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When performing a task it is important for teams to optimize their strategies and

actions to maximize value and avoid the cost of surprise. The decisions teams

make sometimes have unintended consequences and they must then reorganize

their thinking, roles and/or configuration into corrective structures more appropriate

for the situation. In this study we ask: What are the neurodynamic properties

of these reorganizations and how do they relate to the moment-by-moment, and

longer, performance-outcomes of teams?. We describe an information-organization

approach for detecting and quantitating the fluctuating neurodynamic organizations in

teams. Neurodynamic organization is the propensity of team members to enter into

prolonged (minutes) metastable neurodynamic relationships as they encounter and

resolve disturbances to their normal rhythms. Team neurodynamic organizations were

detected and modeled by transforming the physical units of each team member’s

EEG power levels into Shannon entropy-derived information units about the team’s

organization and synchronization. Entropy is a measure of the variability or uncertainty

of information in a data stream. This physical unit to information unit transformation

bridges micro level social coordination events with macro level expert observations

of team behavior allowing multimodal comparisons across the neural, cognitive and

behavioral time scales of teamwork. The measures included the entropy of each team

member’s data stream, the overall team entropy and the mutual information between

dyad pairs of the team. Mutual information can be thought of as periods related to team

member synchrony. Comparisons between individual entropy and mutual information

levels for the dyad combinations of three-person teams provided quantitative estimates

of the proportion of a person’s neurodynamic organizations that represented periods

of synchrony with other team members, which in aggregate provided measures of the

overall degree of neurodynamic interactions of the team. We propose that increased

neurodynamic organization occurs when a team’s operating rhythm can no longer

support the complexity of the task and the team needs to expend energy to re-organize

into structures that better minimize the “surprise” in the environment. Consistent with

this hypothesis, the frequency and magnitude of neurodynamic organizations were less

in experienced military and healthcare teams than they were in more junior teams. Similar

dynamical properties of neurodynamic organization were observed in models of the

EEG data streams of military, healthcare and high school science teams suggesting that
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neurodynamic organization may be a common property of teamwork. The innovation of

this study is the potential it raises for developing globally applicable quantitative models of

team dynamics that will allow comparisons to be made across teams, tasks and training

protocols.

Keywords: teamwork, EEG, social coordination, team neurodynamics, information theory, entropy, uncertainty

INTRODUCTION

We all exist in continual perception/action cycles where we
sample the environment, actively compare our perceptions with
our probabilistic representations of the incoming information,
adjust our models accordingly and then resample and/or change
the environment. The goal of these cycles is to optimize the values
and costs of future actions in order to minimize surprise. At the
intersection of value and costs is the uncertainty that becomes
resolved by this process.

Much of this decision-making activity is orchestrated by
implicit brain process and occurs rapidly (Hsu et al., 2005); it
has been proposed that human mental processes have evolved to
minimize perception-model errors across systems and avoid the
costs of surprise (Barlow, 1961; Friston, 2010).

These ideas have been encapsulated by Friston (2010) into a
model, the free energy principle that develops a unified account
of perception, action and learning (Figure 1). The free energy
principle proposes that of the large number of physiological
and sensory states that exist, there is a high probability that
an individual’s current state exists within a much smaller
state space roughly defined by homeostatic requirements; i.e.,
the system is optimized and predictable for the most part.
Occasionally however, large prediction errors arise between
incoming information and internal probabilistic representations
and these errors trigger parts of these systems to drift from
homeostatic boundaries and the system becomes less predictable
as a result of this surprise. From information theory, this
change in predictability can be described as an increase in the
uncertainty, or entropy of the system (abbreviated H in this
paper).

Entropy is the average surprise of outcomes sampled from a
probability distribution or density. A density with low entropy
means that, on average, the outcome is relatively predictable,
while a system with higher entropy would be less predictable.
Entropy is therefore a measure of uncertainty.

When entropy gets too high new cognitive organizations
are thought to emerge (Zipf, 1949), and through general error
correcting and learning processes the system returns to within
the homeostatic bounds. It is these reorganizations that we are
interested in, primarily at the neurodynamic level of teams.

It is not difficult to extrapolate the free-energy principle to
teams as surprises also happen during teamwork, especially with
teams performing complex tasks where no two task instances
are the same. In teams however, each person must now consider
their actions, not only with regard to their roles in a changing
environment, but also with regard to those other persons, each
of whom is a complex system with a slightly different dynamic
perspective of the environment. Nevertheless, the overall idea of

FIGURE 1 | Tenants of the free energy principle and the predictability of

surprise (based on Friston, 2010). This figure shows a part of the homeostatic

boundary that became shifted by a surprising event in the environment.

minimizing the prediction error between incoming information
(from the task and other team members) and an individual
team members’ representation of the situation is analogous to
minimizing surprise.

As resolving the cross-person (i.e., cross-brain) uncertainty
will occur external to individual brains (through speech or
gestures for instance), the mechanisms for optimizing the
prediction error in teams are likely to be more complex
and lengthy than those postulated to exist in individuals.
Occasionally, due to these complexities and temporal delays,
a team’s decisions will be suboptimal and the team must
dynamically reorganize into a configuration that is more
appropriate for the immediate situation or alternatively, change
the situation. This requires not only a re-assessment of the
present situation, but also the mental “playing forward” of
alternative approaches, with the eventual selection of an action by
the team with potentially the best outcome (Schacter et al., 2007).

In this study we ask: What are the neurodynamic properties of
these reorganizations in teams, how are they induced, and how
do the dynamics differ among the team members? We take an
information-organization approach in answering these questions
in this paper as we believe this may provide a general and
extensible quantitative framework for investigating teamwork
across different teams performing different tasks.

The paper begins with an illustration of the overall modeling
approach using the hypothetical dynamics of a theoretically
perfect team where we speculate on how these dynamics might
change when team members get “out of synch.” This section
is followed by more detailed descriptions of the modeling
approach for exploring the neurodynamical and informational
relationships between the organizations of individuals and teams.
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The third section provides empirical evidence for the variety
and importance of different neurodynamic organizations during
teamwork. These sections draw from studies we have performed
with high school teams performingmap navigation tasks (Stevens
and Galloway, 2014), submarine teams performing required
navigation training exercises (Stevens et al., 2011, 2013; Stevens
and Galloway, 2015) and healthcare teams (Stevens et al., 2016a).
The similar dynamical and observational principles arising from
these different tasks suggest that the phenomena being studied
might be a fundamental property of teamwork.

MATERIALS AND METHODS

Neurodynamics of A “Theoretically”
Perfect Team
The goal of the first section is to describe how the constraints
of inter-personal communication and joint resolution of
uncertainty might contribute to the changing neurodynamics
of teams performing complex tasks. This example focuses on
a three-person team although previous data from submarine
navigation teams suggests the approach can be scaled to 5–6
person teams with certain simplifying assumptions that will be
discussed in subsequent sections.

A starting assumption behind this example is that the
efficiency and effectiveness of a team performing a complex
task is enhanced by the fast and precise sharing of information,
regardless of the interoceptive or exteroceptive uncertainty or
noise in the system. We begin by postulating that each of the
three team members has three possible energy levels, below
average, average and above average, which represent the EEG
signal power (in micro-volts) in a frequency bin recorded from
scalp sensors; these levels can change every second. These three
states could easily be quarters or fifths, or other discrete bins, with
the associated scale-up costs in model computation.

The one-second interval is a theoretically plausible number for
teams as periods of functional brain connectivity associated with
speech or playing guitar in duets (Stephens et al., 2010; Sanger
et al., 2012), and non-verbal recognition (Hari, 2006) occur in
the 250–500 ms time range, or a bit over a half a second for a two
person action-response round trip; in reality individuals in teams
probably speed this up by predicting ahead, although at a cost of
increased uncertainty (Hsu et al., 2005).

BOX 1 | GLOSSARY OF TERMS.

• Neurodynamic Symbols (NS) are symbolic representations of the momentary EEG power levels of a neurodynamic marker for each team member.

• Neurodynamic Symbol States (NSS) are a collection of NS that together describe a team’s performance.

• Neurodynamic Data Streams (NDS) are the second-by-second concatenated sequences of NS that temporally span a task performed by the team.

• Neurodynamic Entropy (NSH ), also called team entropy, is a quantitative measure of the distributions of NS in a NDS when examined over a moving window of

time, often 60 s or 100 s. The quantitative information unit is called a bit, where one bit of information indicates that on average, the uncertainty of a process is

reduced by a factor of two with one bit of information.

• Neurodynamic Organization (ND�) is a quantitative estimate of organization reflecting periods of increased neurodynamic order. ND� is calculated by subtracting

the Shannon entropy of the NDS obtained over a 60 or 100s moving window, from the entropy of the NS stream after it has been randomized (i.e., ND�=NSH

random - NSH ). Neurodynamic organization can be calculated either from the entropy levels of individual team members or from the team entropy. When referring

to individual’s neurodynamic organization we will prefix it with the italicized word individual, i.e., individual ND�.

The analysis we describe is simplified as only one EEG
frequency bin is being modeled that is within the range of
human cognition, and easily available for research “in the wild.”
This dimension generally spans the 0.1 to 100 Hz frequency
range as below this range other physiologic signals generated
by respiration, heartbeats, electrode pops etc. may confuse the
patterns and above this, electromyographic signals become a
serious confounder. We also assume that the data was recorded
from a single sensor site on the scalp. As described in the next
section we currently model 1 Hz frequency bins from the 1- 40
Hz EEG frequency range that is simultaneously obtained from
up to 19 sensor sites; i.e., the examples described below are
generally repeated 760 (i.e., 40 × 19) times for each person in
an experiment (or 2,280 times total for a 3-person team).

Next, a way of representing the state of each individual as a
part of a team at any moment of the performance is needed;
i.e., the state of each team member in relation to the other
team members as well as to the immediate context of the task
(Box 1). These combinations are represented as symbols with
histograms showing the power level combinations for the team;
with three energy states per person, and three persons, 27 unique
symbols are needed. These symbols are termed Neurodynamic
Symbols (NS), and the 27 symbols form a collection of states that
together describe the expression of NS for a performance; this
collection is termed a Neurodynamic State Space (NSS) and is
shown in Figure 2A for a three-person team and Figure 2B for a
dyad. A data stream of these symbols contains a neurodynamic
history of the team performance, much like the codons
in DNA.

The NSS contain topological structures that enhance the
interpretation and visualization of team neurodynamics. The
symbols toward the beginning of the NSS in Figure 2A (i.e.,
1–4) represent periods where most of the team members had
low EEG power levels, while those NS toward the end (24–27)
represent times where most teammembers had high EEG power.
Also, moving down each column in the NSS shows that only one
person of the team is changed, going from low to average to high
power. This NSS serves as a lookup table when visualizing the
neurodynamics of teams.

Now imagine a fully connected, tightly coupled (in a network
sense) experienced team so familiar with their goals, individual
tasks, and team roles that they can engage in “mental time travel”
(Schacter et al., 2007) and predict the future such that the future
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FIGURE 2 | Neurodynamic State Spaces. (A) Neurodynamic symbol state space for a three person team with high, medium or low EEG power levels. The legend

on the left shows that low power is represented by -1, average by 1, and above average power levels by 3. As these values are treated symbolically they do not affect

calculations, but do enhance visualization. Each of the three histograms in each NS represents a team member. (B) The nine symbol NSS for dyads.

holds few surprises. For such a team, each person’s responses to
changes in the task and the responses of other team members
would be limited primarily by the latencies imposed by cognitive
and motor systems (Suzuki et al., 2012).

This theoretically perfect team would also understand and
trust their teammate’s likely responses, so communication and
strategizing delays would be those imposed by the mechanics
of action understandings, speech processing and information
exchange described earlier. To the extent that the task activities
and team member interactions are sufficiently predictable to
avoid surprises, the dynamical structure of this team might be
highly variable as the members maximize the flows of team
information content by flexibly using all of the states available
in the 27 NSS.

This idea of maximizing variability to maximize information
transmission might seem at odds with the more predictable
smaller physiologic and sensory state space that was optimized
for homeostatic processes in Figure 1. The difference is in
the temporal scales over which processes are optimized. The
constraints described in Figure 1 have been optimized by
evolution to make life possible. These processes continually
transfer information from the environment to the genome to
match the homeostatic boundaries with the selection pressures of
the environment. In teams there is no similar genetic selection
during a teams’ lifetime, and the team’s success depends more
on maximizing the efficiency and effectiveness of the major task
and teamwork processes, with the transfer of information among
team members being paramount.

An example of the possible dynamics of this team is shown in
Figure 3A where each of the 27 symbols in the NS data stream
are sequentially plotted. Here the momentary changes at the
neurodynamic level associated with the task work and teamwork
would be couched within the 1 s sampling window so there
are few repeating symbols due to slow social coordination and
information sharing.

While the symbol distribution appeared random for this
team, the entropy of this Neurodynamic Symbol Data Stream
(abbreviated NDS) (H = 4.64 bits) showed that it was less than

the theoretical maximum entropy for 27 symbols (H = 4.76
bits) indicating a non-random distribution of symbols, i.e., there
is some hidden organization, perhaps due to system noise or
the team’s threshold tolerance for surprise. Nevertheless, the
overall neurodynamic variability of the team was high suggesting
efficiency as a discrete symbol set with high variability can convey
more information than a symbol set with low variability. These
ideas are consistent with the efficient coding hypothesis (Barlow,
1961) which states that the goal of the nervous system is to
maximize information about the environment, and in doing so,
to minimize the energy expended for each bit of information.

Now suppose one (or more) team members was less
experienced than the others and became delayed by the unfolding
events leading to increased surprise (in the free-energy principle
sense) and deliberation by that person and the team (Kaufman
et al., 2015). To resolve this new uncertainty the team members
would need to become more predictable (i.e., less variable) to
each other and this higher predictability could be accomplished
by increased organization. In our theoretical situation this
increased neurodynamic organization would be characterized by
increased NS redundancy. Increased redundancy of information
is common in nature as it is one way to ensure effective
communication.

Figure 3B shows two periods of increased NS redundancy in
the 1000 s performance. The first occurred between ∼125 and
275 s and was characterized by the selective expressionNS 18–27,
which from Figure 2 were periods where there was a tendency
toward higher EEG power levels across the team members, and
the second was between ∼525 and 625 s where NS 1–10 were
selectively expressed i.e., a tendency for lower EEG power across
the team. During these periods the teams would be acquiring
more information to reduce the individual and team’s prediction
errors, and bring their prediction model of the world closer the
real model of the situation.

As described in the next section, the reduced variability
of the symbols during these periods would result in lower
entropy levels. Practically this might occur by changing
the flow or content of information sharing across the
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FIGURE 3 | The 27 NS of the NSS are plotted each second for (A) a theoretically near-perfect team, and (B) a team characterized by less NS variability. The

symbol number is on the Y-axis and the time in seconds is on the X axis.

team (Kiekel et al., 2004), deliberately slowing down the
pace of the task (Moulton et al., 2010), re-organizing the
structure of the team, or re-organizing the structure of
the task.

Depending on the coupling of the systems involved in
teamwork (Hasson et al., 2011), these changing organizations
would ripple over time until homeostasis for the team is re-
established. Depending on the situation, the team would either
return to pre-perturbation entropy levels or remain in a more
organized state attentive to further surprise.

While acquiring more information to reduce uncertainty
is beneficial for the team, what are the costs? Team re-
organizations require energy. In information theory, reducing
uncertainty is synonymous with acquiring more information,
and acquiring more information requires energy. According
to Szilard (1929), the act of acquiring information from a
system generates entropy, or equivalently, it has an energetic
cost due to the very nature of the procedure. He showed that
the minimum amount of energy required to determine one
bit of information is kT ln(2) Joules/bit, a quantity Landauer
(1961) generalized to any way of manipulating or processing
information such as measuring, encoding, displaying, a yes/no

decision, etc. From the second law of thermodynamics, as the
organization of a team increases (i.e., decreased entropy), it must
increase entropy somewhere else, the most likely source being
through energy production where complex molecules (sugar,
ATP) or macromolecules (glycogen) are broken down, increasing
the disorder. Such increased energetic costs associated with
social coordination have been seen as increased BOLD signals
in the medial prefrontal cortex of individuals simultaneously
scanned during a deception team task (Montague et al.,
2002).

The above discussion raises questions: Can we begin to
populate models of teamwork with quantitative data that reflects
the above ideas, and with what is understood to be expertise?
Are team members in fact fully connected, and if so, how tightly
linked are the couplings across different team members during
different teamwork measures? Are there preferred couplings
among team members depending on the task, or training
protocol, or training site, and does this make a difference? How
closely related are the models being revealed by neurodynamics,
communication and behavioral measures? The next section
describes the modeling approaches that might be used to
approach these questions.
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Tasks and Participants
Map Navigation Task
In the Map Task (MT) the team members faced each other while
viewing a computer displaying a map with multiple landmarks
(Doherty-Sneddon et al., 1997). The two maps were similar
but not identical and students could not see each other’s map.
The instruction giver [Giver, abbreviated (G)], had a printed
path through the landmarks and verbally guided the follower
[Follower, abbreviated (F)] in duplicating that path. Students
completed the Map Task using speech exchanges to determine
where the paths should be drawn. The resulting speech was
unscripted, fluent and contained easily identified goals (Stevens
and Galloway, 2014).

Submarine Piloting and Navigation
Submarine Piloting and Navigation (SPAN) simulations were
required exercises for Junior Officers in the Submarine
Officer Advanced Candidacy course at the US Navy
Submarine School. SPAN sessions contained three training
segments: Briefing; Scenario; and Debriefing. Briefing was
where the team reviewed the environmental conditions
and other ships in the area, and statically established
the submarine’s position. The Scenario was the training
part of the navigation simulation where events included:
encounters with approaching ships, the need to avoid shoals,
changing weather conditions, and instrument failure. The
Debriefing was an after-action review where all team members
participated in critical performance discussions (Stevens et al.,
2012).

Healthcare Simulations
The simulations developed for healthcare also followed the
standard training format beginning with a Briefing describing
the goals of the exercise. This was followed by a short 5–
10 min introduction including the simulated patient history
which set the stage for the task simulation that lasted 15–20
min. A reflective Debriefing was then led by the instructor
(15–20 min). The core construct of this simulation series
was ventilation with procedural goals of demonstrating (1)
the technical skills of supporting the airway of an obtunded
patient, (2) the cognitive goals of carrying out team-based
approaches to patients with decreased mental status; and,
(3) practicing role assignment during care of a patient
with an urgent/emergent clinical condition (Stevens et al.,
2016b).

Ethics Statement
Informed consent protocols were approved by the Biomedical
IRB, San Diego, CA, the OSF Healthcare Institutional Review
Board, and the Naval Submarine Medical Research Laboratory
Institutional Review Board, and written informed consent was
signed by all participants to participate in the study and to
have their images and speech made available for additional
analysis. To maintain confidentially, each subject was assigned
a unique number, known only to the investigators of the
study and subject identities were not shared. This design
complies with DHHS: protected human subject 45 CFR 46;

FDA: informed consent 21 CFR 50. The selected examples
presented in this paper were chosen from 15 Map Task, 16
Submarine Piloting and Navigation, and 6 healthcare team
performances.

Electroencephalography
Prior to neurodynamically modeling the team the raw
electroencephalographic (EEG) data from each team member
were synchronized with each other through markers inserted
into the data streams during data collection and then visually
inspected for motion and other artifacts. Bad sensor channels
or components identified as being enriched for eye blinks or
heartbeats were discarded as described below.

EEG data was collected using the Quick 20 EEG headset
from Cognionics, Inc. (Carlsbad, CA), with sensor locations
at F7, Fp1, Fp2, F8, F3, Fz, F4, C3, Cz, P8, P7, Pz, P4, T3,
P3, O1, O2, C4, T4 in a monopolar configuration referenced
to linked earlobes. EEG data were preprocessed for each team
member using FieldTrip (Oostenveld et al., 2011) by applying
high-pass (0.5 Hz) and low-pass filters (50 Hz) and removing
bad channels (max = 2). Spatially transformed independent
component analysis was performed with RUNICA (Delorme
et al., 2012) to detect and remove artifacts associated with
eye blinks, electrocardiogram and electromyogram activity.
Following artifact rejection using RUNICA, data were back-
reconstructed and the channels removed prior to RUNICA
decomposition were interpolated back into the data by spherical
interpolation. Frequency decomposition was performed by first
segmenting data into 1 s epochs. The data were then windowed
using Hanning taper and the frequency content of each trial was
measured at 1 Hz intervals from 1 to 40 Hz using Fast Fourier
Transform.

Team Neurodynamic Modeling
The goal of team neurodynamic modeling is to develop
data streams that contain temporal information about the
organization, function and performance of teams. In this study
we highlight the 10 Hz frequency which is involved in attention
and prioritizing stimuli (Klimesch et al., 2007; Klimesch, 2012),
the 16 Hz frequency that is involved in action understandings
(Hari, 2006), and the 40 Hz frequency involved in maintaining
working memory and long-term memory encoding and retrieval
(Roux and Uhlhaas, 2014; Bonnefond and Jensen, 2015). These
frequencies were chosen based on prior work that revealed
that these frequency bands had particular relevance for team
neurodynamics (Stevens and Galloway, 2014, 2015).

As described earlier, the initial modeling step is to generate
the power level vectors (i.e., −1, 1, and 3’s) from the raw
EEG data from each person, and create the NS for each
second of the performance (Figure 4). The normalized power
vector was presented to a previously trained artificial neural
network and matching NS were assembled into a NDS which
was updated each second with a new symbol (Stevens and
Galloway, 2014). The structure (i.e., information) in these
data streams was visualized by plotting the symbol expressed
each second. By classifying the set of symbols over entire
performances containing different segments (i.e., Briefing,
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FIGURE 4 | Steps for generating and modeling neurodynamic data streams. (A,B) The raw EEG signals from each person are discretized each second into

low, average, and high power levels and assembled into a NS. (C) The symbol matching the three person power vector is determined from the NSS lookup table and

assembled into a NDS, where, (D) the symbols are visually mapped and a moving average of entropy calculated each second. (E) Levels of Individual Entropy and the

Mutual Information of dyad pairs are calculated from the normalized symbols and used for subsequent team modeling as described in the text.

Scenario, and Debriefing segments shown by the different
colors) the neurodynamic models generated encompasses a
comprehensive set of task situations/loads (Fishel et al., 2007).

According to information theory, a data stream with 27
symbols has a theoretical entropy level of 4.76 bits if the symbols
were equally distributed (i.e., a uniform distribution), and so if
we observe a data stream to have an entropy of 4.58 bits, then
we know that there is a “hidden” structure in that data, i.e.,
some symbols are expressed more frequently than others. But
this difference does not tell us where the structure is, it only
tells by how much. For that information the performance needs
dividing into smaller time units like the Briefing, Scenario and
Debriefing task segments or over even smaller time windows
within these segments, i.e., an entropy rate. So if we determine
the entropy over a 60 s or 100 s length segment and the entropy
level is now 4.08 bits instead of 4.58 bits the new information we
have gained is equal to the difference in H before and after we
received that information, i.e., 0.5 bits. While it does not matter
for the aggregated H levels, for practical teamwork purposes we

need to know what symbols are lost, what symbols remain, and
how they are distributed in the data stream, it is not sufficient to
know just that some symbols remain or are gone.

Figure 4D is a plot of the 39 Hz (gamma) frequency bin
from a healthcare team and shows several important features.
In the Briefing (black) and Debriefing (blue) task segments the
dominant symbols expressed were NS 1 and 2 representing times
when most team members had low EEG gamma power. In
contrast, the dominant symbols in the Scenario (pink) were NS
26 and 27 indicating times when most team members had high
EEG gamma power.

It is important to note that high or low EEG power in the
frequency bands is not necessarily good or bad, as different power
levels serve different purposes; for example during spontaneous
coordination the mu medial rhythm is synchronized (i.e., high
power), but becomes suppressed or desynchronized (i.e., low
power) during social interaction (Tognoli and Kelso, 2015).
Similarly, synchronized (i.e., high power) alpha may provide
a mechanism for selective attention while desynchronized
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alpha may promote working memory formation (Klimesch,
2012). It is also important to note that from a neurodynamic
organization perspective, preferential expression of symbols
representing high power or low power will show equivalent
entropy levels if the variability of the symbols is the same.
This is also shown in Figure 4D as large NS entropy decreases
occurred when the gamma levels were either low (Briefing and
Debriefing) or high (Scenario) across the team. Large entropy
fluctuations identify performance periods warranting additional
study through video and audio analysis, or semantic structure
analysis.

Individual Entropy and Mutual Information
The next calculated variable is Individual Entropy (IE)
(Figure 4E) where the normalized EEG values of each person are
treated symbolically and then Shannon’s entropy is calculated
over a moving window as described above. It is not clear what
Individual Entropy represents, although it can be thought of as
the neurodynamic organizations of individuals as they perform
their taskwork as well as their teamwork.

Short and long-term changes in NSH identify fluctuating
periods of team neurodynamic organization but they provide
little information about possible neurodynamic synchronization
among the team members and the possible roles of these
interactions during teamwork; mutual information descriptions
help supply this data. Mutual information (MI) is a measure
of the mutual dependence of two variables, or how much
knowing the value of one variable decreases the uncertainty
of the value of the other. Mutual information was originally
described in noisy channel communication as the information in
the output channel that was present in the input channel, and
has been widely used for evaluating information representations,
transmissions, and content in single neurons and populations
of neurons in stimulus- responses paradigms (Schneidman
et al., 2003; Onken et al., 2014). We use MI to determine the

amount of shared information between two team members,
periods which we cautiously refer to as times of synchrony
(Stevens and Galloway, 2016). Currently it is not known
what the remaining information is after subtracting the MI.
Possibilities include it being noise, or perhaps information
more closely related to an individual’s task work rather than
teamwork.

The symbols used for calculating the MI of dyads were the
same as for IE i.e., the normalized EEG vectors (−1, 1, and
3), and in all studies a moving average window approach for
MI data reporting was used as described above for NSH . An
example of the relationships between MI and team entropy is
shown in Figure 5 for a submarine navigation team composed
of six team members. In this figure there are five major events
marked that were regarded as significant by the instructor.
The individual colored lines in the MI plot represent the
fourteen different dyad combinations of the team. The periods
of elevated MI contained many of the dyad combinations
suggesting that periods of synchrony are not always present,
but when they are they involve many of the team members.
The correlation between MI and NSH was low (r = 0.02)
at a time lag of zero indicating that while MI may be near
periods of decreased NSH , they may not always be the same
periods.

RESULTS

Quantitative Models of Team Member
Organization during Teamwork
This section provides examples describing how the different
information flows in the neurodynamic data streams can be used
to quantitatively:

1. Determine the degree of team synchrony as defined by mutual
information.

FIGURE 5 | Dynamical comparisons of NSH and MI. The NSH was averaged across all frequencies and all sensors, and the MI values were averaged across the

fourteen dyad pairs shown by the colored lines. The numbers represent performance events surrounding those time periods. (1) The team was having difficulty

remembering the sequence of buoys to use when establishing the ship’s position. (2) The team was preparing for a turn into difficult waters with other ship traffic. (3) A

simulation “Pause” was called by the Assistant Navigator to express his concerns with the team. (4) A Man Overboard event. (5) Beginning of the Debriefing segment.
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2. Determine the contributions made by the individual team
members to the overall team’s neurodynamic organizations;
and,

3. Dissect the momentary neurodynamics of individual team
members to determine how these dynamics relate to the
overall dynamics of the team and the task.

The studies in this section integrate NSH dynamics, IE dynamics
and MI, and introduce related information measures which are
joint entropy (JE) and conditional entropy (CE). As illustrated in
Box 2, JE is the sum of the IE of each teammember, and CE is the
entropy remaining after theMI between two persons is removed
(shown in gray).

The first example shows the dynamical relationships among

these variables for a Map Task performance (Figure 6). The

modeling was performed with the CzP0 sensor bipole and

is shown for the 10 Hz frequency. The JE profile for this

performance was not uniform but showed decreases between

60 and 130 s, 140 and 200 s, and a broad decrease between

∼335 and 475 s. The profile of the CE showed larger decreases

than the NSH profile indicating the presence of shared 10 Hz

information between the two persons. Figure 6B shows the

dynamics of this shared information in the form of MI. MI is

always a positive value and the MI profile was complementary

to the difference between the JE and CE in Figure 6A. The MI

accounted for ∼2% of the JE when averaged over the entire

performance, and during the 60 and 130 s period and 140

and 200 s periods the proportion was enriched to ∼4 and 3%

respectively.

A more global view of team neurodynamics is shown by

plotting the MI expression over time as a function of the EEG

sensor location (Figure 6C), or EEG frequency bin (Figure 6D).

Mutual information was detected throughout most of the

performance at some sensor sites with the highest average MI

levels found in the Fz, C3, C4, CzP0, and F3 sensors. There was

minimal MI in the 3–8 Hz frequency bins while the highest MI

levels were found in the 14–17 Hz bins.
The MT example indicated that quantitative relationships

existed in the IE data streams of dyads and that it might be
possible to do similar modeling between the members of larger
teams. The relative levels of JE and CE compared with MI also
suggested the presence of noise in the overall modeling approach.
The next two examples address this issue using other properties
of information theory.

One useful property of information theory is that information
is additive: the information associated with a set of outcomes
can be obtained by adding the information of individual
outcomes. We use this property in the following way: Our
hypothesis was that the entropy levels of each person reflected
his/her neurodynamic organizational responses to the other team
members and the task (plus additional background noises in the
brain). An individual with three possible EEG power states (i.e.,
high, medium, low) would have a maximum entropy of 1.585
bits. For a three person team each with three possible states, the
maximum number of symbols that could be expressed is 27 and
the maximum information is log2(27) or 4.755 bits. From the
additive rule, the maximum information in three individual data
streams should equal the information in a three person team i.e.,
(1.585 × 3 = 4.755 bits). This additive rule provides a basis for
comparing the amounts of neurodynamic organization of each
teammember and the contributions of individual teammembers’
organization to the overall team’s neurodynamic organization.

As shown in Table 1 the average team entropy calculated
when the team was modeled from the 27 symbol state space
in Figure 2A was significantly lower than when the three IE
levels were added together (MeanIndEnt = 4.44 bits ± 0.18 vs.

BOX 2 | INFORMATION MEASURES
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FIGURE 6 | (A) Dynamics of joint entropy and conditional entropy for a dyad performing a MT performance. (B) The mutual information of the same team. (C) The MI

expression at different sensor sites. (D) MI expression at different frequencies.

TABLE 1 | Comparison of the entropy levels calculated by summing the IE

of three team members or by directly modeling the NSHusing the 27 NSS

in Figure 2A.

Team Sum of IE NSH

1 4.44 4.12

2 4.22 4.01

3 4.35 4.15

4 4.53 4.27

5 4.21 3.94

6 4.68 4.37

7 4.68 4.41

Mean 4.44 4.18

MeanTeamEnt = 4.18 bits ± 0.045 (SD), t = 15.3, df = 4, p <

0.01).
The reason for the difference is that the symbols in the IE

data streams were divided equally into three groups and so the
−1, 1, and 3 symbols were equally expressed. The 27 symbols

in the NSH were not similarly constrained and some symbols
are repeated more frequently than others as part of the natural
rhythm of the team on the task. This decreased variability differs
on a frequency and sensor specific basis and results in a lower
entropy levels. These relationships are shown in Figure 7 for
the 10Hz frequency bands from the C4 (Figure 7B) and F3
(Figure 7D) sensors and the 40Hz frequency band from the C4
sensor (Figure 7C). As expected from the modeling protocol,
the three-level normalized symbol stream had equal numbers of
the −1, 1, and 3 symbols (Figure 7A), while the NDS from the
different sensors and frequency bands showed variable symbol
distributions.

The unequal symbol expressions seen after randomizing
the NDS may indicate and important organization property
of teams. One idea is that the task demands encourage/select
particular neurodynamic relationships across the members of a
team. To the extent these symbols are consistently associated
across team activities or teams (novice/expert for instance) they
may indicate important team member relationships relative to
the task demands. We term the entropy associated with these
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FIGURE 7 | NS distributions across EEG frequency and sensor sites. The neurodynamic symbol streams were randomized to remove temporal structures and

histogram plots were prepared to show the NS distributions. (A) The distribution of the −1, 1, and 3 symbol categories for a team performance. (B) The symbol

distribution of the 10 Hz frequency band from the C4 sensor. (C) The symbol distribution of the 40 Hz frequency band from the C4 sensor. (D) The symbol distribution

of the 10 Hz frequency band from the F3 sensor.

symbol distributions the Task Entropy, or HTask. With these
considerations, the sum of the individual entropy from the team
members is used in the following sections when calculating the
proportion of time team members are synchronized with each
other usingMI.

Submarine Navigation Team
The next example was a three-person navigation team that
performed a required submarine piloting and navigation
simulation exercise. In an effort to remove unwanted noise
from the modeling we subtracted the IE from the entropy of
frequency and sensor-matched IE that had been randomized
before the entropy calculations. We term the resulting value
Neurodynamic Organization when applied in a team context,
and abbreviate it ND�. This resulted in positive values
that could be directly compared with MI (Figure 8); the
dynamics of the ND� and MI data streams are shown in
Figures 8A,B.

Figure 8C shows theND� for the Assistant Navigator (ANav),
the Quartermaster (QM), and the Navigator (Nav) and the circles
are proportional to the overall levels of individual ND�. The
overlap of the circles in the Venn diagram represents the levels of
synchrony (as measured byMI) among the three team members,
and the levels are labeled below. Removing the “noise” in theNDS
by subtracting the IE of each person from randomized values
of frequency and sensor matched IE streams resulted in higher
proportions of MI being detected across the team members, as
compared with the MT studies, being as high as 17% between
ANav-NV when averaged across nearly 2 h. of teamwork.

Healthcare Teams
The final example extends these ideas by providing a more
dynamical perspective of IE in relation to the ND�. The
healthcare simulation illustrated in Figure 9 was designed to
induce uncertainty/surprise in the team as it involved a patient
undergoing an operation where shortly after anesthesia was
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FIGURE 8 | Neurodynamics of a three-person submarine navigation team. (A) The Neurodynamic Organization profile of the summed IE (A) or MI (B) from the

Assistant Navigator (AN), the Quartermaster (QM) and the Navigator (NV) during a simulated navigation exercise. (C) Venn diagram of the individual IE levels and the

degree of team synchrony determined by the MI of the dyads.

induced the team had to evacuate the operating room with the
patient due to a fire. The figure shows the IE traces for the
anesthesiologist (red), scrub tech nurse (green), and a registered
nurse (blue). The low ND� just prior to the fire rose and
continued to rise for each team member until the end of the
simulation indicated by the solid line. As the team adjourned to
the Debriefing room the ND� returned to lower levels. The sum
of the three team member’s IE closely paralleled that of the team
neurodynamic entropy (i.e., NSH) modeled from the 27 symbols
in Figure 2A. Themutual information between the different dyad
pairs is shown in the Venn diagram in relation to the summed IE
levels of the three teammembers. The% of the individual entropy
that wasMI was highest, 62% for the AN and ST, 29% for the AN
& RN, and 10% for the ST and RN.

DISCUSSION

In this study we have used information-organization concepts
to develop metrics for the quantitative neurodynamic modeling
of team performance. After beginning from a theoretical
perspective of a perfect team, we highlighted team performances

of three tasks that were very different in their content domains
and team compositions.

The first example with high school dyads showed the
relationships between the neurodynamic organizations as
measured byNSH and synchrony of the team as measured byMI.
It further illustrated that while there was some redundancy inMI
expression at different scalp positions, the different EEG sensor
data provided different perspectives of the performance; similar
ideas apply to the EEG frequency data as well.

The second example with a submarine navigation team
introduced comparisons between individual NSH and MI for
the dyad combinations of a three-person team and provided
quantitative estimates of the proportion of neurodynamic
organization that might represent synchronization (as measured
by MI) for each team member as well as the degree of
(neurodynamic) interactions among the different teammembers.
The third example expanded these ideas for a healthcare team
and dynamically illustrated the changing IE relationships among
the team members.

The innovative feature of this modeling process is the
transformation of the physical units of the raw EEG power
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FIGURE 9 | Dynamics of a healthcare team during a simulated fire in

the operating room. The individual entropy levels were calculated using the

normalized frequency-specific data symbols (i.e., −1, 1, 3) over a moving

window of 60 s. The colored traces show the IE entropy remaining when the

team members’ entropy were subtracted from parallel frequency-matched

entropy from data streams that were randomized before calculating entropy.

The background trace is the team ND�. The lower Venn diagram shows the IE

for the anesthesiologist (AN), registered nurse (RN) and the scrub tech nurse

(ST). The MI of the dyad pairs are shown in the overlapping regions.

(in microvolts) from different team members into a single
symbolic information stream where the symbols represent the
relationships of the different team members with each other
and with the second-by-second evolution of the task. At the
junction of this transformation two modeling pathways result:
(1) the raw EEG power levels that can be analyzed at scales of
2 s or less for dynamics that relate to mental imagery, social
coordination, emotions, etc.; (2) and the entropy levels (bits of
information) of the neurodynamic organizations in the symbol
streams that relate more easily with other information measures
like the organization of speech or the behavioral organizations
recognized by experts as proficiency. This transformation
provide a teamwork link analogous to the connection between
thermodynamics and information theory in individuals detailed
by Collell and Fauquet (2015).

The results to date suggest that higher performing teams
are those characterized by more variability (i.e., higher entropy

levels). The most interesting data streams to study though for
understanding how to assemble, train and support teams might
be those with less variability (i.e., lower entropy levels). These
periods are often seen associated with stress or uncertainty, and
when teams develop new neurodynamic organizations as they
seek to acquire/synthesize additional information (Stevens et al.,
2013, 2016a).

The similar findings with three different tasks suggests that
the variables we are studying, and their resulting dynamics,
may be a fundamental property of teams performing complex
tasks. If so, this line of research has the potential to inform
many practical applications related to team performance and
resilience, as well as foster the development of new theoretical
understandings about physiological synchronizations associated
with social coordination and teamwork.

The principle driving this line of research is that teams adopt
a more organized configuration, neurodynamically speaking,
when seeking new/different information and organizations to
balance the demands of the changing environment. When
these challenges/uncertainties are resolved the team once again
restructures to adopt a more efficient configuration; it may or
may not be the same organization as before the perturbation.
The length of these periods can be seconds, or much longer
depending on the nature of the “surprise” experienced and the
amount of new information that has to be acquired, synthesized,
and exchanged before the team can return to a normal operating
mode. These dynamics are consistent with the multifractal
scaling inNDS previously seen in the neurodynamic data streams
of submarine teams (Likens et al., 2014). The across sensors and
frequencies IE and MI variability in Figures 6C,D may provide
one explanation for the multifractal structures seen in those
studies.

The three examples also hint at the dimensionality challenge
of team neurodynamic modeling. Information theory is
fundamentally about signals, not themeaning they carry; linkages
to more human—understandable measures are needed to extract
what the neurodynamic organizations/synchronizations “mean”
to a team. This contributes to the dimensionality problem. As an
example, with 19 EEG sensors and 40 (1Hz) frequency bins, there
are 760 sensor x frequency combinations per person to model
over tasks lasting 500–4,000 s or more. The data streams include
raw EEG data, data symbols, individual entropy, joint entropy
conditional entropy, mutual information and team entropy, each
of which has different properties/uses. Additionally, real-world,
complex tasks often include segments with very different team
requirements (i.e., Briefing, Scenario, Debriefing), along with
shorter periods of organization relating to the momentary
demands of the task. For validity and relevance, other measures
are needed like speech flow, or speech content, instructor
ratings and/or sub-dimensions of ratings like dialogue, problem
solving, teamwork, etc. The additional measures may not always
provide increased clarity. In a recent study the cross-level effects
between the dynamics of communication and neurodynamics
were modeled (Gorman et al., 2016). One interesting findings
was a difference in the temporal lags between the neural and
communication data streams between novices and experts,
indicating that relating variables to each other at zero time
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lag may be insufficient to understand the interrelated system
dynamics, and that changing time dimensions may also be
needed during modeling.

More optimistically, the cross-couplings in that study
also showed that redundancy exists between speech and
neurodynamics. Similar redundancies are also seen between
nearby EEG frequency bands, and also across EEG sensor sites,
and so only a subset of the theoretical combinations of the above
variables will be needed to encompass the major fundamental
interactions among team members (Carandini and Heeger,
2012).

In several small-scale studies we have approached this
modeling complexity by linking behavioral observations with
neurodynamic organization measures (Stevens et al., 2015,
2016c, 2017). Currently, most evaluations of teams performing
natural tasks rely on experts who observe and rate teams
across important, but quantitatively vague dimensions like
leadership, team structure, and situation monitoring using
vetted rubrics. One widely used evaluation rubric in healthcare
is the TeamSTEPPS R© program which was developed by the
Department of Defense for evaluating teams across dimensions
that are prevalent in healthcare, but common to many
professional teamwork situations (Baker et al., 2009). A more
recent instrument, the Submarine Team Behavior Toolkit
(STBT), focuses on team resilience and was designed for
evaluating training and on-the-job teaming in the submarine
force (described in Stevens et al., 2015). These scales tend to
rely on macro features of team performance by summarizing
observations over extended periods of time. While the shorter-
term dynamics of the team are implicitly acknowledged in the
resulting ratings, the dynamical details are often lost.

In an earlier study we proposed a bell-shaped relationship
between what we then termed cognitive organization and
team performance (Stevens et al., 2013). The cognitive
organization was based on NSH where the lower the entropy

the more neurodynamically organized the team. These
organizational/performance relationships were illustrated
by plotting transition matrices of the NDS symbols at times
t vs. t+1 s, and doing so for teams of different experience.
Teams experiencing stressful situations showed the greatest
degree of neurodynamic organization, followed by teams with
some experience engaged in advanced training. At the other
end of the curve were teams with little domain knowledge or
experience; these were the least organized teams. Experienced
teams were shown at the top of the curve, a balance of flexibility
and organization (Figure 10A).

A restructured version of this model is shown in Figure 10B

which more empirically encompasses our understandings ofNSH
levels during teamwork. The asymptotic shape of the curve
reflects the relationships between the information (NSH) and
the number of symbols in the data stream. At the high end of
the curve, some high performing teams have approached the
theoretical maximum entropy levels while the lowest level ofNSH
we have observed reflects a team using only 3–4 symbols of the
27-symbol NSS. This range provides a relatively broad range of
the curve over which to use information measures to probe team
dynamics and performance.

Expressed in terms of neurodynamic organizations (ND�),
this would represent levels of 0 to ∼ 1.5 bits. What does this
bit or so of information tell us about the past, present, and
future of the data stream? When thought of in terms of a single
observation, if the sequence is a series of alternating 1’s and
0’s it tells us everything, while if the series contains random
1’s and 0’s it tells us very little (James et al., 2011). From the
transition matrices in Figure 10A, one observation will likely tell
us quite a lot. The existence of the diagonal in the t − > t+1
transition matrix of Experienced Teams indicates that the NDS
has long memory, the statistical dependence of two points with
increasing time intervals, a property shared by many real-world
data time series (Palva et al., 2013). Furthermore, the thickness

FIGURE 10 | Models of neurodynamic organizations. (A) Prior neurodynamic organization model (Stevens et al., 2013). (B) Plot of the entropy levels as a function

of the number of symbols. The labels position levels of different teamwork functions.
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of the diagonal tells us that the next symbol in a sequence may
not be exactly the current one, but one closely related on the 27
symbol topologicalNSS. So short term-we learn a lot from a single
observation. This will be particularly true for teams in training
who have some experience and are refining their skills; the team
in Figure 9A highlighted as having moderate organization. The
challenge will be that the most novice teams will have very high
levels of entropy and may be indistinguishable from noise, or
more problematically, very experienced teams.

Finally, in the Introduction we posed the questions: (1) Can
we begin to populate models of teamwork with quantitative data
that reflects what is understood to be expertise? (2) Are teams
in fact fully connected, and if so, how tightly linked are the
couplings across different teammembers and different teamwork
measures? (3) Are there preferred couplings among team
members depending on the task, or training protocol, or training
site, and does this make a difference? (4) How closely related are
the models being revealed by neurodynamics, communication
and behavioral measures. From the findings reported in the
Results we feel these questions are all approachable.

One important relationship reported in this paper is that
between the IE of the team members and the MI between
dyad pairs of the team. For the first time it is possible to
put quantitative relationships between the dynamics of each
team member during the task, along with the neurodynamic
interactions between the members of the team. While the
three-person examples in Figures 8, 9 show the aggregated
couplings among teammembers it is an easy extension to develop
dynamic networks that show momentary relationships. These
dynamical models enable comparisons with measures of team
communication (Gorman et al., 2016) as well as behavioral

models derived from expert raters (Stevens et al., 2015, 2016c),

leading to dynamic multi-level, multi-modal and multi-entity
snapshots of novice and expert teams in action.

We therefore see the further development of thesemethods (in
particular, to consider the information provided by many spatial
and temporal scales simultaneously), as an important area for
developing the computational neuroscience of teams for some
years. We also see increased opportunities to restructure team
training. To the extent that neurodynamic organization equates
to individuals and teams experiencing and resolving uncertainty
(Stevens et al., 2016a) it may provide an indicator of where
training should be focused.
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