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There is evidence from a number of recent studies that most listeners are able to
extract information related to song identity, emotion, or genre from music excerpts with
durations in the range of tenths of seconds. Because of these very short durations, timbre
as a multifaceted auditory attribute appears as a plausible candidate for the type of
features that listeners make use of when processing short music excerpts. However,
the importance of timbre in listening tasks that involve short excerpts has not yet been
demonstrated empirically. Hence, the goal of this study was to develop a method that
allows to explore to what degree similarity judgments of short music clips can be modeled
with low-level acoustic features related to timbre. We utilized the similarity data from
two large samples of participants: Sample | was obtained via an online survey, used
16 clips of 400 ms length, and contained responses of 137,339 participants. Sample |I
was collected in a lab environment, used 16 clips of 800 ms length, and contained
responses from 648 participants. Our model used two sets of audio features which
included commonly used timbre descriptors and the well-known Mel-frequency cepstral
coefficients as well as their temporal derivates. In order to predict pairwise similarities, the
resulting distances between clips in terms of their audio features were used as predictor
variables with partial least-squares regression. We found that a sparse selection of three
to seven features from both descriptor sets—mainly encoding the coarse shape of the
spectrum as well as spectrotemporal variability —best predicted similarities across the
two sets of sounds. Notably, the inclusion of non-acoustic predictors of musical genre
and record release date allowed much better generalization performance and explained
up to 50% of shared variance (R?) between observations and model predictions. Overall,
the results of this study empirically demonstrate that both acoustic features related to
timbre as well as higher level categorical features such as musical genre play a major
role in the perception of short music clips.

Keywords: short audio clips, music similarity, timbre, audio features, genre

1. INTRODUCTION

There is growing evidence that human listeners are able to instantly categorize short music clips
containing complex mixtures of sounds, e.g., when scanning a radio dial or browsing through a
playlist. Even more, the information contained in clips lasting only a few hundred milliseconds or
less seems to be sufficient to perform tasks such as genre classification (Gjerdingen and Perrott,
2008; Mace et al., 2011; Plazak and Huron, 2011) or artist and song recognition (Schellenberg et al.,
1999; Krumhansl, 2010).
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More specifically, Gjerdingen and Perrott (2008) played
participants audio excerpts of commercially available music at
different lengths and asked them to indicate the genre of each
excerpt. They found that 44% of participants’ genre classifications
of 250 ms excerpts were identical to the classifications by the
same participants and of the same audio track when played for
3's, demonstrating that listeners extract a considerable amount
of information from very short excerpts. Results by Schellenberg
et al. (1999) showed that even 100 ms excerpts could be
matched to song title and artists with above-chance accuracy,
and that time- varying high frequency information (> 1 kHz)
was particularly important for correct identification. Similarly,
Krumhansl (2010) showed that listeners are able to identify the
artists and titles for 25% of a stimulus set consisting of 400 ms
clips of popular music spanning four decades. Mace et al. (2011)
were able to demonstrate that even at 125 ms length participants
were able to achieve an accuracy of 54% on a genre recognition
task which had a guessing level of 20%. At this timescale there
are few, if any discernible melodic, rhythmic, harmonic or metric
relationships to base judgements on. Though when musical-
structural information is minimal, timbral information can still
be rich.

Timbre is here understood as an umbrella term that denotes
the bundle of auditory features (other than pitch, loudness,
duration) that contribute to both sound source categories and
sound quality (McAdams, 2013). In fact, timbre seems to be
processed even from very short stimulus durations. For instance,
Bigand et al. (2011) showed that variability in the spectral
envelope can be processed from sounds as short as 50 ms.
More recent results by Suied et al. (2014) have shown that
listeners can even recognize timbre based on snippets as short
as 16 ms (depending on the instrument family). In the latter
study, performance increased monotonically with the length of
the excerpts and plateaued at around 64 ms.

Building on this research, Musil et al. (2013) devised an
individual differences test that investigates differences in the
ability to extract information from short audio clips and to use it
for similarity comparisons. This test forms part of the Goldsmiths
Musical Sophistication battery of listing tests (Miillensiefen
et al., 2014) and complements other individual differences tests
that focus on melodic memory and beat perception abilities.
The sound similarity test was designed to assess the ability to
decode and compare complex musical sound textures and to be
independent of temporal processing and memory capabilities and
therefore only makes use of very short musical stimuli. While the
test has been used in practice and proved to be fairly unrelated to
other musical listening abilities (Miillensiefen et al., 2015), it has
been difficult to build a model based on audio features that would
describe participants’ similarity judgements adequately (Musil
etal., 2013).

On the contrary, there is a rich literature on audio features
associated with computer-based instrument identification (Joder
et al, 2009), genre classification (e.g., Andén and Mallat,
2011), the prediction of affective qualities (Laurier et al., 2009;
McAdams et al., 2017), or more general aspects of the perception
of audio excerpts (Alluri and Toiviainen, 2010). Audio features
are most commonly derived from the Short-Time Fourier

Transform of the music signal, from which spectral or temporal
statistics are computed. A standard example are summary
statistics such as the mean (i.e., centroid) or spread of short-
time spectra, or the correlation of spectra across consecutive time
windows (spectral flux). It is important to note that the utility
of specific timbre descriptors as well as the size of feature sets
varies considerably across computational and perceptual tasks.
In effect, timbre description in psychology traditionally employs
a handful of, say, less than 10 features, whereas many music
information retrieval approaches rely on audio representations
with a substantially higher dimensionality (Siedenburg et al,
2016a).

None of the psychological studies on short audio clips has
used audio features to quantitatively model human perceptual
responses to very short audio clips. For that reason, it is currently
unclear to which extent simple categorization judgements can be
predicted by low-level properties of the audio signal, as opposed
to higher level concepts such as genre potentially inferred from
the audio. But constructing a cognitively adequate model of audio
similarity is not only useful for understanding what features and
cues listeners extract and process from short audio clips. It can
also serve as a first step for constructing future adaptive versions
of individual differences tests of audio classifications that could
allow a systematic scaling of difficulty of sets of audio clips by
selecting clips that are more or less similar.

This paper aims to contribute toward the understanding of
perceptual judgements of similarity for short music clips via a
modeling approach. The present contribution is the first study
to systematically quantify the extent to which similarity data
of short musical excerpts can be explained by acoustic timbre
descriptors. A notable feature of the current approach is that we
not only evaluate the constructed statistical models in terms of
their accuracy in describing a given set of observations, but also
in their capacities to generalize to unseen data sets. The predictive
accuracy of low-level timbre features is further compared with
variables that encode meta information in the form of the genre
and release date of songs.

This manuscript is organized as follows. In Section 2, we
describe the experimental samples, stimuli, and procedures that
provide the basis for our modeling study. In Section 3, the
structure of the model is described in detail, in particular
with regards to the audio features, normalization schemes,
and statistical models of perceptual similarity. In Section 4,
the presented models are comprehensively evaluated, before
potential implications on timbre modeling are discussed in
Section 5.

2. EXPERIMENTS

This study uses data from two separate experiments
that used a sorting paradigm to assess the perceptual
similarity of short music clips. In both cases the sorting
paradigm was part of a larger test battery on several
aspects of music perception (Miillensiefen et al, 2014).
Only the data gathered via the similarity sorting paradigm
is reported in this paper and has not been reported
previously. The Ethics Board of Goldsmiths, University of
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London approved the research undertaken and reported in
the manuscript.

2.1. Participants

Sample I comprised responses from 137,339 participants who
took part in the BBC Lab UK’s online test How Musical Are You?
in 2011 and 2012. The sample of participants is identical to the
sample reported by Miillensiefen et al. (2014, Study 4), although
the data from the sound similarity test has not been reported
previously. In the training sample, 45.2% of the participants were
female and mean age was 35.2 years (SD = 15). Participants
were mainly UK residents (66.9%) but because the How Musical
Are You? test was an open online application, the sample
also included participants from other mainly Western and
English-speaking countries (largest proportions: USA: 14.2%,
Canada: 2.3%, Australia: 1.1%). The sample contained a large
spread in terms of education (undergraduate degree/professional
qualification: 34.1%, still in education: 23.4%, postgraduate
degree: 19%, second school degree with around 18 years (e.g.,
British A-levels): 11.8%, first school degree around 16 years
(e.g., British GCSE/O-levels): 7.5%, etc.) as well as in terms
of the current profession of the participants (Other: 19.4%,
Education/Training: 12.4%, Unemployed: 10.7%, Information
technology: 7.1%, etc.). Only 1.8% stated “music” as their
occupation. Participants in Sample I were tested with 400 ms
excerpts.

Sample II comprised responses from 648 participants,
collected via several experimental batteries that were run at
Goldsmiths University of London between 2011 and 2014, all
of which contained the sound similarity test using 800 ms
excerpts. Participants came from a young student population
(undergraduates as well as postgraduates) and were less diverse
in terms of their educational and occupational background than
participants in Sample I'.

2.2, Stimuli

Prototypical but less well-known songs from four different genres
were selected as experimental stimuli, as described by Musil et al.
(2013). Because genre boundaries may be subjective and change
over time (Gjerdingen and Perrott, 2008), we used the main
four meta-genres identified by Rentfrow and Gosling (2003)
as a guidance and selected the most prominent popular music
style within each meta-category: jazz from reflective/complex,
rock from intense/rebellious, pop from upbeat/conventional,
and hip-hop from energetic/rhythmic. Additionally, following
Krumhansl’s (2010) finding that the approximate recording date
of a song can be identified fairly accurately from short excerpts,
specific decades were selected for each genre: 1960-70s for jazz,
1970-80s for rock, 1990-2000 for pop and hiphop. Exemplary
songs for each of these genres were selected from the suggestions
of prototypical songs given on the encyclopedic music datbase
allmusic.com. In order to avoid the recognition of specific overly
well-known tunes, songs were only selected if they were not

"Because participants of Sample II were aggregated from several individual
experiments, unfortunately it was impossible at this stage to track participants’
individual demographic information.

present in the all-time top-100 Billboard charts and had never
reached the top rank on the UK Billboard charts. However, two
of the selected songs (The Sign, I Wanna Love You Forever)
had reached first and third ranks of the US Hot-100 Billboard
charts, respectively. Hence, we cannot rule out the possibility
that individual participants might have recognized the songs of
individual excerpts. Aiming for representative sound fragments,
excerpts from each song were chosen such that the excerpt did
not contain any human voice, there were at least two recognizable
notes in the excerpt, and the fragment represented as much a
possible the maximal timbral diversity (i.e., maximum number of
instruments) of the song. In addition, the excerpt was preferably
taken from a repeated section of the song. A table with all song
titles, artists, and the corresponding genre is given in Table 1 of
the Appendix (Supplementary Materials).

Excerpts were extracted directly from .wav files taken from
the original CD recordings and stored at an audio sampling
rate of 44.1 kHz. For the computation of audio features, all
clips were converted to mono by summing both stereo channels.
For the two experiments, excerpts of lengths 400 ms (Sample I)
and 800 ms (Sample II) were used, extracted from different
locations in the song, to which a 20 ms fade-in and fade-out
was added. We needed to work with different stimulus durations
in Samples I and II because in the original sound similarity
sorting task (Miillensiefen et al., 2014), genre was used as a
proxy for sound similarity, based on the fact that songs that
belong to the same genre are often characterized by similarities
in sound (e.g., see Rentfrow et al., 2011). In the absence of a
perceptual-computational model of sound similarity at the stage
of designing the experimental task, genre was the best proxy
available to select groups of songs that would sound similar and at
the same time different from other groups of songs, thus allowing
to tentatively score the performance on the sorting task of each
participant. But from the analysis of the behavioral data obtained
for the 400ms excerpt set it became clear that many participants
scored close to chance level. After piloting different clip lengths,
a duration of 800ms then seemed to produce a distribution of
performance scores that better allowed to characterize inter-
individual differences.

2.3. Experimental procedure

The experimental paradigm was similar to the one used by
Gingras et al. (2011) and Giordano et al. (2010). The participants’
task was to listen to 16 short excerpts and to sort them into
four groups of four items each by their similarity in sound.
We deliberately avoided the term “genre” in the instructions
and did not specify the nature of the sound similarity. Excerpts
were identified by icons on a computer screen, while groups
corresponded to boxes. Participants could listen to an excerpt
by hovering over its icon, and could move icons around by
clicking and dragging. Participants were allowed to listen to each
clip as many times as they wished and change their sorting
solution as often as necessary. There was no time constraint
for the task and participants submitted their sorting solution
when they felt that it could not be amended further. Only
the final sorted state was recorded and used for subsequent
analysis.
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2.4. Data Characteristics

Pairwise perceptual similarity was defined as the relative number
of times two clips were placed in the same group by participants.
This measure is obtained by dividing the absolute number of
times two clips were placed in the same group by the respective
number of participants in each sample. The corresponding
distribution of similarities with range between zero and one is
shown in Figure 1 (left panel).

Recall from Section 2.1 that the demographics of the
participant populations from Samples I and II were not
matched. In order to rule out potentially confounding effects
of demographics on the similarity data, we drew subsamples
of Sample I that better matched the demographics of the
college-student population of Sample II. Among the 137,399
participants, there were 32,329 participants specifically with age
between 18 and 24 years. Thereof 18,639 participants stated
“At university” as occupational status, 3,199 participants stated
“Education/Training” as their occupation, and 1,957 participants
belonged to both categories. However, Pearson correlations
between the similarities derived from these subsamples and the
set of all participants were very strong, all r(118) > 0.992
(p < 0.001), which speaks against a pertinent influence of
demographics.

Note that the diagonal entries of the similarity matrices
depicted in Figurel (two rightmost panels) play a distinct
role. In fact, they derive from representing the data in matrix
form and not from participants’ direct classifications themselves
(who only encountered distinct clips). The value of the diagonal
entries of the matrix automatically equals one, regardless of
participants’ responses (because every clip trivially shares its
own group). However, their inclusion in the model bears the
danger of inflating figures of merit such as the coefficient of
determination R?. Because by simply differentiating identical
and non-identical clips with a binary variable, one can readily
obtain highly significant fits with the similarity data. For that
reason, we took a conservative stance and only considered non-
identical pairs for the following modeling, corresponding to the
lower triangular dissimilarity matrix without diagonal entries
(accordingly, the distribution of similarities depicted in the left
panel of Figurel only represents non-identical pairs). This
makes the interpretation of R? coefficients more meaningful,

but also reduced their magnitude by more than 20% points on
average.

3. MODEL STRUCTURE

Modeling the similarity data comprised three main stages: (i)
feature extraction from the audio clips, (ii) feature normalization,
and the (iii) modeling of pairwise similarities of features.
More specifically, we used two sets of audio features, both
of which contained 24 features. Both sets were normalized
in five different ways (but the normalized features were not
pooled). The resulting pairwise distances of clips’ audio features
were then used as predictor variables in a latent-variable linear
regression technique, namely partial least-squares regression
(PLSR). Specifically, PLSR attempts to find the multidimensional
direction (i.e., the latent variables) in the space of the predictor
variables that best explains the maximal variance of the
dependent variables. Figure2 visualizes the three modeling
stages. The basic model structure is similar to the timbre
dissimilarity model presented by Siedenburg et al. (2016b), but
complements stage i) with an additional set of features, considers
an array of normalization schemes in stage ii), and applies
the model to the case of short music clips instead of isolated
instrument tones.

3.1. Feature Sets

The two feature sets were: (i) a set of 24 timbre descriptors and
(ii) 12 Mel-frequency cepstral coeflicients (MFCCs) as well as 12
of their A-coefficients. In addition we also combined both sets to
obtain a third feature set (iii) with 48 features.

3.1.1. Timbre Descriptors

We used the Timbre Toolbox (v1.2, Peeters et al., 2011), a large
set of audio descriptors that describes the acoustic structure of
audio signals with a focus on timbre. For the current purpose,
we selected 24 out of its 164 descriptors. This selection possessed
great overlap with the 34 descriptors used in Siedenburg et al.
(2016b), which had provided a fairly robust model of musical
timbre dissimilarity of isolated musical tones, each played
individually on instruments of the Western orchestra. In contrast
to the isolated tone case, however, ten of the twelve temporal
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FIGURE 1 | (Left panel) Distribution of similarity data, here defined as the relative number of shared classifications of two clips. (Middle and right panel) pairwise
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descriptors were not taken into account for the description of
clips, because it could be assumed that measures of attack or
release-duration would not differ in any meaningful way across
the currently used clips, given that they were extracted from the
midsts of songs and contained dense musical textures.

Spectral shape descriptors were computed from an ERB-
spaced Gammatone filterbank decomposition of the signal.
They were measured with (fairly common) settings of 25 ms
time frames with 1/2 overlap and summarized via the median
and interquartile range as measures of central tendency and
variability, respectively. Spectral descriptors included the first
four moments of the spectral distribution, such as the spectral
centroid that has been shown to correlate with perceived
brightness (McAdams, 2013). Additional descriptors of the
spectral distribution such as the decrease and flatness were also
included, measuring spectral slope with an emphasis on lower
frequencies and the peakiness of the spectrum, respectively,
but also measures of spectrotemporal variation, relevant to
capture spectrotemporal variability (the so-called spectral flux)
(McAdams et al., 1995). We included four descriptors that were
based on the time domain representation of the signal: the
frequency and amplitude of energy modulation over time, and
the median and interquartile range of the zero crossing rate. A
full list of the descriptors is given in Table 2 in the Appendix
(Supplementary Materials).

3.1.2. Mel-Frequency Cepstral Coefficients

As an alternative set of features, we considered the commonly-
used Mel-frequency cepstral coefficients (MFCCs, Eronen, 2001)
and their temporal derivatives. MFCCs are derived via a discrete

cosine transform of the log-transformed power of Mel spectra.
MFCCs thus represent the shape of an audio signal’s spectral
envelope: going up from lower to higher coefficients, MFCCs
encode increasingly finer scales of spectral detail. MFCCs are
standard in various tasks in audio content analysis and music
information retrieval and have also been proposed as descriptors
for timbre perception (see the review in Siedenburg et al., 2016a).
In the current study, we used the first 12 MFCCs and their
corresponding 12 AMFCCs, i.e., their first derivative over time.
Both were computed for 25 ms time frames (1/2 overlap) of the
audio signal, and the resulting time series was summarized by the
median. These features were provided by the MIRtoolbox (v1.6.1,
Lartillot and Toiviainen, 2007).

3.2. Feature normalization

In order to regularize the often idiosyncratic distributions
of the raw feature values, five normalization schemes were
considered:

N1) None (i.e., using raw feature values),

N2) Range normalization to [0, 1],

N3) Z-scores with zero mean and unit standard deviation,

N4) Rank transformation according to the test set: replacing a
feature value by the fraction I/L, with I being the feature
value’s rank within the test set of size L,

N5) Rank transformation according to a corpus: replacing a
feature value by the fraction I'/L’, with I being the feature
value’s rank within the corpus of size L'

The corpus was obtained by extracting clips from a freely-
available audio data set sampled at 44.1 kHz (Homburg et al.,
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2005). We selected 110 songs for each of the four meta-genres
of the current test set (jazz, rock, pop, hiphop), from which
we extracted ten 800 ms clips each. The resulting 4,400 clips
constituted our corpus. All of the above mentioned features
were extracted from each clip of the corpus and used for the
corpus-based ranking.

3.3. Similarity Modeling via Partial

Least-Squares Regression

Per clip, each feature provided one scalar value. For any pair of
clips, feature-wise distances were obtained by taking the absolute
difference of the pair’s respective feature values. These distances
were summarized in a design matrix X of size m x n, where
m = 120 = 16 - 15/2 denotes the number of pairs, and n denotes
the number of features. As outlined above, in a first step we used
three sets with (i) n = 24 timbre features (from the Timbre
Toolbox, TT), (ii) n = 24 (A)MFCCs, and (iii) n = 48 features
in the combined set.

In order to handle collinearity of predictors (Peeters et al.,
2011), we used partial least-squares regression (PLSR, Geladi
and Kowalski, 1986; Wold et al., 2001). PLSR is a regression
technique that projects the predicted and observed variables
onto respective sets of latent variables, such that the resulting
variables’ mutual covariance is maximized. More precisely, given
a dependent variable y and an design matrix X, PLSR generates a
latent decomposition such that X = TP" + Eand y = Uq + F
with loadings matrices P (n x k) and q (1 x k), and components
(“scores”) T (m x k) and U (m x k) plus error terms E and
F. The matrix W* (n x k) comprises the predictors’ weights,
such that T = XW™. The regression coeflicients for the original
design matrix can be obtained by 8 = W*q' (cf., Wold et al,
2001), which yields a link to the generic multiple linear regression
(MLR) design via y = X + F. The decomposition maximizes
the covariance of T and U, which yields latent variables that are
optimized to capture the linear relation between observations
and predictions. In this sense, PLSR also differs from principal
component analysis (PCA) followed by MLR, as for instance used
by Alluri et al. (2012), since PCA does not specifically adapt the
latent decomposition to the dependent variable of interest.

In order to prevent overfitting of the response variable, the
model complexity k can be selected via cross-validation. We used
a model with k = 2 latent components, which yielded minimal
8-fold cross-validation errors in a majority of the model and
evaluation conditions. We used the implementation provided by
the plsregress.m function as part of MATLAB version R2015b
(The MathWorks, Inc., Natick, MA), which applies the SIMPLS
algorithm (De Jong, 1993).

The importance of individual predictors in the PLSR model
was assessed by bootstrapping, which eventually allowed us to
construct sparse regression models. For each of the two training
conditions, the significance of the individual model coefficients
Bi (i = 1,..,n) was estimated by bootstrapping the 95%
confidence interval of the coefficients (Efron and Tibshirani,
1994; Mehmood et al., 2012). We used a percentile-type method,
that is, from the 16 clips per stimulus set, the similarity data
of four randomly selected clips (drawn with replacement) were

left out from the sample (yielding on average around 60% of the
data points intact). This process was repeated 1,000 times. For
every coefficient B; the resulting 0.025 and 0.975 percentiles were
taken as confidence boundaries. If confidence intervals did not
overlap with zero, a predictor’s contribution was considered to be
significant, and the respective feature was selected for the sparse
model.

4. MODEL EVALUATION

The goal of the subsequent model evaluation was to identify
from among the three different feature sets and the five different
normalization schemes an accurate and robust model of the
perceptual similarity data. We place a special focus not only on
the question how accurately a statistical model can be fitted to
training data, but also on how well the model generalizes to a
new set of perceptual data gathered from a different set of audio
excerpts. This question is addressed by including sparse models
in the subsequent evaluations that are known to generalize better
to new datasets (Friedman et al., 2009) and by permuting the data
from Sample I and Sample II as training and testsets. This means,
each model is both fitted and tested on the datasets from Sample I
(400 ms clips) and Sample II (800 ms clips). This results in 2
x 2 evaluation conditions per model. This evaluation setup also
allows us to investigate the question how well a model describes
the data set it was fitted to and to what degree it might be
overfitted to the training data.

The evaluation proceeds in four steps. We first present
results for the three feature sets in combination with all five
normalization conditions. Secondly, we select a subset of the
most relevant features from each model via bootstrapping and
recompute the performance of the resulting sparse models.
Thirdly, we consider the role of meta information such as genre
and the release date of recordings. Finally, we discuss the role of
individual acoustic features.

4.1. Results: The Effect of Feature Sets and

Normalization Schemes

Table 1 presents the squared Pearson correlation coefficients R
for the three full feature sets and five normalization schemes,
corresponding to the proportion of variance shared between
the model predictions and empirical observations. The results
indicate that the perceptual similarities of the 400 ms and
800 ms clips were both predicted with fairly similar accuracy.
The combination of the two feature sets, TT+MFCC, yielded the
highest R? values on training sets as could be expected from
the larger pool of features to draw from. However, there are
obvious differences between model fits derived on the training
sets and model generalization to novel test sets, which suggests
that all models considered at this point generalize rather poorly
to unseen data. In fact, successful generalization is a rare
exception with only four out of 30 predictions of unseen data
yielding correlations that are significant at the « = 0.01 level.
Generalization of models based on MFCCs was particularly poor
and did not provide a single significant correlation on a novel
test set.
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TABLE 1 | R2 coefficients as performance indicators for full models derived from combining five normalization schemes (N1-N5) and three feature sets
(TT, Timbre Toolbox; MFCC, MFCC coefficients and MFCC delta coefficients), each evaluated in the two training and testing conditions from 400 (I) and

800 ms (Il) clips.

TEST
N1 N2 N3 N4 N5
Raw Range z-scores r-test r-corpus

1 I} | [} | 1} | 1} | 1}
TRAIN T | - - 0.07 0.08 0.07 0.06 0.33 - 0.11 0.09
Il - - - 0.18 - 0.19 - 0.22 - 0.25
Mean - 0.08 0.08 0.14 0.11

MFCC | 0.08 - 0.21 - 0.20 - 0.21 - 0.23 -
Il - 0.15 - 0.20 - 0.20 - 0.22 - 0.24
Mean 0.06 0.10 0.10 0.11 0.12

TT+MFCC | - - 0.25 0.06 0.25 - 0.47 - 0.27 -
Il - - - 0.24 - 0.26 - 0.39 - 0.33
Mean - 0.14 0.13 0.22 0.15

Note that R? coefficients < 0.06 that correspond to non-significant correlations at p > 0.01 are not displayed for the sake of clarity. The mean for each combination of normalization
scheme and feature set across the four training-test evaluation conditions is given in the last row of each cell (non-significant correlations are considered a zero entry in the computation

of the mean). Best average performance per feature set is given in bold font.

In terms of the normalization schemes, models using the
test-set-based ranking (N4) produced the highest performance
values overall. In particular for the combined feature set
TT+MFCC, it yielded the best fit to the training data, potentially
indicating that participants rely on relative differences within
a specific acoustic context (namely the test set), rather than
on absolute differences of acoustic features. Figure 3 (top left
panel) shows the scatterplot of the corresponding TT+MFCC
(N4) model in all four evaluation conditions, graphically
depicting how model fits decrease from when training and
test dataset are identical to when datasets for model training
and test differ. This decrease in model fit may be interpreted
as an indicator of model overfitting. Hence, in the next
evaluation step we aim to achieve better generalization
performance and avoid overfitting by applying feature
selection.

4.2. Feature Selection

We applied the feature selection approach described in
Section 3.3 to obtain sparse models. This naturally led to different
configurations of significant predictors per model and evaluation
condition, which are displayed in Figure 4. The plot shows that
the selection was fairly consistent across the different feature sets,
in the sense that the combined feature set TT+MFCC roughly
comprised the features already selected for the individual sets
TT and MFCC. For the 400 ms clips, an average of 2.2, 3.0,
and 4.6 significant variables were retained for the TT, MFCC,
and TT+MFCC features sets, respectively (averaged across the
five normalizations). For 800 ms clips, an average number of
4.4, 2.2, and 5.6 features were retained for the three respective
feature sets. However, note that the set of features selected for

the 400 and 800 ms clips is quite different. In particular for the
test-ranked normalization (N4), the two sets do not share any
common member.

Table 2 shows the results in all conditions for the sparse
models?. There are 14/30 significant correlations for unseen test
data, which is an improvement compared to the full models
(4/30), yet still surprisingly low overall. The mean performance of
sparse models (across all four evaluation conditions) was rather
similar to the performance of the full models, which means
the increase in generalization performance was traded against
a decrease of accuracy on the training sets. The best model
was obtained by the combined model TT+MFCC with the test-
rank normalization (N4), with an average fit of R? = 029
on the training data and R* = 0.14 on novel test data. The
detailed scatterplots of predictions and observations are shown
in Figure 3.

Figure 4 (right panel) gives an overview and summary of the
behavior of all models considered so far in terms of accuracy
and generalization capacities: the x-axis displays the mean R
coefficients on novel test sets (ie., the average of the oft-
diagonal values of the previously presented tables) and the
y-axis represents the fit on the training sets (i.e., average of
diagonal values). Generally, we are interested in a reasonable
trade-off between both measures, which currently only appears
to be achieved by the sparse TT+MFCC models with test-
rank normalization (N4). In this sense, the figure illustrates two
important methodological results: (a) The combined feature set
TT+MFCC is superior to both TT and MFCC, (b) sparse variable

2The number of PLSR latent components k was naturally reduced to k = 1, if only
one feature was selected by bootstrapping in the respective condition.
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FIGURE 3 | Every individual plot shows the correspondence between model predictions (x-axis) and empirically observed similarities (y-axis). Every
panel shows models that were trained to 400 ms (panel top row) or 800 ms clips (panel bottom row), and tested on the same two sets (left vs. right columns). Top left
panel shows full feature set; top right: sparse feature selection; bottom left: non-acoustic variables only; bottom right: sparse model together with non-acoustic
variables. All models utilize test-ranked features (N4).

selection is a means to trade accuracy on the training set against
a greater ability of the models to generalize to unseen datasets.

4.3. The Role of Genre and Release Date

In a final step, we included non-acoustic information as predictor
variables that were taken from the meta-data of the clips.
Specifically, we considered the categorical variable of genre
as well as the songs’ release dates. However, is it important
to keep in mind that the concept of genre is notoriously
ambiguous (Craft et al., 2007). In the current case, genre was
correlated not only with the release date of recordings, but
also with recording techniques, instrumentation, and thus also
with qualitative timbral similarity modeled by the continuously
varying audio features utilized here. Therefore, this step was of
exploratory nature and attempted to set the prediction results of

the acoustic model into relation with approaches relying on meta
information.

Genre was coded as binary predictor G indicating whether
two clips shared the same genre (G = 0) or not (G = 1). As
Figure 3 (bottom right panel) demonstrates, adding these two
predictors to the model with the best generalization performance,
the sparse test-ranked-normalized TT+MFCC model, yielded
a substantial increase in model performance of at least 18
percentage points in R2. At the same time, the model that solely
utilizes meta information (Genre+Date) robustly partitions the
underlying pairs into fairly similar vs. dissimilar pairs. The
computational analyses presented in the present paper thus
confirm the efficiency of genre as a proxy for the selection
of stimuli (as described in Section 2.2), with genre explaining
the vast majority of the variability in the behavioral data.
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TABLE 2 | Performance of sparse models.

TEST
N1 N2 N3 N4 N5
Raw Range z-scores r-test r-corpus

1 Il 1 ] 1 [} 1 I 1 ]
TRAIN Sparse TT | - 0.11 - 0.06 - - 0.24 - - 0.07
Il - 0.11 - 0.14 - 0.14 0.10 0.16 - 0.20
Mean 0.05 0.05 0.03 0.12 0.07

Sparse MFCC | 0.08 - 0.09 0.06 0.09 0.06 0.12 0.12 0.11 -
Il - 0.12 - 0.11 - 0.11 0.09 0.12 - 0.18
Mean 0.05 0.06 0.07 0.11 0.07
Sparse TT+MFCC | 0.07 0.11 0.12 0.07 0.12 0.06 0.34 0.16 0.13 0.08
Il - 0.11 - 0.16 - 0.16 0.11 0.24 - 0.24
Mean 0.07 0.09 0.09 0.21 0.11

R? coefficients are shown for the five normalizations (N1-IN5) and three feature sets, each evaluated in the two training and testing condiitions from 400 (1) and 800 ms (ll) clips. Correlations
with p > 0.01(R? < 0.06) are not displayed for the sake of clarity. Condition means are concatenated below. Best average performance per feature set is given in bold font.

Moreover, the Genre+Date model here yielded better R? values
in generalization than the model that relies on both acoustic and
meta variables. The latter, indeed surprising finding could be
taken as evidence for that listeners from Sample I and II used
different weightings of acoustic information in their responses,
potentially due to the different lengths of excerpts.

4.4. Role of Individual Features

By virtue of the parsimony of the sparse models, it is possible
to take a more detailed look at the individual weightings of
predictor variables. Here, we consider the exemplary case of
the TT+MFCC (+Genre+Date) models with test-set ranking

(N4). Figure 5 shows the (standardized) regression coefficients S,
which reflect the relative importance of the individual predictors
for the prediction of similarity (y = X + F).

For the models that included both acoustic and meta
descriptors, the plots indicate that the genre descriptor was the
most heavily weighted variable for both stimulus sets, and the
date of release showed a by far smaller influence. Note that we
found a very similar relation between the effect sizes of both
variables for the model solely using genre and date information
(the coefficients of which are not shown here). Regarding acoustic
descriptors, the selections for both stimulus sets represent
both spectral and spectrotemporal information: the spectral
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FIGURE 5 | PLSR coefficients g for the sparse model with test-rank normalization (N4), coefficients of the same model including genre and release
date, as well as genre and release only. (Left panel) 400 ms clips; (right panel) 800 ms clips.

envelope distribution is represented by features such as Crest,
Decrease, and MFCCs, whereas (spectro-)temporal modulations
are represented by Modulation Frequency, Spectrotemporal
Variation, and A MFCCs. Specifically, MFCC no. 4 was by a large
margin the most important acoustic feature for the 800 ms clips,
whereas A MFCC no. 4 was among the most important ones for
the 400 ms clips.

From a more general stance, the presented evaluation, using
five normalization conditions and three acoustic feature sets,
indicates that one should not overestimate the universality of
distinct acoustic features. In fact, the best model configuration
did not share any features across the two stimulus sets. A
plausible hypothesis could be that the duration of clips plays a
pertinent role in the ways in which listeners compile and weight
acoustic information from short music clips.

5. DISCUSSION
5.1. Summary

The main aim of this study was the development of the
first audio-feature-based model for the prediction of human
sound similarity judgements of short audio excerpts. We used
partial least-squares regression in order to map from acoustic
to perceptual similarity. Before entering the regression model,
acoustic dissimilarities were normalized by using five schemes:
(N1) raw feature values, (N2) range-normalization, (N3) z-
scores, (N4) rank-transformation according to test set, and
(N5) rank transformation according to a corpus. We then
followed an exhaustive combinatorial approach that combined
these five normalization schemes with two important candidate
feature sets, the Timbre Toolbox (Peeters et al, 2011) and
MFCCs, each of which contributed with 24 audio features.
Importantly, each candidate model was assessed on the dataset
it was fitted to, as well as on a set of novel audio excerpts.
Our results indicate that combining both feature sets resulted
in the most powerful model, in particular when being used
with a test-set based rank transformation (N4). And even the

sparse models with their drastically reduced numbers of features
generally contained members from both features sets. This speaks
for the complementary nature of Timbre Toolbox descriptors
and MFCCs when it comes to the description of the similarity
of music clips.

In line with the well-documented behavior of sparse models
in terms of better generalization (e.g., Friedman et al., 2009, Ch.
16.2.2), we also found a trade-off between model performance on
the training set vs. the models’ enhanced ability to generalize to
a new dataset. The best performing sparse model achieves an R
of up to 0.34 when evaluated on the dataset is was trained on and
an R? of up to 0.16 when evaluated on a new dataset. This result
for the first time provides evidence that a significant portion of
the variance in the similarity perception of short music clips can
be explained by acoustic features related to timbre. The fact that
including only two variables encoding meta-information, and
most importantly musical genre, substantially increased model
performance (up to R? values of 0.52) suggests that the models
based on acoustic features do not capture all information that
participants are able to extract from the short audio clips and use
for the similarity grouping. This finding also implies that great
care should be taken in order to control for the effects of variables
such as genre in future studies of sound and music similarity.

This last result is analogous to the importance of categorical
information in the timbral dissimilarity of isolated instrument
tones reported by Siedenburg et al. (2016b), where the addition
of sound-source and instrument-family-related variables to a
model based on acoustic features significantly improved the
prediction of dissimilarity ratings (also see, Lemaitre et al,
2010). In this respect, the current results suggest that even if
instructed to focus on low level auditory features (i.e., “the
sound”), participants’ responses are affected by higher level
concepts such as genre. Although differences in timbral qualities,
here measured by continuously varying audio features, likely
constitute an important part of genre, genre categories might also
be inferred from higher-level stylistic musical features such as
rudimentary rhythmic or pitch-related information that are still
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discernible in some of the clips. The current results then suggest
that the inference of higher level concepts such as emotion or
genre from short audio clips is based on more than timbral
qualities, but rather on a complex mixture of acoustical, musical,
and categorical (or higher-level) types of features. Notably, the
exact weightings of these variables may vary with the duration
of the excerpts. From the opposite perspective, the modeling
infrastructure built up here could of course be applied to
exploring the acoustic features utilized by humans in explicit
genre identification tasks.

5.2. Limitations of the Current Study and

Future Perspectives

This study represents the first rigorous attempt to build
quantitative models that describe the perception of short audio
excerpts based on audio feature extraction. Whereas, we have
achieved encouraging accuracies on the training data, there is
clearly room for improvement in future studies, in particular
when it comes to generalization performance. A limitation of
the current study is the fact that the two datasets differed in
terms of the length of the excerpts (400 vs. 800 ms) whereas the
modeling approach assumed that the same features are equally
suitable for clips of both lengths. But this assumption might
not be necessarily true. Hence, a future replication of this study
should include different datasets with clips of the same lengths.
Potentially, this might also help to achieve better generalization
results. Specifically, it would be necessary to confirm the
performance accuracy of the model with the best generalization
performance (i.e., the sparse version of the TT+MFCC feature set
using test-set-based rank normalization plus meta information)
on a completely new dataset. New audio excerpts could be
selected from a corpus according to their similarity predicted
by the model, allowing us to generate precise hypotheses about
the number of times the new excerpts are grouped together in
the grouping paradigm. Using fully randomized approaches for
determining the clips’ starting points in the song, as proposed by
Thiesen et al. (2016), would likely add further robustness to the
experimental design.

It is also worth noting that the similarity data used in this
study were derived from a grouping paradigm that required
participants to make categorical decisions and it is unclear
whether this specific paradigm introduced any sort of bias into
the data. However, several other experimental paradigms can
be used to obtain similarity data from participants and might
be employed in future studies alongside the grouping paradigm
(Giordano et al., 2011). These include pairwise similarity ratings
on fine-grained scales, rankings of clips in relation to an anchor
stimulus, triadic comparisons (Allan et al., 2007) or similarity
comparisons of two pairs of clips.
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