structurally non-identifiable parameters α1, τ1,αL, and σL.
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Second, we formulated the ratio r in Equation (20) to quantify
the range of set identifiability in an analytically tractable way.
This ratio depends on the boundaries of τ1 and temporal property
PW. Its upper boundary has a larger impact on the ratio than
the lower one. On the other hand, when the PW is not varied in
the stimulus set, the larger PW is, the smaller r is, see Appendix
B. It implies that saturation of activation of Aδ fibers helps
to distinguish different nociceptive mechanisms with a smaller
interval of set identifiability for non-identifiable α1, αL, and σL.
Together with prevention of repetitive recruitment of the same
nerve endings during one pulse, we suggest to use a value of
PW like 1.05 ms. In addition to these analytical arguments, the
PL approach can further determine the boundary values of set
identifiability for α1, αL, and σL given experimental datasets, see
Figures 4A,D,E.

Mechanism-based diagnosis of (mal)functioning of the
nociceptive system may benefit from our developed approach
on parameter estimation and identifiability analysis. In pain
research, various experimental pain models have been developed
to perturb the nociceptive system (Szallasi, 2010). For example,
high frequency electrical stimulation is known to induce
central sensitization (Sandkühler, 2009). Further validation
studies would be useful to test our quantitative approach
with psychophysical datasets measured from sequential
phases in experimental pain models. In clinical practice,

diseases or medical intervention could result in neuroplasticity,
accompanying with (mal)adaptive behavior. With our methods,
in turn, new insights on responsive mechanisms underlying
nociceptive malfunctioning could be gained by monitoring
changes in estimates of parameters over time.
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APPENDIX

Appendix A: Computation of Profile Likelihood
Here, we give the details on the computation of profile likelihood. Given the estimate θ , we compute the profile likelihood according
to Equation (14). For each single parameter θ i, we divide the computation for the entire parameter range into two sub-interval by the
estimate θ i. For each sub-interval, we use an adaptive method to determine step 1θ . For illustrative purposes, we explore values of the
parameter θ

(n)
i in the increasing direction with respect to θ̂ i,

θ
(n)
i = θ

(n−1)
i + 1θ , n = 1, 2, . . . , 500, (A1)

where θ
(0)
i : = θ̂ i. The step 1θ could be solved from the univariate equation about 1θ : −2 log(L(θ (n)i )) = −2 log(L(θ (n−1)

i )) + qχ2
α ,

where by default we set q = 0.05. If this equation is not solvable, we set θ (n)i = 1.05 θ
(n−1)
i . Given the value of θ (n)i , the profile likelihood

in Equation (14) is determined by re-optimizing values of remaining parameters θ {/i}.

Appendix B: The Range of the Set Identifiability is a Decreasing Function of the PW
We have

r =

1− exp

(

−PW

τ l1

)

1− exp
(

−PW
τu1

) . (A2)

The derivative of r with respect to PW is given by

dr

dPW
=

exp

(

PW

(

1
τu1

− 1
τ l1

))

(

τ l1

(

1− exp(PW/τ l1)
)

+ τu1
(

exp(PW/τu1 )− 1
)

)

τ l1τ
u
1

(

exp(PW/τu1 )− 1
)2 (A3)

Given τ l1 < τu1 , the sign of dr
dPW

is equal to the sign of

r1: = τ l1

(

1− exp(PW/τ l1)
)

+ τu1
(

−1+ exp(PW/τu1 )
)

. (A4)

The derivative of r1 with respect to PW is dr1
dPW

= exp(PW/τu1 )− exp(PW/τ l1) < 0, indicating that r1 decreases as PW increases. For

PW = 0, we have r1 = 0, so r1 is negative for positive PW, and dr1
dPW

< 0 as well. So the quantity r is a deceasing function of PW
according to Equation (A3).
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