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Intensive longitudinal studies, such as ecological momentary assessment studies using

electronic diaries, are gaining popularity across many areas of psychology. Multilevel

models (MLMs) are most widely used analytical tools for intensive longitudinal data

(ILD). Although ILD often have individually distinct patterns of serial correlation of

measures over time, inferences of the fixed effects, and random components in MLMs

are made under the assumption that all variance and autocovariance components are

homogenous across individuals. In the present study, we introduced a multilevel model

with Cholesky transformation to model ILD with individually heterogeneous covariance

structure. In addition, the performance of the transformation method and the effects

of misspecification of heterogeneous covariance structure were investigated through

a Monte Carlo simulation. We found that, if individually heterogeneous covariances

are incorrectly assumed as homogenous independent or homogenous autoregressive,

MLMs produce highly biased estimates of the variance of random intercepts and the

standard errors of the fixed intercept and the fixed effect of a level 2 covariate when

the average autocorrelation is high. For intensive longitudinal data with individual specific

residual covariance, the suggested transformation method showed lower bias in those

estimates than the misspecified models when the number of repeated observations

within individuals is 50 or more.

Keywords: multilevel model, intensive longitudinal data, heterogeneous autocorrelation, Cholesky transformation,

misspecification

INTRODUCTION

Recent developments in data collection methods in the behavioral and social sciences, such as
Ecological Momentary Assessment (EMA) (Stone and Shiffman, 1994; Hufford et al., 2001),
enabled researchers in this area to gather data with many repeated measurements and to examine
more detailed features of intra-individual variations over time. Such data that consist of repeated
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observations on a large number of occasions for many
individuals with relatively short time intervals are called intensive
longitudinal data (ILD: Walls and Schafer, 2006; Bolger and
Laurenceau, 2013).1

Multilevel models (MLMs) have been widely used statistical
tools for the analysis of both ILD and traditional longitudinal
data that involves a small to moderate number of repeated
observations (Walls et al., 2006; Schwartz and Stone, 2007;
Nezlek, 2012). In a typical analysis of traditional longitudinal data
usingMLMs, within-person residual distributions are assumed to
be identical across individuals, which means that all participants
in the data have the same residual variance and autocorrelations.
There may be several reasons for assuming homogenous
within-person error structure in most applications of MLM
with traditional longitudinal data. First, heterogeneous residual
covariances may be less likely to exist after modeling random
effects. Second, violation of the homogenous residual covariance
assumption may not produce significant bias in estimation of
the model parameters. Third, even if the heterogeneous residual
covariances are likely to exist and need to be correctly specified,
accurate estimation of individual covariance structure is not
plausible with a small tomoderate number of observations within
individuals.

Due to the longitudinally intensive nature of assessments,
however, the common practice of assuming homogenous residual
covariance structure in MLM is questionable in case of ILD.
First, heterogeneous residual covariances across individuals are
very likely to exist in ILD. For example, many recent EMA
studies have shown that there are substantial heterogeneity across
individuals in the variance and autocorrelation of emotional
states over time (e.g., Röcke et al., 2009; Kuppens et al., 2010;
Hill and Updegraff, 2012; Koval and Kuppens, 2012; Tompson
et al., 2012; Bresin, 2014; Ebner-Priemer et al., 2015). Second,
little is known about the influence of violation of homogenous
covariance structure on parameter estimation inMLMswith ILD.
Misspecified error covariance structure in MLMs is known to
produce inaccurate estimation in both fixed effects and variance
components (Lange and Laird, 1989; Ferron et al., 2002, 2009;
Kwok et al., 2007; Moeyaert et al., 2016) but the previous findings
did not investigate the validity of common practice of assuming
homogenous error structure in MLM with ILD when the within-
person error structure is in fact different across individuals.
Third, for such data, it is possible to reliably estimate individual-
level covariance structure because a typical ILD has a sufficient
number of observations within individuals.

In practice, researchers may fit a regression model with
unstructured error covariance matrix to optimally estimate the
fixed effects in ILD without modeling heterogeneous error
covariance. Unstructured covariance structures in which every
element is freely estimated from the data may represent
a complicated correlational pattern among occasions. This

1There is no clear consensus on the number of occasions to define the “intensive”

longitudinal data. Walls and Schafer (2006) stated that the traditional longitudinal

analysis tends to focus on data with “no more than about ten occasions” in

comparison to the analysis of ILD. But, as Bolger and Laurenceau (2013, p. 2)

pointed out, specification of a minimum number of measurements for ILD is

somewhat arbitrary.

approach, however, has several limitations when applied to ILD.
First, multilevel analysis cannot be employed with unstructured
residual covariance. Because unstructured covariance matrix is
just identified, no additional random component can be modeled
with it, that is random effects and their sources cannot be
investigated. In addition, unstructured covariance matrix of
ILD has too many parameters to be estimated, because the
total number of parameters in the covariance matrix depends
on the number of occasions, i.e., n(n+1)/2, where n is the
number of occasions. For example, if the number of observations
within each individual is 100, the number of parameters in
the unstructured covariance is 5050. Models with a large
number of parameters may suffer from non-convergence, under-
identification, and/or non-positive definite solutions. This is
especially true when the number of individuals is less than the
number of occasions, which is often found in some ILD studies.

In short, heterogeneous variances and autocorrelations across
individuals are likely to exist in ILD and, if ignored, may raise
serious problems in estimating effects of covariates in MLM.
However, relatively little is known about the influence of violation
of homogenous covariance structure on parameter estimation in
multilevel models with ILD. Use of unstructured error covariance
structure does not successfully address the issue when researchers
are interested in random effects or the number of measurement
occasions is large.

Alternatively, a transformation method for regression with
autocorrelated errors can be applied to the multilevel analysis of
ILD in this context. A regression model for a single time-series
with autocorrelated residuals can be correctly estimated by fitting
OLS regression using data transformed by the inverse of Cholesky
factor of the residual covariance matrix (Cochrane and Orcutt,
1949; Watson, 1955). The Cholesky transformation for a single
time-series regression can be extended to a multiple time-series
regression or MLM for ILD with heterogeneous autocorrelated
errors. Specifically, MLM with Cholesky transformation method
for ILD estimates a transformation matrix for each individual
in the first step and then fit a multilevel model on the
transformed data. By this transformation method, researchers
can analyze multilevel models for ILD without assuming
unrealistic homogenous autocorrelated residuals. In addition,
this method does not require a greater number of individuals
than the number of measurement occasions.

The present study has two aims. First, we introduce
the Cholesky transformation method to model ILD with
heterogeneous autoregressive error covariance structure. The
transformation is designed to provide a legitimate application
of MLM to a serially, and differently, correlated intensive
longitudinal data. Second, the effects of misspecifying
heterogeneous covariance structure as commonly used
homogenous ones are investigated and compared to the
result from the transformation method. Because the effect of
the misspecification cannot be easily driven analytically and
the suggested transformation method is expected to be valid
asymptotically, we performed a Monte Carlo simulation by
varying sample size, number of occasions, and average residual
autocorrelation and then compared relative biases in estimation
of fixed effects, random components, and the standard errors

Frontiers in Psychology | www.frontiersin.org 2 February 2017 | Volume 8 | Article 262

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Jahng and Wood MLM with Heterogeneous Autoregressive Errors

of fixed effects between misspecified models and the suggested
method. In the next sections, a brief introduction to multilevel
models is provided and issues in modeling residual covariance
structure in MLMs are discussed. A multilevel modeling
approach that uses transformation of an autocorrelated error
structure into an independent structure will then be introduced,
followed by the simulation study.

MULTILEVEL MODELS WITH
HETEROGENEOUS COVARIANCE
STRUCTURE

Covariance Structure in Multilevel Models
for Longitudinal Data
In a longitudinal design, observations can be thought of as
actualizations of a two-level data structure in which repeated
observations (level-1) are nested within individuals (level-2).
In a matrix form, the regression equation for individual i is
expressed as

yi = Xiγ + Ziui + ei, (1)

where Xi = ZiCi, Zi is the matrix of time-varying, within
individual covariates including a column vector of ones, Ci is the
matrix of individual-level covariates, γ is the vector of the fixed
effects, and ui is the vector of random effects.

A typical two-level linear model has two error terms, ui and ei.
The two error terms are assumed to be normally distributed with

E

[

ui
ei

]

=

[

0

0

]

and Cov

[

ui
ei

]

=

[

Gi 0

0 Ri

]

. The mixture of the two

normal distributions results in a multivariate normal distribution
of yi, yi ∼ N(Xiγ,6i), where 6i = ZiGiZ

′
i + Ri. For the entire

observations y =(y′1, y
′
2, . . . , y

′
N)

′, the MLM is written as

y = Xγ + Zu+ e, (2)

where X =











X1

X2

...
XN











, Z is the block diagonal matrix of Zi,

i.e., Z =











Z1 0 · · · 0

0 Z2 · · · 0
...

...
. . .

...
0 0 · · · ZN











, u = (u′1, u
′
2, . . . , u

′
N)

′, and

e = (e′1, e
′
2, . . . , e

′
N)

′. The random vectors u and e are normally

distributed with E

[

u

e

]

=

[

0

0

]

and Cov

[

u

e

]

=

[

G 0

0 R

]

, where

G and R are the block diagonal matrices of Gi and Ri, and
y ∼ N(Xγ,6), where 6 = ZGZ′ + R is the block diagonal
matrices of 6i. In practice, Gi and Ri are assumed homogenous
across all level-2 individuals (i.e., G1 = G1 = ... = GN and
R1 = R1 = ... = RN) in most applications.

Common use of MLMs for longitudinal data, including
linear growth models, assumes an unstructured Gi matrix that
allows estimation of variances and covariances of all random

effects (e.g., Gi =

[

σ 2
u0

σu0u1 σ 2
u1

]

), and an independent and

identical Ri matrix (Ri = σ 2
e I: ID). However, it is likely

that residuals of an MLM for ILD have serial correlations
across time even after modeling the fixed and random effects.
If this is the case, independence assumption in Ri is not
appropriate and a suitable covariance structure that models
autocorrelations between successive residuals should be specified
in Ri. For example, a covariance matrix generated by a first order
autoregressive process can be used to model such a structure. If
observations are measured at equally spaced time, the first order
autoregressive covariance structure, AR(1), with four occasions,
is modeled as

Ri = σ 2









1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1









,

where ρ is the first order autoregressive parameter, i.e.,
autocorrelation between observations measured at time t and
t-1.

Because 6 is determined by two covariance matrices G and R

as well as a design matrix of random effect Z, misspecification
of R may affect the estimation of G, or vice versa. The main
diagonal elements of the square root of the covariance matrix

of γ̂, C =
[

X′6−1X
]−1

, are the true standard errors of γ̂.
Thus, misspecification of R may also affect the estimation of the
standard errors of fixed effects. These effects of misspecification
of R on the estimation of γ and G has been studied by several
researchers, in the context of linear growth models (Lange and
Laird, 1989; Ferron et al., 2002; Jacqmin-Gadda et al., 2007; Kwok
et al., 2007).

Ferron et al. (2002) found that misspecification of AR(1)
residual covariance structure as ID structure in linear growth
models results in overestimation of both σ 2

u0 and σ 2
u1 in G

when ρ = 0.3 or 0.6, although bias in estimation of σ 2
u1

is much smaller than that of σ 2
u0. They also found that the

coverage rate of 95% confidence interval for the slope was
smaller than the true nominal value of 0.95 when the number of
individuals is small (N = 30). Following the previous findings,
Kwok et al. (2007) investigated the effect of misspecification in
Ri for various covariance structures, such as ID, AR(1), first
order autoregressive and first order moving average, and second
banded Toeplitz structure, and found that underspecification
produced minor overestimation in the standard errors of the
intercept and the slope as well as noticeable overestimation
variance estimates in G. Jacqmin-Gadda et al. (2007) showed
that the estimation of γ under the normal ID assumption of
Ri is robust to heteroscedastic residuals, unless the residual
variance is a function of individual-level covariates, and non-
normal residuals.When residuals are serially correlated, however,
estimation of γ was biased: The coverage rates of 95% confidence
intervals for intercept, slope, individual-level covariate, and the
interaction of the last two were significantly smaller than the
nominal value of 0.95.
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Regression with Autocorrelated Errors in a
Single Time Series
For data consisting of a single time series, the effect of
autocorrelated errors on estimation of regression parameters is
well known and estimation of regressions with autocorrelated
residuals has long been of interest to statisticians (Cochrane and
Orcutt, 1949; Watson, 1955; Chipman, 1979; Maeshiro, 1980;
Park andMitchell, 1980; Harvey, 1981; Koreisha and Fang, 2001).
Although traditional OLS estimation for linear regression model
assumes independence of observations, time series data usually
violate this assumption. Consider the standard regression model:

y = Xβ + e, (3)

where y = (y1, y2, ..., yn)
′, n is the number of repeated

measurements, X is a matrix of covariates, β is the corresponding
regression parameter vector, and e = (e1, e2, ..., en)

′ is a random
residual vector with a covariance matrix 6 = σ 2

eVe. If et is
independent and has constant variance across t, i.e., 6 = σ 2

e I

or Ve = I, we can apply ordinary least squares to estimate β such
that

β̂ = (X′X)
−1

X′y, (4)

and its covariance matrix is σ 2
e (X

′X)−1, where the square root of
each diagonal element is the standard error of estimation for the

corresponding parameter in β. The OLS estimator β̂ in this case
is known as an unbiased and efficient estimator, or the best linear
unbiased estimator (BLUE), in the sense that it has the smallest
variance among all possible linear unbiased estimators.

If et is serially correlated, i.e.,6 6= σ 2
e I, however, β̂ is no longer

efficient. In such cases, generalized least squares (GLS) is used to
estimate β such that

β̃ = (X′6−1X)
−1

X′6−1y. (5)

Alternatively, a suitable transformation of y can also be used. In
that case, multiplying Equation 3 by a transformation matrix A,
such that A6A′ = σ 2

wI, gives

Ay = AXβ + Ae = AXβ + w (6)

where w is a white noise vector with covariance matrix σ 2
wI.

Equation 6 then can be expressed as

y∗ = X∗β + w, (7)

where y∗= Ay and X∗= AX. Equations (6, 7) provides a valid
OLS estimator of β,

β̂w= (X′A′AX)−1X′A′Ay = (X′6−1X)−1X′6−1y, (8)

because σ 2
w6−1= A′A. The transformation matrix A is obtained

as A =L−1, where L denotes the Cholesky root of Vw, where

Vw = (σ 2
w)

−1
6 (i.e., 6 = σ 2

wVw), that is Vw= LL′ with L lower
triangular. If we know the covariance matrix 6 or V, Equations
(5, 8) can directly be applied and the two methods will produce

identical estimates of β (i.e., β̃ = β̂w). If not, the GLS estimation
involves complicated estimation of 6 but the transformation
method may use an alternative algorithm.

One possible approach for estimation of 6 (and thus a
transformation matrix A) is to construct 6 from a known
autocorrelation structure. Pioneering work in this approach was
done by Cochrane and Orcutt (1949) for the simple Markov
process. For a Markov process, et = φet−1+wt , wt ∼N(0, σ 2

w) or
AR(1) process, autocovariance γ(h) is well known to be expressed
as

γ(h) =
σ 2
wρh

1− ρ2
, (9)

where ρ = φ is the first order autocorrelation (see Shumway and
Stoffer, 2011, pp. 85–86). Autocovariance matrix 6 is then

6 =
σ 2
w

1− ρ2















1 ρ ρ2 · · · ρn

ρ 1 ρ · · · ρn−1

ρ2 ρ 1 · · · ρn−2

...
...

...
. . .

...
ρn ρn−1 ρn−2 · · · 1















, (10)

and its inverse matrix is

6−1 =
1

σ 2
w



















1 −ρ 0 · · · 0 0
−ρ 1+ ρ2 −ρ · · · 0 0
0 −ρ 1+ ρ2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1+ ρ2 −ρ

0 0 0 · · · −ρ 1



















. (11)

Assuming a simple Markov process, the GLS estimator β̃ can be
obtained by Equation 5, where6−1 is specified as in Equation 11.

To form a transformation matrix A, the inverse of Cholesky
factor of Vw (i.e., the transpose of Cholesky factor of V−1

w , where
V−1
w = σ 2

w6−1) then can be obtained from 6−1, given by

L−1 =



















√

1− ρ2 0 0 · · · 0 0
−ρ 1 0 · · · 0 0
0 −ρ 1 · · · 0 0
...

...
...
. . .

...
...

0 0 0 · · · 1 0
0 0 0 · · · −ρ 1



















. (12)

Using Equation 12, a valid OLS estimator β̂w is obtained through
Equation 8 (Judge et al., 1985). Cochrane and Orcutt (1949) did
not provide the exact form of Equation 12 but a similar idea
of transformation was offered. If 6−1 is successfully estimated,
either GLS estimation or OLS estimation with transformation
can be used. For the general AR(p) model, et = φ1et−1 +

φ2et−2+. . .+φpet−p+wt , however, estimation of6 is challenging
because the GLS approach requires a complicated nonlinear
parameterization of γ(h) and 6, and the calculations become
more complicated as p increases. Because the lower triangular
matrix L−1 is much simpler than 6 for the general AR(p) model,

Frontiers in Psychology | www.frontiersin.org 4 February 2017 | Volume 8 | Article 262

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Jahng and Wood MLM with Heterogeneous Autoregressive Errors

the transformation approach is exclusively used to correct higher
order autoregressive error process for a single time series (SAS
Institute Inc, 2013, p. 364).

Correction for Heterogeneous
Autocorrelations for ILD
Application of the transformation method to ILD is
straightforward. With a number of repeated observations
within individuals, transformation of each single series may
correct autocorrelated errors estimated separately by each
individual. A time series model for individual i can be written as

yi = Ziβi + ei, (13)

where Zi is time-varying covariates. Equation 13 can be extended
to a multilevel format as

yi = Xiγ + Ziui + ei, (14)

where Xi = ZiCi, Zi is the matrix of time-varying covariates,
Ci is the matrix of individual-level covariates, γ is the fixed
effect, and ui is the random effect, respectively, as specified in
Equation 1. The random effect ui and the residual ei are assumed

to be normally distributed with E

[

ui
ei

]

=

[

0

0

]

and Cov

[

ui
ei

]

=
[

Gi 0

0 Ri

]

.

If each individual has one’s own covariance for ei, (i.e., R1 6=

R1 6= ... 6= RN, for i = 1, 2, ..., N), the transformed equation for
each individual will be given by

Aiyi = AiXiγ + AiZiui + Aiei

= AiXiγ + AiZiui + wi, (15)

where random effect ui and residual wi are then normally

distributed with E

[

ui
wi

]

=

[

0

0

]

and Cov

[

ui
wi

]

=

[

Gi 0

0 σ 2
wi
Ii

]

and Ai is the inverse of Cholesky factor of Vi = (σ 2
wi
)
−1

Ri (i.e.,

Ri = σ 2
wi
Vi). For the entire system, the transformed equation is

written as

Ay = AXγ + AZu+ Ae

= AXγ + AZu+ w, (16)

where A is the block diagonal matrix of Ai and X, Z, and u are
specified as in Equation 2. Assuming homogenous variance of the
transformed residuals, the transformed variablesAy,AZ, andAX
can be used in a multilevel model with the ID residual structure.
Correction through Equation 16 is expected to reduce bias, if any,
in estimation of the parameters when there are heterogeneous
autocorrelations in the data.

The correction procedure of multilevel models with
heterogeneous autocorrelations is summarized as

1. Fit Equation 13 by OLS estimation for each individual. Obtain

ŷi = Ziβ̂i.

2. Calculate residuals as êi=yi−ŷi and investigate
autocorrelations for êi.

3. Define order p of AR(p) model for each individual by
investigating autocorrelation patterns in residuals.

4. Apply transformation procedure for each individual and
obtain the transformed data y∗ = Ay, Z∗ = AZ, and X∗ =

AX.
5. Fit the intended MLM using y∗, Z∗, and X∗ assuming the ID

or other independent residual structure.

Simply speaking, the above procedure consists of two steps. In the
first step, transformed variables are obtained from a regression-
with-autoregressive-error model for each individual.2 In the
second step, the intended MLM is applied to the transformed
variables obtained in the first step. We call this correction
method as the multilevel model with Cholesky transformation
(MLM-CT). The MLM-CT has several strengths in correction
of autocorrelation in error structure for intensive longitudinal
data. First, correction is applied for by each individual, without
unrealistic identical distribution assumption in ILD. Second,
time intervals between successive observations are not restricted
to be equal across different individuals, although time intervals
within individuals are restricted to be similarly spaced.3 Third,
the correction is applicable to even higher order autoregressive
error structure of general AR(p) models and, if required, allows
different orders of autoregressive processes across individuals.

The suggested procedure may seem to be complicated to
employ for applied researchers but can be easily done by using a
commercial statistical software available. A SAS example code for
the MLM-CT along with two commonly used multilevel models
and the results of the analyses with a simulated data are presented
in Appendix, which can be found in the Supplementary Material
for this article.

PERFORMANCE IN ESTIMATION OF MLMS
WITH HETEROGENEOUS
AUTOREGRESSIVE ERRORS: A
SIMULATION STUDY

The previous studies reported that misspecification of error
covariance structure is associated with overestimation of variance
components of the random effects and the standard errors of
the fixed effects (Ferron et al., 2002; Kwok et al., 2007). We also
focused on the effect of misspecification of R on the estimation
of fixed effects and the variance components in G, in the
sense that if MLMs assume homogenous Ri, when it is in fact
heterogeneous, the misspecified Ri may cause bias in estimation
of the parameters in MLMs. To this end, a simulation study was
conducted in which data generated from a longitudinal multilevel
structure with heterogeneous autoregressive error process were
analyzed by MLMs with homogenous assumption. The two

2Commercial statistical software such as AUTOREG procedure in SAS can be used

for this step. See Appendix for more details.
3For unequally spaced observations often encountered in ecological momentary

assessment, a continuous time Markov process, et = φhet−1 + wt , where φ = e−θ,

θ > 0, wt ∼ N(0, σ2w), h ≥ 0, can be used to model R and thus the transformation

matrix A.
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most commonly used covariance structures for the analysis of
longitudinal data, that is, ID and AR(1) were used to build
misspecified models. In addition, the estimated parameters of the
MLM with Cholesky transformation was evaluated against those
of the misspecified models.

Method
For simplicity, the following two-level linear mixed model was
used to generate data:

yti = γ00 + γ10zti + γ01ci + γ11cizti + u0i + u1izti + eti, (17)

where γ00 is the fixed intercept, γ10 is the fixed effect of a
time-varying covariate zti, γ01 is the fixed effect of a time-
invariant covariate ci, γ11 is the fixed effect of the cross-level
interaction of zti and ci, u0i is the random intercept, and u1i is the
random effect of zti.

4 The time-varying covariate zti and the time-
invariant covariate ci were generated from the standard normal
distribution. Parameters of all fixed effects were set to 1. The
random effect u0i and u1i were distributed multivariate normal as
(

u0i
u1i

)

Ñ

([

0
0

]

,

[

σ 2
u0

σu0u1 σ 2
u1

])

, where σ 2
u0 = 0.5, σ 2

u1 = 0.5, and

σu0u1 = 0.15 (i.e., ru0u1 = .3). The errors were generated with
a first order autoregressive model, eti = ρie(t−1)i + wti,wti ∼

N(0, 1).
The autoregressive parameter ρi was allowed to vary across

individuals, generated from a uniform distribution as ρi ∼

U(ρ – 0.3, ρ + 0.3), where ρ = 0.0, 0.3, or 0.6, implying
that E(ρi) = 0.0, 0.3, or 0.6, respectively. Each data set was
completely balanced with L (series length, or the number of
observations within individuals) = 20, 50, 100, or 200 and N
(the number of individuals) = 20, 50, 100, or 200. Accordingly,
4(N) × 4(L) × 3(ρ) = 48 conditions were obtained. In each
condition, 500 data sets were simulated, resulting in a total
of 24,000 data sets. Each data set was analyzed three times
separately by three different MLMs: MLM with ID covariance
structure (MLM-ID), MLM with a homogenous first order
autoregressive covariance structure (MLM-AR), and MLM with
Cholesky transformation (MLM-CT), resulting in a total of
72,000 analyses. For the transformation procedure in the first
step of MLM-CT, a regression model with autoregressive errors
was fitted for each individual and variables were transformed
by using the AUTOREG procedure in SAS with ML estimation.
After transformation, the transformed variables were fitted by the
MLM with ID structure in the second step. All three MLMs were
properly modeled and fitted using the MIXED procedure in SAS
with restricted maximum likelihood estimation.

Bias in parameter estimation was investigated in terms of
relative bias for the fixed effects γ00, γ10, γ01, and γ11 and
the variance components, σ 2

u0, σ
2
u1, and σu0u1. Relative bias was

calculated in percentage as 1
R

R
∑

r=1

θ̂r−θ
θ

× 100, where θ is the true

parameter value, θ̂r is the corresponding sample estimate of the
rth sample, and R is the number of replications converged in

4The matrix form of the model can be expressed as in Equation 14.

each condition.5 Biases in the estimated standard error were also
investigated. Relative bias of standard error for the fixed effects

was also calculated in percentage as 1
R

R
∑

r=1

θ̂r−θ
θ

× 100, where θ is

the true standard error and θ̂r is the estimated standard error for
the rth sample.

The estimates of the fixed effects obtained by the two
misspecified MLMs (i.e., MLM-ID and MLM-AR) were expected
to be unbiased because misspecified error covariance structure
is unlikely to influence bias in point estimation of the fixed
effects. Estimates of the variance components of random effects,
however, are likely to be biased for the two MLMs with
misspecified covariance structures, especially for the variance
of random intercept with high serial correlations (see Ferron
et al., 2002; Kwok et al., 2007). This bias was expected to be
greater for MLM-ID than MLM-AR because the first is more
restricted by the independence assumption. In addition, MLM-
CT is expected to reduce biases of estimates of the variance
components in some conditions, but not in other conditions.
Specifically, because a successful correction of the MLM-CT
depends on valid transformation in the first step, which requires
enough number of observations for each individual, a less biased
estimation in the second step was expected not for the data with
a relatively small to moderate number of repeated observations
(e.g., L = 20 or 50) but for the data with a large number of
observations (e.g., L = 100 or 200) for each individual. Bias in
estimation of the standard error of estimation for the fixed effects
is also more likely in the MLM-ID and the MLM-AR, for the
data with a large number of repeated observations, than in the
MLM-CT, because the estimated standard error is a function of
the estimated variance components.

Results
Bias in Fixed Effects

A total of 72,000 analyses were all converged. Relative biases
for the estimates of the fixed effects (i.e., γ00, γ10, γ01, and γ11)
are presented in Table 1. No significant bias was found in the
estimation of the fixed effects across all the three methods.6 The
result suggests that the estimates of the fixed effects obtained by
MLMs with homogenous covariance assumption are not biased
when the error covariance structure is in fact heterogeneous. This
is true whether the sample size is small or large, series length is
short or long, and the average error autocorrelation is null or
high. The result also showed that the transformation procedure
does not produce biased estimates for the fixed effects in MLMs.

Bias in Variance and Covariance of Random Effects

Relative biases for the variance of the random effects (σ 2
u0

and σ 2
u1) and their covariance (σu0u1) are presented in Table 2.

There was a positive bias in the estimation of σ 2
u0 for the

5Because all true fixed effects were set to 1, relative biases of the fixed effects are in

fact the same as unstandardized biases.
6All biases were analyzed using appropriate statistical tests, e.g., t-test or ANOVA.

In the result section we only reported effect sizes with practical meaning (|RB| ≥

1.0 % and η2 ≥.01) but did not report test statistics and p-values because they

may distract the major findings of this simulation study with a large number of

replications.
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TABLE 1 | Relative Bias (%) of γ̂00, γ̂10, γ̂01 and γ̂11 under heterogeneous autocorrelations in error for the three different MLMs.

N L ρ = 0.0 ρ = 0.3 ρ = 0.6

ID AR(1) CT ID AR(1) CT ID AR(1) CT

γ̂00

20 20 −0.3 −0.3 −0.3 0.8 0.8 0.8 −0.4 −0.3 −0.5

50 −0.2 −0.2 −0.2 1.1 1.1 1.0 −0.2 −0.2 0.0

100 −0.8 −0.8 −0.8 0.9 0.9 0.9 0.2 0.2 0.0

200 0.0 0.0 0.0 0.6 0.6 0.6 0.4 0.4 0.3

50 20 −0.4 −0.4 −0.3 −0.1 −0.1 −0.1 0.5 0.4 0.7

50 0.2 0.2 0.2 0.4 0.4 0.4 0.3 0.3 0.4

100 0.5 0.5 0.5 0.8 0.8 0.8 −0.7 −0.7 −0.8

200 0.0 0.0 0.0 −0.6 −0.6 −0.6 −0.7 −0.7 −0.6

100 20 0.2 0.2 0.2 0.0 0.0 0.0 −0.2 −0.2 −0.1

50 −0.7 −0.7 −0.7 −0.3 −0.3 −0.3 −0.3 −0.3 −0.2

100 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5 0.8 0.8 0.8

200 −0.6 −0.6 −0.6 0.2 0.2 0.2 0.5 0.5 0.5

200 20 −0.7 −0.7 −0.7 0.2 0.2 0.2 0.4 0.4 0.3

50 0.2 0.2 0.2 0.1 0.1 0.1 0.4 0.4 0.4

100 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 0.0 0.0 0.0

200 0.0 0.0 0.0 −0.1 −0.1 −0.1 0.1 0.1 0.1

γ̂10

20 20 −0.6 −0.6 −0.6 0.5 0.5 0.4 −1.1 −0.9 −1.0

50 −0.5 −0.5 −0.5 0.4 0.4 0.4 −0.3 −0.2 −0.2

100 −0.6 −0.6 −0.6 0.1 0.2 0.2 −0.6 −0.6 −0.6

200 −0.8 −0.8 −0.8 −0.6 −0.6 −0.6 0.8 0.8 0.8

50 20 −0.4 −0.4 −0.4 −0.1 −0.1 −0.1 −0.2 −0.2 −0.2

50 −0.2 −0.2 −0.2 0.5 0.5 0.6 1.0 1.0 1.0

100 −0.2 −0.2 −0.2 1.1 1.1 1.1 0.3 0.2 0.2

200 0.0 0.0 0.0 −0.5 −0.5 −0.5 0.0 0.0 0.0

100 20 0.5 0.5 0.6 0.0 −0.1 −0.1 −0.3 −0.2 −0.2

50 −0.5 −0.5 −0.5 −0.5 −0.5 −0.4 0.6 0.6 0.6

100 0.0 0.0 0.0 −0.5 −0.5 −0.5 −0.1 −0.2 −0.2

200 −0.1 −0.1 −0.1 0.3 0.3 0.3 −0.1 −0.1 −0.1

200 20 −0.5 −0.5 −0.4 0.2 0.2 0.2 0.2 0.2 0.2

50 −0.1 −0.1 −0.1 0.0 0.0 0.0 0.0 0.0 0.0

100 0.1 0.1 0.1 0.0 0.0 −0.1 0.1 0.0 0.0

200 0.3 0.3 0.3 −0.3 −0.3 −0.3 0.3 0.2 0.3

γ̂01

20 20 0.4 0.4 0.4 −0.2 −0.2 −0.2 0.5 0.4 0.6

50 0.3 0.3 0.2 −1.1 −1.1 −1.2 1.1 1.2 1.4

100 −1.3 −1.3 −1.3 −0.1 −0.1 −0.1 −0.2 −0.2 −0.4

200 −1.1 −1.1 −1.2 −0.5 −0.5 −0.5 −1.5 −1.5 −1.6

50 20 −1.0 −1.0 −1.0 0.3 0.3 0.3 0.1 0.1 0.0

50 0.4 0.4 0.4 0.1 0.1 0.1 −0.7 −0.7 −0.8

100 −1.2 −1.2 −1.2 0.2 0.2 0.2 0.5 0.5 0.4

200 0.2 0.2 0.2 −0.4 −0.4 −0.4 0.2 0.2 0.2

100 20 −0.1 −0.1 −0.2 −0.1 −0.1 0.0 0.3 0.2 0.2

50 0.2 0.2 0.2 0.1 0.1 0.0 −0.1 −0.1 −0.2

100 −0.1 −0.1 −0.1 0.2 0.2 0.2 0.0 −0.1 0.0

200 0.3 0.3 0.3 −0.1 −0.1 −0.2 −0.5 −0.5 −0.5

200 20 −0.1 −0.1 0.0 −0.4 −0.4 −0.4 0.4 0.4 0.4

50 0.1 0.1 0.1 0.0 0.0 0.0 −0.3 −0.3 −0.4

(Continued)
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TABLE 1 | Continued

N L ρ = 0.0 ρ = 0.3 ρ = 0.6

ID AR(1) CT ID AR(1) CT ID AR(1) CT

100 −0.1 −0.1 −0.1 0.1 0.1 0.1 −0.3 −0.3 −0.3

200 0.1 0.1 0.1 0.3 0.3 0.3 −0.1 −0.1 −0.1

γ̂11

20 20 0.8 0.8 0.7 −1.3 −1.3 −1.3 0.8 0.6 0.6

50 1.0 1.0 1.0 −0.1 −0.1 0.0 0.7 0.6 0.6

100 −0.3 −0.3 −0.3 0.1 0.1 0.1 −0.2 −0.2 −0.2

200 −1.2 −1.1 −1.1 −0.1 −0.1 −0.1 −0.7 −0.8 −0.7

50 20 0.2 0.2 0.2 0.4 0.3 0.4 −1.3 −1.1 −1.1

50 0.7 0.7 0.7 0.5 0.6 0.6 −0.5 −0.5 −0.5

100 −0.4 −0.4 −0.3 0.6 0.6 0.6 0.6 0.5 0.5

200 −0.7 −0.7 −0.7 −0.3 −0.3 −0.3 0.6 0.6 0.6

100 20 0.2 0.2 0.2 −0.1 −0.1 −0.1 −0.1 −0.2 −0.2

50 −0.2 −0.2 −0.2 0.2 0.1 0.1 0.0 0.1 0.0

100 0.0 0.0 0.0 −0.1 −0.1 −0.1 −0.2 −0.1 −0.1

200 −0.3 −0.3 −0.3 −0.1 −0.1 −0.1 −0.3 −0.2 −0.3

200 20 0.1 0.1 0.1 −0.3 −0.2 −0.2 0.6 0.6 0.6

50 0.4 0.4 0.4 0.1 0.1 0.1 −0.1 −0.1 −0.1

100 −0.4 −0.4 −0.4 0.1 0.1 0.1 −0.3 −0.2 −0.2

200 0.3 0.3 0.3 −0.1 −0.1 −0.1 −0.2 −0.2 −0.2

ID, MLM with homogenous variance assumption; AR(1), MLM with homogenous first order autoregressive error structure; CT, MLM with Cholesky transformation. ρ, average

autocorrelation; N, sample size; L, series length.

two misspecified models, overall relative biases were 16.3% for
the MLM-ID and 5.4% for the MLM-AR. For the MLM-ID,
bias appeared particularly large when high autocorrelation was
present (η2 = 0.24) or series length was short (η2 = 0.09) and
even larger when both conditions occurred (η2 = 0.12) (see
Table 2 and Figure 1). A similar pattern of significance of the
effects was also found for the MLM-AR although the magnitude
of the effects was smaller than that for the ID model: η2 =

0.02 for series length, η2 = 0.05 for autocorrelation, and η2 =

0.03 for their interaction. Bias was much higher in the MLM-
ID than the MLM-AR (η2 = 0.26) when analyzed by 2(method)
× 3(N) × 4(L) × 3(ρ) repeated ANOVA. This difference was
greater especially when series length was short (η2 = 0.14), or
autocorrelation was high (η2 = 0.33), and even greater when both
conditions occurred (η2 = 0.17) (see Figure 1).

On the other hand, the transformation method did not
completely eliminate bias in the estimates of σ 2

u0. The MLM-
CT method also showed a significant relative bias (overall
RB = 5.6%), especially when series length was short (η2 =

0.05), autocorrelation was high (η2 = 0.06), or both conditions
occurred (η2 = 0.07). In fact, when series length was 20,
regardless of the size of autocorrelation, the MLM-CT showed
larger bias than the MLM-AR. However, when series length was
50 or more, the differences were indiscernible and, for ρ =

0.6, the MLM-CT showed smaller bias than the MLM-AR (see
Figure 1).

By contrast, no significant bias was found in estimation of the
variance of the random regression effect (σ 2

u1) and the covariance
of the two random effects (σu0u1) for the three models. There was

no considerable difference of the relative bias among the three
models.

Bias in the Standard Error of Estimation for Fixed

Effects

Because of the bias in the estimated variance of the random
intercept, the standard errors of estimation associated with the
fixed effects are also expected to be biased. Table 3 presents
relative bias of the estimated standard error for γ̂00, γ̂10, γ̂01, and
γ̂11. Notice the great similarities of the results for the standard
errors of γ̂00 and γ̂01 as well as for those of γ̂10 and γ̂11 in Table 3.

Overall relative bias of the estimated standard error of the
estimates for the fixed intercept (γ̂00) was found in the ID model
(RB = 1.2%) and the AR model (RB = 0.9%) but not for the
MLM-CT model (RB = 0.2%). Bias of the ID model was mainly
affected by series length (η2 = 0.01), autocorrelation (η2 = 0.04),
and the interaction of the two (η2 = 0.02). Bias of the AR model
was also affected by series length (η2 = 0.01), autocorrelation (η2

= 0.03), and the interaction of the two (η2 = 0.02). Bias of the
MLM-CT model was affected by the interaction of series length
by autocorrelation (η2 = 0.01).

As in the bias of σ̂ 2
u0, relative bias for the standard error of

the fixed intercept appeared greater in the ID model than the
AR model (η2 = 0.04). Bias difference between the two methods
was affected by series length (η2 = 0.04), autocorrelation (η2 =
0.07), and the interaction of the two (η2 = 0.05). On the other
hand, the MLM-CT showed smaller bias than the AR model
(η2 = 0.05), where the difference was affected by series length
(η2 = 0.01), autocorrelation (η2 = 0.11), and their interaction
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TABLE 2 | Relative bias (%) of σ̂2
u0, σ̂2

u1, and σ̂u0u1 under heterogeneous autocorrelations in error for the three different MLMs.

N L ρ = 0.0 ρ = 0.3 ρ = 0.6

ID AR(1) CT ID AR(1) CT ID AR(1) CT

σ̂2
u0

20 20 1.6 1.5 2.0 10.1 −0.8 0.5 98.3 35.9 49.7

50 −0.8 −0.8 −1.0 6.6 2.4 2.3 45.5 14.6 12.0

100 −0.6 −0.6 −0.8 1.3 −0.9 −1.4 22.5 7.1 3.4

200 −0.8 −0.8 −0.9 1.4 0.3 0.2 11.9 4.2 1.9

50 20 0.7 0.8 0.9 11.7 1.2 4.0 93.0 32.5 44.9

50 1.3 1.3 1.1 6.8 2.5 2.0 45.2 16.9 13.4

100 −2.1 −2.1 −2.2 2.8 0.6 0.2 21.4 6.2 2.3

200 −0.9 −0.9 −1.0 1.1 0.1 −0.1 11.0 3.0 0.6

100 20 0.8 0.8 1.0 12.9 2.6 4.7 93.5 33.4 44.3

50 1.4 1.4 1.2 4.7 0.4 −0.1 44.4 15.8 11.4

100 0.0 0.0 −0.1 3.2 1.0 0.6 24.0 8.8 4.0

200 0.4 0.4 0.3 0.5 −0.6 −0.9 12.1 4.3 1.3

200 20 0.3 0.4 0.6 12.9 2.5 4.9 91.6 31.8 42.6

50 0.4 0.4 0.2 5.3 1.0 0.5 43.4 15.0 10.7

100 0.3 0.3 0.1 2.1 0.0 −0.4 24.1 8.9 4.7

200 0.2 0.2 0.1 1.9 0.8 0.6 12.4 4.6 1.5

σ̂2
u1

20 20 −0.2 −0.2 1.9 −1.4 −1.0 0.8 0.2 0.1 0.5

50 2.4 2.4 2.7 −1.9 −2.0 −1.9 −2.8 −2.5 −2.6

100 −0.6 −0.6 −0.4 2.3 2.2 2.2 2.7 3.0 2.9

200 −1.7 −1.7 −1.7 1.1 1.1 1.1 −0.4 −0.5 −0.5

50 20 −0.7 −0.7 1.6 −1.2 −1.3 0.4 −1.1 −1.3 −0.8

50 0.2 0.2 0.4 −0.4 −0.5 −0.4 −1.3 −0.9 −1.0

100 0.0 0.0 0.1 −0.9 −1.0 −0.9 −1.4 −1.1 −1.1

200 −0.4 −0.4 −0.4 −0.4 −0.4 −0.4 0.8 0.8 0.7

100 20 0.0 0.0 1.9 0.2 0.1 1.8 −0.1 0.0 0.2

50 −0.4 −0.4 −0.1 0.4 0.2 0.5 −0.5 −0.5 −0.5

100 −0.3 −0.3 −0.2 0.1 0.1 0.1 −0.7 −0.5 −0.6

200 1.0 0.9 1.0 −0.3 −0.3 −0.3 −0.5 −0.6 −0.6

200 20 −0.8 −0.8 1.4 0.1 0.1 1.7 0.3 0.2 0.6

50 0.2 0.2 0.5 1.0 1.0 1.2 −0.5 −0.3 −0.4

100 0.0 0.0 0.1 0.3 0.2 0.3 −0.5 −0.5 −0.6

200 −0.3 −0.3 −0.3 −0.5 −0.5 −0.5 −0.6 −0.4 −0.5

σ̂u0u1

20 20 1.4 1.3 1.5 −0.5 −0.5 −0.3 0.5 0.7 0.3

50 −0.5 −0.5 −0.5 −1.2 −1.3 −1.2 −3.7 −3.7 −3.6

100 −2.3 −2.3 −2.3 1.2 1.1 1.2 3.1 3.2 3.2

200 0.1 0.1 0.0 −0.9 −0.9 −0.9 0.2 0.1 0.1

50 20 −0.8 −0.8 −0.7 0.0 0.1 0.3 0.1 0.5 0.6

50 −0.4 −0.4 −0.4 0.8 0.8 0.8 0.8 0.6 0.7

100 −0.5 −0.5 −0.5 −0.8 −0.8 −0.8 −0.7 −0.5 −0.6

200 −0.4 −0.4 −0.4 0.5 0.5 0.5 −0.4 −0.3 −0.2

100 20 −0.1 −0.1 −0.1 0.3 0.3 0.3 −0.8 −0.7 −1.1

50 0.2 0.2 0.2 0.3 0.2 0.2 −0.3 −0.4 −0.2

100 0.7 0.7 0.7 0.0 0.0 0.0 −0.4 −0.4 −0.3

200 0.5 0.5 0.5 0.3 0.3 0.3 −0.5 −0.5 −0.5

200 20 −0.3 −0.3 −0.3 0.0 0.0 0.1 −0.6 −0.6 −0.7

50 0.6 0.6 0.6 0.2 0.2 0.2 −0.5 −0.3 −0.2

100 0.1 0.1 0.1 −0.2 −0.2 −0.2 0.4 0.4 0.4

200 0.0 0.0 0.0 −0.1 −0.1 −0.1 −0.1 −0.1 0.0

ID, MLM with homogenous variance assumption; AR(1), MLM with homogenous first order autoregressive error structure; CT, MLM with Cholesky transformation. ρ, average

autocorrelation; N, sample size; L, series length.
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FIGURE 1 | Line plots of relative bias of σ̂2
u0

, σ̂2
u1

, and σ̂u0u1 produced by the three MLMs across autocorrelations and series lengths.

(η2 = 0.03). The results support that the transformation method
is less biased in the estimation of the standard error of γ̂00 than
the misspecified models, especially when average autocorrelation
is high and the series length is long (see Figure 2).

As seen in Table 3 and Figure 2, the results of the analyses for
the standard errors of γ̂01, the fixed effect of the time-invariant
covariate ci, were almost identical to those of γ̂00. Overall relative
bias of the estimated standard error of γ̂01 was found in the ID
model (RB = 1.2%) and the AR model (RB = 0.9%) but not
for the MLM-CT model (RB = 0.2%). Bias of the ID model was
mainly affected by series length (η2 = 0.01), autocorrelation (η2

= 0.04), and the interaction of the two (η2 = 0.02). Bias of the AR
model was affected by series length (η2 = 0.01), autocorrelation
(η2 = 0.03), and the interaction (η2 = 0.02). Bias of the MLM-
CT model was affected by the interaction of series length by
autocorrelation (η2 = 0.01).

Relative bias of the standard error of γ̂10, the fixed effect of the
time-varying covariate zti, was statistically significant but their
sizes were not practically meaningful. The biases of the three
methods were not meaningfully affected by any of the factors
considered. The results of the analyses for the standard errors of
γ̂11, the fixed effect of the cross-level interaction of zti and ci, were
near identical to those of γ̂10.

In summary, all threemodels did not produce biased estimates
of the fixed intercept and regression effects. This was also true
for estimation of the variance of the random regression effect.

Estimation of the variance of the random intercept, however,
was severely biased when the average autocorrelation was 0.3 or
0.6, especially for MLM-ID. The MLM-AR was less biased than
the MLM-ID in these conditions but the amount of bias was
still unsatisfactory. The MLM with Cholesky transformation also
produced bias in the estimation of the variance of the random
intercept. In fact, the bias of the MLM-CT was higher than
MLM-AR when the number of observations within individuals
was 20. When the number of observation was large (50 or
more), however, the MLM-CT was less biased than the MLM-
AR. This was expected before analyzing the data. Because the
transformation procedure that actually estimates autoregressive
parameters for each individual requires a large number of
observations within individuals, the performance of the MLM-
CT depends critically on the number of observations. If this is not
the case, the first step of the MLM-CT may fail to identify a valid
transformation matrix, resulting in poor estimates in the second
step. Once enough number of observations are available and
analyzed for each individual, however, the MLM-CT produces
better estimates than the othermisspecifiedmodels when residual
covariance structure is hetetogeneous. Bias in the estimation
of the variance of the random intercept resulted in bias in
estimation of the standard error of the fixed intercept and the
fixed regression effect of time-invariant covariate. As seen in the
results, the MLM-CT may reduce this bias if a large number of
observations for each individual (say 50 or more) are available.
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TABLE 3 | Relative bias (%) of the Standard Error of γ̂00, γ̂10, γ̂01 and γ̂11 under heterogeneous autocorrelations in error for the three different MLMs.

N L ρ = 0.0 ρ = 0.3 ρ = 0.6

ID AR(1) CT ID AR(1) CT ID AR(1) CT

SE(γ̂00)

20 20 −0.8 −0.8 −0.6 −1.9 −2.1 −2.5 10.0 8.7 5.3

50 −2.0 −2.0 −1.9 −0.6 −0.6 −0.5 4.3 3.5 0.0

100 −1.8 −1.8 −1.8 −2.0 −2.0 −2.1 0.7 0.5 −1.3

200 −1.8 −1.8 −1.8 −1.4 −1.4 −1.3 −0.4 −0.5 −1.0

50 20 −0.4 −0.4 −0.3 −0.4 −0.6 −0.2 10.6 9.1 5.9

50 −0.1 −0.1 −0.1 0.3 0.3 0.2 5.5 5.0 1.9

100 −1.6 −1.6 −1.6 −0.4 −0.4 −0.5 1.3 1.2 −0.6

200 −1.0 −1.0 −1.0 −0.6 −0.6 −0.6 0.1 0.0 −0.6

100 20 −0.1 −0.1 0.0 0.4 0.3 0.5 11.2 9.6 6.3

50 0.3 0.3 0.3 −0.4 −0.4 −0.5 5.6 5.0 1.6

100 −0.3 −0.3 −0.3 0.1 0.0 0.0 2.8 2.5 0.5

200 −0.1 −0.1 −0.1 −0.7 −0.7 −0.7 0.9 0.8 0.0

200 20 −0.2 −0.2 0.0 0.6 0.4 0.7 10.8 9.4 5.9

50 0.0 0.0 0.0 0.0 0.0 0.0 5.5 4.9 1.5

100 0.0 0.0 −0.1 −0.3 −0.4 −0.4 2.9 2.7 0.9

200 −0.1 −0.1 −0.1 0.2 0.2 0.2 1.1 1.0 0.3

SE(γ̂10)

20 20 −1.2 −1.3 −0.9 −1.1 −1.8 −1.4 2.3 −1.4 −1.1

50 −0.2 −0.2 −0.3 −1.8 −2.3 −2.3 −0.8 −2.7 −2.7

100 −1.7 −1.7 −1.7 0.0 −0.3 −0.3 1.0 0.1 0.1

200 −2.1 −2.1 −2.2 −0.6 −0.7 −0.7 −0.9 −1.5 −1.6

50 20 −0.6 −0.6 −0.3 0.0 −0.9 −0.5 2.7 −1.1 −0.8

50 −0.3 −0.3 −0.4 −0.3 −0.7 −0.7 0.8 −1.0 −1.0

100 −0.4 −0.4 −0.5 −0.8 −1.0 −1.0 −0.1 −1.1 −1.1

200 −0.7 −0.7 −0.7 −0.6 −0.7 −0.7 0.4 −0.2 −0.2

100 20 0.0 0.0 0.2 0.8 −0.1 0.3 3.4 −0.2 0.0

50 −0.3 −0.3 −0.4 0.4 −0.1 −0.1 1.5 −0.5 −0.5

100 −0.3 −0.3 −0.4 0.1 −0.2 −0.2 0.5 −0.5 −0.5

200 0.3 0.3 0.2 −0.3 −0.4 −0.4 0.1 −0.5 −0.5

200 20 −0.2 −0.2 0.1 0.9 0.1 0.4 3.8 0.0 0.2

50 0.1 0.1 0.1 0.8 0.4 0.4 1.6 −0.3 −0.3

100 −0.1 −0.1 −0.1 0.2 0.0 0.0 0.7 −0.4 −0.4

200 −0.2 −0.2 −0.3 −0.2 −0.3 −0.3 0.2 −0.3 −0.4

SE(γ̂01)

20 20 −0.8 −0.9 −0.6 −1.8 −2.0 −2.4 10.1 8.8 5.4

50 −2.0 −2.0 −2.0 −0.6 −0.6 −0.6 4.7 3.9 0.1

100 −1.8 −1.8 −1.8 −2.0 −2.0 −2.1 0.6 0.4 −1.2

200 −1.8 −1.8 −1.8 −1.3 −1.4 −1.3 −0.4 −0.5 −1.1

50 20 −0.4 −0.4 −0.3 −0.4 −0.5 −0.2 10.5 9.1 5.8

50 −0.1 −0.1 −0.1 0.3 0.3 0.2 5.3 4.8 1.8

100 −1.6 −1.6 −1.6 −0.4 −0.4 −0.4 1.2 1.1 −0.6

200 −1.0 −1.0 −1.0 −0.6 −0.6 −0.6 0.0 −0.1 −0.6

100 20 −0.1 −0.1 0.0 0.4 0.2 0.4 11.2 9.7 6.2

50 0.3 0.3 0.3 −0.3 −0.4 −0.5 5.5 4.9 1.6

100 −0.3 −0.3 −0.3 0.0 0.0 0.0 2.6 2.4 0.5

200 −0.1 −0.1 −0.1 −0.7 −0.7 −0.7 0.9 0.8 0.0

(Continued)
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TABLE 3 | Continued

N L ρ = 0.0 ρ = 0.3 ρ = 0.6

ID AR(1) CT ID AR(1) CT ID AR(1) CT

200 20 −0.2 −0.2 0.0 0.6 0.5 0.8 10.7 9.2 5.9

50 0.0 0.0 0.0 0.0 0.0 0.0 5.5 4.9 1.6

100 −0.1 −0.1 −0.1 −0.3 −0.4 −0.4 2.9 2.7 0.9

200 −0.1 −0.1 −0.1 0.2 0.2 0.2 1.1 1.1 0.3

SE(γ̂11)

20 20 −1.2 −1.3 −0.9 −1.1 −1.8 −1.4 2.4 −1.4 −1.2

50 −0.2 −0.2 −0.3 −1.8 −2.3 −2.3 −0.8 −2.7 −2.7

100 −1.7 −1.7 −1.7 0.0 −0.3 −0.3 1.0 0.1 0.1

200 −2.1 −2.1 −2.2 −0.6 −0.7 −0.7 −0.9 −1.5 −1.6

50 20 −0.6 −0.6 −0.3 0.0 −0.9 −0.5 2.7 −1.1 −0.8

50 −0.3 −0.3 −0.4 −0.3 −0.7 −0.7 0.8 −1.0 −1.0

100 −0.4 −0.4 −0.5 −0.8 −1.0 −1.0 −0.1 −1.1 −1.1

200 −0.7 −0.7 −0.7 −0.6 −0.7 −0.7 0.4 −0.2 −0.2

100 20 0.0 0.0 0.2 0.8 −0.1 0.3 3.4 −0.2 0.0

50 −0.3 −0.3 −0.4 0.4 −0.1 −0.1 1.5 −0.5 −0.5

100 −0.3 −0.3 −0.4 0.1 −0.2 −0.2 0.5 −0.5 −0.5

200 0.3 0.3 0.2 −0.3 −0.4 −0.4 0.1 −0.5 −0.5

200 20 −0.2 −0.2 0.1 0.9 0.1 0.4 3.8 0.0 0.2

50 0.1 0.1 0.1 0.8 0.4 0.4 1.6 −0.3 −0.3

100 −0.1 −0.1 −0.1 0.2 0.0 0.0 0.7 −0.4 −0.4

200 −0.2 −0.2 −0.3 −0.2 −0.3 −0.3 0.2 −0.3 −0.4

ID, MLM with homogenous variance assumption; AR(1), MLM with homogenous first order autoregressive error structure; CT, MLM with Cholesky transformation; SE, standard error.

ρ, average autocorrelation; N, sample size; L, series length.

DISCUSSION

In this paper, we discussed issues related to the heterogeneity
of residual covariance in multilevel analysis of intensive
longitudinal data. We investigated bias in estimation of
fixed effects, random components, and standard errors
of fixed effects by analyzing large sets of simulated data
with heterogeneous autoregressive errors using MLMs with
misspecified homogenous ID or AR(1) error structure and the
suggested MLM with Cholesky transformation. We found that if
homogenous covariance is incorrectly assumed, MLMs produce
a highly biased estimate of the variance of random intercepts
when the average autocorrelation is high. It is also found that
biased estimates of random intercept variance also create biased
estimates of the standard error of the fixed intercept and fixed
effect of level 2 covariate. For intensive longitudinal data, we saw
that application of MLMs to variables transformed by the inverse
of Cholesky factor of individual specific residual covariance can
be used to reduce the bias.

One obvious result of the present study is that bias of
the variance component was found only in the variance of
random intercepts but not in the variance of random time-
varying effects and the covariance of the two. This effect of
misspecification is especially true for MLM with homogenous
ID error structure when the average residual autocorrelation is
high. This result is in line with findings of the previous studies
that investigated the effect of underspecification of homogenous
within-person covariance, such as misspecifying homogenous

autoregressive error structure as homogenous independent error
structure (Ferron et al., 2002; Kwok et al., 2007). As pointed
out by Kwok et al., the total covariance matrix of the two-level
model is constructed from covariance of between-person random
components and covariance of within-person random errors, i.e.,
6 = ZGZ′ + R. Because the total covariance 6 is primarily
determined by a given data set, misspecification of R alters the
values of elements in G, i.e., their relations are compensatory to
each other. The results of the present study and other related
studies suggest that unmodeled autocorrelation in R tends to
cause an increased estimate of the variance of random intercepts
that helps to explain overall (not first-order) autocorrelation
between observations at different time points. Note that 6

of the random intercept only model with independent R is
the same as that of the fixed effects only model (i.e., null G)
with compound symmetry R. Thus, the notable bias of the
variance of random intercepts found in MLM with homogenous
ID error structure is mainly caused by misspecification of
autoregression rather than by misspecification of heterogeneity.
This line of reasoning is supported by the fact that the
difference of the biases between MLM with homogenous
autoregressive error and MLM with Cholesky transformation,
an analytical model that takes heterogeneity of residual
autoregression into account, is not as big as the differences of
the biases between those models and MLM with homogenous
independent error.

On the contrary, MLMwith homogenous ID errors andMLM
with homogenous AR errors showed similar amounts of bias
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FIGURE 2 | Line plots of relative bias of the standard error of γ̂00 , γ̂10 , γ̂01 and γ̂11 produced by the three MLMs across series lengths when ρ = 0.6.

in the standard errors of fixed intercept and fixed effect of
time-invariant level-2 covariate when average autocorrelation is
high. Because estimates of the standard errors of fixed effects
are determined by the estimated covariance matrix of γ̂, Ĉ =
[

X′6̂
−1

X
]−1

, the bias of the standard errors of fixed effects

depends on the estimated total covariance. Overall it appears
that overestimated Ĝ, especially the variance estimate of random

intercepts, tend to increase certain elements in 6̂ that construct
the variances of the estimates of fixed intercept and fixed effect of
level-2 covariate. However, difference in Ĝ does not necessarily

create a similar amount of difference in 6̂ because Ĝ and R̂ are
compensatory to each other. Thus, the greater differences in bias
of the standard errors between the two misspecified models and
the suggested model with transformation are likely caused by
misspecification of heterogeneity, which is not ignorable when
average autocorrelation is as high as 0.6.

Another point of the result is that the number of individuals
is not an important factor of bias in MLM with ILD.
Instead, the number of observations within each individual
is a much more important factor of the biases. Thus, if you
have intensive longitudinal data with 50 or more repeated
observations within individuals and the variable of your interest
is highly autocorrelated, the suggested MLM with Cholesky
transformation is recommended. If not, there is no practical

advantage of using the transformation method and use of MLM
with homogenous autoregressive errors has no disadvantage.
The transformation method can be applied to EMA data that
show different and highly autocorrelated processes with enough
number of repeated observations within individuals (e.g., Koval
and Kuppens, 2012; Ebner-Priemer et al., 2015).

The idea of transformation to analyze multilevel data has been
applied to researchers in other contexts. Moeyaert et al. (2013)
standardized a set of single-subject experimental data before
employing a three-level regression analysis to synthesize different
studies. Lee and Yoo (2014) introduced a Bayesian modeling
with Cholesky factor to model random effects covariance matrix
for generalized linear mixed models. However, these approaches
are not explicitly interested in heterogeneous and autocorrelated
error structure.

Several limitations of the present studies are acknowledged.
First, because the suggested procedure consists of two steps, it
suffers from problems common to any two-step approach. The
transformation method requires estimation of autocorrelation or
autoregressive parameters of individual time series in the first
step and application of the intended MLM on the transformed
variables in the second step. As such, a major limitation of
the suggested model is a high dependency of the performance
in the first step analysis. If poor transformation matrices are
obtained in the first step, the final intended MLMs will produce
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biased estimation of the parameters of interest. For intensive
longitudinal data, however, this concern is not critical because
performance of the first step analysis gets better as the number
of observations within individuals increases. However, for
longitudinal data with small to moderate number of observations
within individuals, the suggested two-step approaches may
produce biased estimation and should not be used. An iterative
method alternating the two steps may converge to a better
solution.

Another limitation is related to the assessed time intervals
between successive measurements. The error covariance
structures used in the transformation method in this study
assume constant and equally spaced time of measurements.
Because ILD are often measured at randomly prompted
times, e.g., within-day random assessments of electronic diary,
transformation methods introduced in the present study cannot
be applied directly to ILD with random time intervals. However,
the suggested transformation method should be extended to
ILD with random time intervals. In such cases, heterogeneous
covariance with autocorrelation that exponentially decreases
over random time intervals may be modeled and estimated
by individual and then transformation of original variables by
multiplying the inverse of the Cholesky factor of the estimated
covariance matrix can be applied to get valid estimation of fixed
effects and the variance of random effects. Another simulation
study can be conducted to evaluate the performance of the
transformation method on ILD with random time intervals and
heterogeneous autocorrelation.

Intensive longitudinal data are useful to investigate various
patterns of intra-individual processes. Although we restricted
our discussion on the analysis of ILD to the multilevel models
for fixed effects and random components, there are still other
possibilities of modeling intra-individual processes using ILD.
For example, heterogeneity of autocorrelation can be modeled
in MLMs. In this regard, an interesting extension of MLM

has been suggested by Rovine and Walls (2006). They showed
that the autoregressive parameters can be modeled as random
effects in MLM, which allow estimation of individual specific

autoregressive parameters. This model has been applied to many
EMA studies (e.g., Kuppens et al., 2010; Koval and Kuppens,
2012; Tompson et al., 2012; Bresin, 2014). Hedeker et al. (2008)
proposed a multilevel model for EMA data that allows person-
specific and time-varying heterogeneous variance. Kapur et al.
(2014) extended the model to data with multivariate outcomes
by a Bayesian modeling. More recently, multilevel models that
simultaneously estimate both heterogeneous autocorrelation and
heterogeneous error variance have been applied to ILD with
emphasis on Bayesian modeling (Wang et al., 2012; Gasimova
et al., 2014; Ebner-Priemer et al., 2015). Jahng et al. (2008)
suggested a multilevel random instability model for EMA
data where instability is equated as frequent and extreme
fluctuations over time and expressed as a function of variance and
autocorrelation. Other possibilities for modeling heterogeneous
intra-individual process include time-varying regression effects
(Fan and Gijbels, 1996; Li et al., 2006), nonlinear multilevel
models (Davidian and Giltinan, 1995; Fok and Ramsay, 2006),
state space models (Durbin and Koopman, 2001; Ho et al.,
2006), and differential equation models (Boker, 2001; Boker and
Laurenceau, 2006; Ramsay, 2006).
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