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We use our hands very frequently to interact with our environment. Neuropsychology
together with lesion models and intracranial recordings and imaging work yielded
important insights into the functional neuroanatomical correlates of grasping, one
important function of our hands, pointing toward a functional parietofrontal brain
network. Event-related potentials (ERPSs) register directly electrical brain activity and are
endowed with high temporal resolution but have long been assumed to be susceptible
to movement artifacts. Recent work has shown that reliable ERPs can be obtained
during movement execution. Here, we review the available ERP work on (uni) manual
grasping actions. We discuss various ERP components and how they may be related
to functional components of grasping according to traditional distinctions of manual
actions such as planning and control phases. The ERP results are largely in line with
the assumption of a parietofrontal network. But other questions remain, in particular
regarding the temporal succession of frontal and parietal ERP effects. With the low
number of ERP studies on grasping, not all ERP effects appear to be coherent with
one another. Understanding the control of our hands may help to develop further
neurocognitive theories of grasping and to make progress in prosthetics, rehabilitation
or development of technical systems for support of human actions.
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INTRODUCTION

Our hands are important tools to interact with our environment. Yet, we do not fully understand
the biological underpinnings of manual actions, that is, how the central nervous system (CNS)
achieves and controls manual dexterity. In motor control, it remains a debated issue whether
or not the brain entertains (stored) grasp representations (i.e., grip types). Otherwise, grasping
movements might be computed on the fly when needed. Here, we take an empirical perspective on
neurophysiological processes underlying grasping actions.

How we grasp an object is determined by external and by internal factors. External factors refer
to object properties, such as size, weight, shape, or texture (intrinsic properties) and situation
aspects, such as position, distance (i.e., spatial coordinates) or possibly orientation of the object
(extrinsic object properties; cf. dual-channel hypothesis; Jeannerod, 1981; Castiello, 2005; Goodale,
2011). In contrast, internal factors are properties of the person or the task; that is, largely cognitive
variables, such as action planning, the goal of the action, habits or familiarity with the object or
action (Rosenbaum et al., 1992; Meulenbroek et al., 1993; Kunde et al., 2007; van der Wel et al.,
2007; Logan, 2009; Herbort and Butz, 2010, 2011; Knudsen et al., 2012; Belardinelli et al., 2016).
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For example, when grasping a bottle, the hand movement
including the shaping of the fingers differs depending on whether
the bottle will be thrown or precisely placed (Ansuini et al.,
2008). That is, the purpose or goal of the action influences the
(preceding) movement (Marteniuk et al., 1987; Armbriister and
Spijkers, 2006; Rizzolatti et al., 2014) which reflects a cognitive
influence on grasping movements (see also Glover, 2004; Seegelke
etal.,, 2014). Cognitive processes are of particular interest; they are
subserved by cortical activity. Electroencephalography (EEG) and
magnetoencephalography (MEG) are very well-suited to examine
cortical activity in normal healthy humans, especially when fast
(cognitive) processes are of interest.

For the performance of such actions, two processing stages
have been distinguished (two-component model; Woodworth,
1899; Elliott et al., 2001). In a planning phase, the movement
is prepared and initiated without sensory feedback. In the
control phase, the movement execution is monitored including
(re-)afferent feedback information (Wolpert and Ghahramani,
2000; Glover et al., 2012). An overarching question is whether
or not such grip types are (neuro) cognitively represented
(Rizzolatti et al., 2000; Begliomini et al., 2007). Alternatively,
grasping movements may be computed (e.g., as contact points
for the fingers; Smeets and Brenner, 1999), or movement
profiles might result from tissue and mechanical properties
of the movement system (e.g., Kelso, 1994, 1997). Here,
we are concerned with the neurophysiological correlates of
(uni) manual grasping in humans with a focus on event-
related potentials (ERPs) as there is little such research
available.

Other neurocognitive methodologies have been applied in
manual action research of which grasping is one important
type and these have their own limitations (see below). So
far, there is agreement regarding a parietofrontal brain
network as the neuroanatomical correlates of grasping
(Castiello, 2005; Filimon, 2010; Grafton, 2010 for review),
but many neurophysiological studies focussed on reaching
or tool use rather than grasping (e.g., Wheaton et al., 2005a;
Archambault et al., 2009; Proverbio et al., 2011; Striemer et al.,
2011). Other manual actions also received some attention
in neurophysiological research, for example, finger or arm
movements (Wessel et al, 1994; Slobounov et al, 1998),
tapping (Lang et al, 1990), and throwing (Fromer et al,
2012).

Different parts of the parietofrontal network are assumed
to fulfill different functions in manual actions. For reaching, it
is assumed that parietal areas, especially the parieto-occipital
sulcus represent the goals of the movement (Astafiev et al., 2003;
Hamilton and Grafton, 2006). Other authors assume that visuo-
spatial information regarding the target objects are processed in
parietal areas (Jeannerod et al., 1995; Galletti et al., 2003; Filimon
et al.,, 2009; Tarantino et al., 2014) whereas Goldenberg and Spatt
(2009) attribute the processing of mechanical interactions among
effectors and the environment to parietal areas.

More consistently, frontal areas are proposed to subserve
executive functions, and some specifically ascribe goal
representations (van Elk et al., 2012) to frontal areas, the
planning of sequential behavior (van Schie and Bekkering, 2007)

or the control of action execution (Haggard, 2011; Ridderinkhof
et al., 2004). Furthermore, in primate studies which combined
reaching and grasping, so-called motor schemas have been
assigned to frontal areas whereas perceptual schemas have been
ascribed to parietal areas (Rizzolatti et al, 1988; Jeannerod
et al, 1995). More recently, two distinct neural processing
streams have been discussed; one for the transport and one
for the grasping component (Jeannerod, 1984, 1988; Galletti
et al., 2003; Hattori et al., 2009; Vesia et al., 2013). However,
Fattori et al. (2010) reported grasping (pre-shaping of the hand)
specific neurons in the “transport stream” of macaque monkeys,
specifically, in the medial posterior aspect of the parietal area
(V6A, see also Galletti et al., 1999). That is, while there is some
agreement about the functional role of frontal areas for manual
actions, there is more of a controversy regarding parietal brain
areas.

Because movements themselves can pose recording problems
for EEG and MEG, such studies often used simple movements
like button presses or have focused on the planning/preparation
phase of a movement or imagined movements (Verleger
et al., 2000; Zaepffel and Brochier, 2012). However, recently
reliable ERPs with their high temporal resolution (msec range)
have been obtained during movement execution (van Schie
and Bekkering, 2007; Koester and Schiller, 2008; Kirsch and
Hennighausen, 2010) and are, thus, suitable for investigating
the neurophysiological underpinnings of manual actions; it
appears that a sufficient number of artifact free trials could
be obtained in these studies (for approaches to correct for
movement artifact see, e.g., Hesse and James, 2006; Ting et al.,
2006). So far, only very few ERP studies have investigated
grasping movements. Examining the temporal dynamics of the
underlying neurophysiology can advance our understanding of
the biological underpinnings of motor control and their links to
cognition.

The available grasping ERP studies investigated the neural
correlates of different grip types (precision and power grips),
for example, with an emphasis on immediate or final action
goals. Others studied the relation between neurophysiological
processes and behavioral consequences and co-registered
kinematic and ERP data. Also, the relation between symbolic
processing and grasping has been addressed by using language
materials as imperative cues for grasping responses. Also, the
role of intentions and habitual effects were investigated in
grasping.

Van Schie and Bekkering (2007) reported, as far as we know,
for the first time ERP findings on executing precision grips.
They had participants grasp and transport an object across
or below a barrier instructing either how to grasp the object
(immediate goal) or where to place the object (final goal).
Both, immediate and final goal instructions required the same
movements excluding explanations by kinematic differences.
Hence, the ERP effects, namely a parieto-occipital slow wave
related to the immediate goal and a slow wave over left
frontal regions for the final goal specification have been related
to the prehension of the object and the planning/control of
sequential behavior, respectively. Consistent with the posterior
effects, van Elk et al. (2012) reported enhanced parietal
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activation for the observation of grip errors and interpreted
them as processing hand-object interaction. Westerholz et al.
(2013) extended van Schie and Bekkering’s (2007) study to
power grips (also comparing the same movements emphasizing
the immediate or the final goal) to test for differences in
the neurophysiological time course because power grips are
known to have a shorter deceleration phase and a later
maximum grip aperture than precision grips (Castiello et al.,
1992).

Both precision (van Schie and Bekkering, 2007) and power
grips (Westerholz et al, 2013) yielded a temporally similar
frontal slow wave (—1,100 to 0 ms; bilateral for power grips)
time-locked to movement end. If reflecting the planning/control
of sequential behavior, these planning/control processes should
not differ for the grip types. The planning might relate to
the goal state (or posture) because the ERP effects were
time-locked to the movement end. In contrast, precision
and power grips differed temporally over posterior areas.
Power grips elicited a posterior slow wave (from at least
—600 to —200 ms time-locked to grasping) that preceded
the posterior slow wave for precision grips by about 300 ms
(—300 to 0 ms). This posterior effect was related to the
prehension, and as it precedes the grasping itself, it may,
specifically, reflect the preparation of the prehension. Such a
preparation may be easier for power compared with precision
grips as fewer parameters have to be controlled with less
precision.

Another study combined kinematic (hand position and
grip aperture) and ERP measures in grasping (De Sanctis
et al., 2013). Participants grasped small or large objects with a
precision or a power grip, respectively, while kinematics and
ERPs were recorded. An increased negativity (motor-related
N400) was found at frontal midline electrodes for grasping
small objects compared with larger objects. Importantly, this
m-N400 component peaked earlier for power than precision
grips in accordance with the time course differences between
these grip types reported above (van Schie and Bekkering,
2007; Westerholz et al, 2013). De Sanctis et al. (2013)
reported ERP amplitude effects before (planning) and during
movement execution. Furthermore, movement time (kinematics)
and m-N400 latency (ERPs) were positively correlated for
both grip types (r = 0.46 and 0.49) suggesting a functional
relation between neural and behavioral components of grasping
actions.

Another study that co-registered kinematics and ERPs
investigated whether grasping is influenced by word reading
(Boulenger et al., 2008). Participants were asked to perform
a reach-and-grasp task in response to written (non) words,
and for the critical results the ERPs and the kinematics for
verbs and nouns were compared. (Verbs but not nouns were
expected to pre-activate neural circuits for motor control because
only verbs refer to actions.) Even though Boulenger et al.
(2008) did not investigate various grip types, the results are
partly in line with De Sanctis et al’s (2013) data in that
the ERPs showed a reduced ERP amplitude (taken to be
the readiness potential, a motor planning ERP component;
Kornhuber and Deecke, 1965) for verbs compared with nouns

before movement initiation, that is, during planning; the ERP
was also affected during movement execution. That is, the
ERPs were affected in both phases, planning and execution, as
in De Sanctis et al.’s study. Boulenger et al. (2008) reported
also a kinematic effect; the wrists maximal acceleration was
smaller for the verb compared to the noun condition but the
ERPs and the kinematics were not analyzed in a combined
manner.

Shared neural mechanisms of word reading and grasp
planning (in delayed action execution) were also investigated
by van Elk et al. (2008). In a dual-task paradigm, participants
prepared grasping one of two objects (magnifying glass or
cup). Then a semantic categorisation was performed on a
written word (to ensure deep processing; Collins and Loftus,
1975). After a subsequent and delayed go/no-go stimulus
(a tone), the prepared action was performed in go trials.
Critically, two factors were manipulated. First, the action could
be meaningful (bringing the glass toward the eye or the cup
toward the mouth) or meaningless (glass to mouth or cup
to eye). Second, the words could be congruent (“eye” or
“mouth”) or incongruent (e.g., “belly” or “knee”) with the action
goal. (All critical words referred to body parts.) Similar to
Boulenger et al. (2008), the results suggest that reading and
action planning share some neural resources. In particular,
words that were incongruent with the action goal elicited
an anterior N400 effect compared with congruent words but
only if the prepared action was meaningful. If the prepared
action was meaningless, no N400 effect was obtained. Even
though it remains to be shown whether these effects can
be generalized to the execution phase, the results go beyond
Boulenger et al’s findings, as they show an involvement of
semantic information in preparing a grasping action whereas
Boulenger et al., reported an effect for word class, that is, syntactic
information.

Interestingly, the N400 effects had a more frontal focus than
is reported in language studies (Kutas and Federmeier, 2011).
This distribution is in accordance with the frontal distribution
in the study by De Sanctis et al. (2013) and has also been found in
spoken language production (Koester and Schiller, 2008). These
initial observations raise the possibility that such an anterior
distribution is related to frontal, maybe (pre)motor, and cortical
generators.

Clearly, influences of symbolic information (e.g., reading
words) on grasping are cognitive in nature. Three other
studies investigated the influence of intentions on grasping
by means of ERPs. Two studies investigated the preparation
phase of precision grips, and one the planning and execution
of power grips. To investigate temporal organization of action
planning, Bozzacchi et al. (2012a) recorded pre-movement
ERPs, specifically the readiness potential (RP). Participants
had three different tasks; reaching, grasping and impossible
grasping (attempting to grasp with constrained fingers) of a
teacup. These authors found an earlier RP onset over parietal
areas and a later RP onset over frontal areas. Parietal effects
have been suggested to reflect the specification of grip-related
information (i.e., preparation of prehension; van Schie and
Bekkering, 2007) that is further processed in frontal areas
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(Bozzacchi et al., 2012a; see Wheaton et al., 2005a,b, 2009
for manual pantomime movements). The activity over parietal
areas began well before action onset for grasping, but not for
reaching or impossible grasping. More interestingly, premotor
activity seems to precede parietal activity in some instances
(Filimon, 2010), but Bozzacchi et al. (2012a) reported parietal
activity to precede frontal activity which could be related to the
temporal order of parietal before frontal effects in van Schie and
Bekkering (2007) and Westerholz et al. (2013; see also Wheaton
et al., 2005a). Thus, the temporal organization of the neural
mechanisms underlying grasping and its preparation remains
controversial.

Similarly, Bozzacchi et al. (2012b) compared ERPs for real
grasps, “virtual” grasps (key presses that released a video showing
a grasping action) and key presses (without a subsequent effect).
Similar motor preparation processes (RP) were found for real
and virtual grasps over posterior parietal areas which differed
from the key press condition. Again, the parietal activity for
virtual and real grasps preceded activity over (pre)motor areas.
As the ERP for virtual grasping resembled the real grasping
and not the key press condition, Bozzacchi et al. (2012b)
conclude that the goal of the action and not the movement
kinematics influenced the preparation phase. Furthermore, these
authors suggested that action preparation is affected by the
meaning of that action, similar to the overall conclusion
by van Elk et al. (2008). That is, Bozzachi et al’s works
point toward an influence of the anticipated goal state on
grasping preparation. Zaepffel and Brochier (2012) used the
contingent negative variation (CNV) to investigate planning
processes for a grasping task (reach-grasp-and-pull). Although
these authors did not report ERP effects for execution, their
findings are taken to support goal anticipations (force and hand
shape, i.e., grip type) in accordance with Bozzacchi et als
works.

Similar to anticipations, Westerholz et al. (2014a) investigated
the role of intentional processes in grasping, that is, the
decision what action to perform. These authors investigated
the neurophysiological correlates of planning and execution
of goal-related grasping and the dominance of an immediate
“goal” (grip configuration) and a final goal (goal state). They
used a bar transport task; participants grasped a horizontally
suspended bar and placed it on one of two target positions.
Depending on the experimental condition either the grip
(underhand vs. overhand grip) or the goal state (target position
and bar orientation) were specified. Alternatively, grip or goal
state could be free (i.e., unspecified) and participants had
to decide for themselves (2 x 2 design). Interestingly, the
specification (i.e., instruction) of goal states yielded a parietal
slow wave in the ERP that was extended toward frontocentral
electrodes time-locked to grasping. Also, a right frontal slow
wave was found time-locked to movement end. These effects
were tied to (prepared) prehension and the planning or
anticipation of an action sequence, respectively (see van Schie
and Bekkering, 2007; Westerholz et al., 2013). Critically, these
ERP effects were elicited by the specification of the goal. The
specification of the grip itself did not yield any ERP effect
suggesting that the goal state which needs to be anticipated is

more important than the immediately required movement for
grasping, underlining the importance of anticipation in grasping
in line with Bozzacchi et al. (2012a,b) and Zaepffel and Brochier
(2012).

In another task (grasp-and-rotate), Westerholz et al. (2014b)
investigated the role of habitual action control in addition to
specified vs. free grip choices. Habitual influences on action have
been suggested next to goal state anticipations by Herbort and
Butz (2011; see also Kiinzell et al., 2013). Westerholz et al. (2014b)
asked participants to grasp a bar that was marked at one end (as
a pointer) and mounted to a dial. When grasping, participants
had to rotate the dial immediately. The concomitantly recorded
ERPs were analyzed for specified vs. free grips and also for
habitual vs. non-habitual grasping (thumb toward the pointer
end is considered habitual; Rosenbaum et al., 1992). Interestingly,
a bilateral frontal slow wave time-locked to movement end
was more negative for non-habitual grasping but there were
no posterior ERP effects. Similar to Westerholz et al. (2014a),
grip specification yielded also no ERP effects. Whether the
absence of posterior effects is related to a “missing” transport
phase, to the nature of the task (rotation vs. transport) or the
functionality of the rotation (Tucker and Ellis, 1998) remains to
be shown. For an overview of these ERP studies on grasping see
Table 1.

As said, other approaches have been applied to manual actions
(including grasping). The EEG signal offers further approaches
for experimental design and signal analysis not reviewed here.
Analyses of various frequency bands of the EEG signal (e.g.,
Wheaton et al., 2009), of the lateralized readiness potentials (LRP;
Verleger et al., 2000; Leuthold and Jentzsch, 2001) and the CNV
are fruitful approaches (Zaepftel and Brochier, 2012). Further
neurocognitive methodologies that have been used comprise
lesion studies, intracranial recording (predominantly animals;
e.g., Galletti et al., 2003; Fattori et al., 2010), neuropsychological
studies (predominantly human patients; e.g., Wessel et al., 1994;
Verleger et al., 1999, 2003; Goldenberg and Spatt, 2009) and
functional brain imaging (blood flow changes; e.g., Burnod et al.,
1999; Majdandzi¢ et al., 2007; Piefke et al., 2009; Andric et al.,
2013). As all others, these methodologies have also different
limitations. Integration of these methodologies would provide
valuable insights but has to await future research.

Future work may also investigate the role of other modalities
(e.g., tactile or haptics). The relation between manual control
and other cognitive domains (e.g., language or memory) is
not fully understood (Pulvermiiller, 2005; Spiegel et al., 2013;
Zhang et al., 2014). Neurocognitive models of grasping would
benefit from relating ERPs to other imaging methods, for
example, by localization analyses to establish a functional
link between functional anatomical correlates and ERP
effects. Finally, future work may focus on applications,
for example, in sports (e.g., Pezzulo et al, 2010; Blising
et al, 2014), in the medical realm (e.g., rehabilitation or
for prosthetics) or for improving technical support systems
(i.e., human machine interactions; Schack and Ritter,
2013).

Taken together, this review suggests that ERPs can be used
reliably to investigate the neurophysiological correlates of
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grasping movements. The reviewed ERP studies consistently
report anterior and posterior (slow) ERP amplitude modulations
in line with the evidence for a parietofrontal brain network
obtained with other methodologies (Grafton, 2010). As the
interpretations of the ERP effects diverge and the number
of ERP studies is still relatively low, more research is
needed to resolve apparent inconsistencies, for example,
regarding the temporal succession of parietal and frontal
processes. The combination and extension of methodologies
promises to be a fruitful line of action to better apprehend
prehension.
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