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Learning in intelligent systems is a result of direct and indirect interaction with the
environment. While humans can learn by way of different states of (inter)action such
as the execution or the imagery of an action, their unique potential to induce brain- and
mind-related changes in the motor action system is still being debated. The systematic
repetition of different states of action (e.g., physical and/or mental practice) and their
contribution to the learning of complex motor actions has traditionally been approached
by way of performance improvements. More recently, approaches highlighting the role
of action representation in the learning of complex motor actions have evolved and
may provide additional insight into the learning process. In the present perspective
paper, we build on brain-related findings and sketch recent research on learning by
way of imagery and execution from a hierarchical, perceptual-cognitive approach to
motor control and learning. These findings provide insights into the learning of intelligent
systems from a perceptual-cognitive, representation-based perspective and as such
add to our current understanding of action representation in memory and its changes
with practice. Future research should build bridges between approaches in order to
more thoroughly understand functional changes throughout the learning process and
to facilitate motor learning, which may have particular importance for cognitive systems
research in robotics, rehabilitation, and sports.

Keywords: motor imagery, motor memory, simulation, s-states, intelligent systems, functional equivalence

INTRODUCTION

Learning in intelligent systems is a result of direct and indirect interaction with the environment.
To understand how intelligent systems learn to adequately act in a given environment with
respect to a particular task, thereby adapting, is of particular relevance to cognitive science
disciplines such as psychology, biology, and computer science (e.g., Pfeifer and Bongard, 2007;
Wolpert et al., 2011; Abrahamsen and Bechtel, 2012; Pacherie, 2012; Engel et al., 2013, 2015). This
capability of goal-directed motor (inter)action changes and develops with practice, transitioning
from unskilled into skilled motor (inter)action, and resulting in refined planning and execution
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of motor (inter)actions (e.g., Meinel and Schnabel, 2007; Schmidt
and Wrisberg, 2008; Magill, 2011; Schmidt and Lee, 2011).
Interestingly, advancing our understanding of intelligent systems’
actions and their acquisition remains a significant endeavor
to this day, especially in view of prospective applications
in various settings such as robotics, psychology, sports, and
rehabilitation. For instance, the development of intelligent
interactive technical platforms which are to assist humans
requires a thorough understanding of natural, intelligent
forms of (inter)action and their acquisition, respectively (e.g.,
Pfeifer and Bongard, 2007; Schack and Ritter, 2009, 2013; Di
Nuovo et al, 2013; De Kleijn et al, 2014). Understanding
learning by way of different states of action (e.g., imagery or
execution) and related functional changes within the motor
action system, particularly with regards to action representation
may help to advance in this direction. Here, we overview the
literature on learning by imagery and execution from three
perspectives, namely the performance, the brain, and the mind
perspective.

STATES OF (INTER)ACTION AND
LEARNING

An action reflects “a set of mechanisms that are aimed at
producing activation of the motor system for reaching a
goal” (Jeannerod, 2004, p. 376). Similarly, interaction may be
considered as sets of mechanisms of several individuals acting
together, which are aimed at producing activations of all motor
systems involved for reaching a shared goal. (Inter)actions can
overt as well as covert actions, that is executed, imagined or
observed actions (Jeannerod, 2001, 2004). Given the principle of
functional equivalence (Finke, 1979; Johnson, 1980; Jeannerod,
1994, 1995) and the simulation theory (Jeannerod, 2001, 2004,
2006), executed, imagined, and observed actions are all suggested
to be actions, as each draws on the same action representation.
While ‘actual’ actions involve both a covert (e.g., planning) and
an overt (e.g., execution) stage of action, ‘simulated’ actions
such as imagery imply a covert stage of action only (ie,
simulation state; s-state; Jeannerod, 2001). To this extent, each
of the different types of s-states to some degree involves the
activation of the motor action system. That is, any form of
executed or simulated state of action is considered an action,
regardless of whether it includes covert stages of action only
or both covert and overt stages of action. Given the principle
of functional equivalence, the repeated use of any of these
states as means of practice should lead to functional changes
within the motor action system and to learning. Accordingly,
mental types of practice have been suggested to be effective
means to induce learning (e.g., Jeannerod, 1994, 1995, 2001,
2004).

To date, it is widely accepted that humans can learn by
way of different states of (inter-)action, but their unique
potential to induce changes in the motor action system is
still being debated (e.g., Driskell et al., 1994; Allami et al.,
2014; Di Rienzo et al., 2016; Frank et al., 2016). Interestingly,
while evidence on the functional equivalence of executed and

imagined actions is vast (e.g., Finke, 1979; Johnson, 1980;
Jeannerod, 1994, 1995, 2001; Decety, 1996, 2002; Jeannerod
and Frak, 1999), only little is known about how learning by
execution or imagery works. Furthermore, it is unclear what
the similarities and differences of these ways of learning are,
particularly with regards to changes in action representation.
In other words, research has yet to systematically examine the
differential effects of learning by way of different states of
action.

In this perspective paper, we focus on learning by way
of imagery and execution, and discuss it from a perceptual-
cognitive point of view on action representation. For this
purpose, we review learning by way of imagery and execution
from three different levels of analyses. First, we examine
the literature from the performance perspective (here: in
terms of changes in motor behavior), followed by the brain
perspective (here: in terms of changes in neurophysiological
representations of motor action), and finally by the mind
perspective (here: in terms of changes in perceptual-cognitive
representations of motor action). In doing so, we highlight the
role of action representation within a motor hierarchy, and
exemplify how such models could advance our understanding of
learning, enabling links between neurophysiological approaches
and motor control and learning theories. Finally, we discuss
potential future directions to advance research comparing
learning by way of execution, imagery, and other states of
action.

THE PERFORMANCE PERSPECTIVE ON
IMAGERY AND EXECUTION: LEARNING
AS CHANGES IN MOTOR
PERFORMANCE

The systematic use of different states of action for practice
and their contribution to the learning of complex motor
actions has traditionally been approached by way of persisting
performance improvements (e.g., Schmidt and Lee, 2011).
Similarly, researchers investigating the influence of mental
practice traditionally have focused on motor performance (e.g.,
Corbin, 1967a,b; for reviews and meta-analyses, see Richardson,
1967a,b; Feltz and Landers, 1983; Feltz et al., 1988; Hinshaw,
1991; Grouios, 1992; Driskell et al., 1994). From this, mental
practice has shown to be more effective than no practice, but
less effective than physical practice (e.g., Feltz and Landers,
1983; Feltz et al.,, 1988; Driskell et al., 1994). Driskell et al.
(1994), for instance, conducted a meta-analysis on the effects of
mental practice in comparison to irrelevant practice and physical
practice, reporting an overall average effect size of d = 0.53'
for mental practice, and an effect size of d = 0.78 for physical
practice. Moreover, combined mental and physical practice has
been suggested to be as effective as or superior to physical practice
(e.g., Corbin, 1967b; McBride and Rothstein, 1979; Hall et al,,
1992; Gomes et al., 2014). From this perspective, mental practice
is considered a potentially effective means to promote learning.

'Effect sizes reported throughout this chapter refer to Cohen’s d (Cohen, 1992).
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THE BRAIN PERSPECTIVE ON IMAGERY
AND EXECUTION: LEARNING AS
CHANGES IN NEUROPHYSIOLOGICAL
ACTION REPRESENTATION

In search of answers to the question why learning by way of
different states of action works (e.g., Heuer, 1985; Murphy,
1990; Murphy et al., 2008), neurocognitive approaches have
evolved, considering learning from within (e.g., Jeannerod, 2001,
2004). Neurocognitive approaches highlight the role of action
representation in the learning of complex motor actions from
a neurophysiological perspective. So far, the adaptation of the
brain (i.e., neurophysiological and -anatomical changes) as a
result of physical practice has received a great deal of attention
(e.g., Wadden et al., 2012). From this, multifaceted insights
into central changes within the motor action system have been
provided regarding the neural aspects of learning a motor action,
and the neural plasticity of the brain, respectively (for a recent
meta-analysis, see Hardwick et al.,, 2013; for reviews, see also
e.g., Doyon and Ungerleider, 2002; Ungerleider et al., 2002;
Doyon and Benali, 2005; Kelly and Garavan, 2005; Halsband
and Lange, 2006; Dayan and Cohen, 2011). In the context of
the principle of functional equivalence and the simulation theory
(Jeannerod, 2001, 2004, 2006), the study of action representation
from a neurophysiological point of view has received tremendous
research interest (for overviews, see e.g., Decety, 2002; Guillot
et al., 2014). While considerable research attention has been
directed to comparing the different states of action, such as the
imagery and the execution of an action (e.g., Decety, 1996, 2002;
Jeannerod and Frak, 1999), only few studies exist that compare
learning by way of imagery and execution and respective changes
in the brain (e.g., Pascual-Leone et al., 1995; Jackson et al., 2003;
Nyberg et al., 2006; Zhang et al, 2012, 2014; Allami et al,
2014; Avanzino et al,, 2015; for a review, see Di Rienzo et al,,
2016).

For instance, Pascual-Leone et al. (1995) investigated plastic
changes in the human motor action system resulting from
physical and mental practice, using transcranial magnetic
stimulation. Interestingly, while the authors found physical
practice to be superior to mental practice in terms of performance
improvement in a key pressing task, both physical and mental
practice led to the same plastic changes, namely an equally
increased size of the cortical representation for the finger
muscle groups involved. From this, the authors concluded
that mental practice modulates the neural circuits involved
in learning, potentially by forming a cognitive model of
the motor action. Jackson et al. (2003) investigated cerebral
functional changes in the brain as induced by mentally practicing
foot movements employing positron emission tomography and
compared these changes to those induced by physically practicing
foot movements (Lafleur et al., 2002). Similar to the findings
reported by Lafleur et al. (2002) on physical practice effects, the
authors found mental practice to be associated with functional
cerebral reorganization in the right medial orbitofrontal cortex.
From the lack of striatum activation after mental practice,
however, the authors suggest that the re-organization rather

relates to the planning and the anticipation of motor actions
than to its motor execution. More recently, Zhang et al. (2014)
examined changes in functional connectivity in resting state as
a result of mental practice, using functional magnetic resonance
imaging. The authors reported alterations in cognitive and
sensory resting state networks in various brain systems after
learning by way of motor imagery (i.e., mental practice), while no
alterations in connectivity were found in the control condition
(i.e., no practice). From this, the authors concluded that
modulation of resting-state functional connectivity as induced by
mental practice may be associated with attenuation in cognitive
processing related to the formation of motor schemas. These
neurophysiological studies on learning as induced by mental
practice and/or physical practice show that both mental and
physical practice lead to significant changes in action-related
brain activation during skill acquisition. At the same time,
however, they reveal distinct differences pointing to a hierarchy
in learning by way of different states of action (for more details,
see discussion section).

From a neurophysiological perspective, learning can be
considered as neurophysiological reorganization, with the
neurophysiological representation of motor action functionally
developing over the course of the learning process. This seems
to hold for both learning by execution and learning by imagery.
Neurophysiological studies as the ones exemplified above provide
valuable multifaceted insights into the functional changes in
brain activation as a result of physical and mental practice.
Findings elucidating neurophysiological changes associated with
motor learning as induced by mental and physical practice,
however, do not necessarily allow for specific conclusions
regarding action representation and its relation to motor control.
Therefore, it seems important to link these approaches to models
and theories of motor control and learning, particularly those
emphasizing the role of action representation, in order to be
able to draw specific conclusions about changes of the motor
action system during learning. To put it differently: Given the
functional reorganization of neurophysiological features in the
brain, is there a functional reorganization of perceptual-cognitive
representations of motor (inter)action in the mind as part of a
functional stratification on various levels within the motor action
system?

THE MIND PERSPECTIVE ON IMAGERY
AND EXECUTION: LEARNING AS
CHANGES IN PERCEPTUAL-COGNITIVE
ACTION REPRESENTATION

According to perceptual-cognitive approaches (e.g., theory of
anticipative behavioral control: Hoffmann, 1993; theory of event
coding: Hommel et al., 2001; simulation theory: Jeannerod, 2001)
and the original idea of a bidirectional link between an action
and its effects (i.e., ideomotor theory: James, 1890), actions are
primarily guided by cognitively represented perceptual effects.
Drawing on the seminal work of Bernstein (1967) and his idea of
a model of the desired future, motor actions can be considered
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as being stored in memory as well-integrated representational
networks or taxonomies comprised of perceptual-cognitive units
(i.e., basic action concepts; BACs) that guide action execution (cf.
cognitive action architecture approach/ CAA-A: for an overview,
see Schack, 2004; Schack and Ritter, 2009). Moreover, these
networks of BACs are suggested to change throughout the process
of motor learning by way of perceptual-cognitive scaffolding,
resulting in a more elaborate perceptual-cognitive representation.

Based on research relating to CAA-A (e.g., Schack and
Mechsner, 2006), experts, as compared to novices, have been
shown to hold structured representations. A functionally
structured representation is comprised of groupings of
perceptual-cognitive units (i.e., groupings of BACs) that
relate to the same (sub-)functions of the action, and thus reflect
the functional phases of the motor action (cf. Géhner, 1992, 1999;
Hossner et al., 2015). Schack and Mechsner (2006), for instance,
examined representational networks of the tennis serve in experts
and non-experts, using the structural dimensional analysis of
mental representations (SDA-M). Results elicited that skilled
individuals held functionally structured representations relating
well to the biomechanical demands of the task (i.e., reflecting
clearly the three movement phases pre-activation, strike, and
final swing), whereas unskilled individuals’ representations were
unstructured. This has been shown to generalize to motor skills
of different complexities (e.g., manual action: Braun et al., 2007;
gait: Schega et al., 2014; Stockel et al., 2015; dance: Blésing, 2010).

With regards to learning, action representations have been
shown to functionally adapt in the direction of an elaborate
representation during motor learning (Frank et al, 2013).
Findings revealed that, together with improvements in golf
putting performance, representations changed with practice,
developing toward more functional ones, with groupings of
perceptual-cognitive units (i.e., groupings of BACs) relating
more closely to the same (sub-)functions of the action itself
(i.e., preparation, forward swing, and impact). Drawing on
the finding that novices' perceptual-cognitive representations
of complex action develop and adapt with practice, Frank
et al. (2014) addressed the development of one’s representation
according to type of practice, comparing physical practice (i.e.,
repeated motor execution), mental practice (i.e., repeated motor
imagery) and their combination. While motor performance
reflected the well-known pattern of magnitude of improvement
according to type of practice (i.e., combined practice > physical
practice > mental practice > no practice), mental practice, either
solely or in combination with physical practice, led to even
more elaborate representations compared to physical practice
only. Representation structures of the groups practicing mentally
became more similar to a functional expert structure, whereas
those of the physical practice group revealed less development.
Building on these findings, Frank et al. (2016) further examined
the perceptual-cognitive background of performance changes
that occur within the motor action system as a result of mental
and physical practice, employing a mobile eye-tracking system to
investigate gaze behavior (i.e., the quiet eye; e.g., Vickers, 1992,
1996, 2009). Combined practice led both to more developed
representation structures and to more elaborate gaze behavior
prior to the execution of the putt, with final fixations prior to the

onset of the putting movement (i.e., the quiet eye) being longest
for this group and better developed representation structures
relating to longer quiet eye durations after learning. Accordingly,
the quiet eye might reflect a predictive mode of control that
initiates a cognitively demanding process of motor planning
based on the representation available (for details on a perceptual-
cognitive perspective on the quiet eye, see Frank and Schack,
2016).

More recently, learning as it relates to interaction was
investigated by examining representational frameworks of
interaction and their development with mental practice (Frank
et al., under review). The impact of a team action imagery
intervention on futsal player’s shared representations of team-
specific tactics was investigated. Mental practice consisted of
practicing four team-specific tactics (i.e., counter-attack, play
making, pressing, transitioning) by imagining team actions in
specific game situations for three times a week over the course
of 4 weeks. Results revealed representational networks of team
action becoming more similar to those of experts after mental
practice. This study indicates that the imagery of team actions can
have a significant impact on players’ representational networks of
interaction in long-term memory.

From this line of studies, the learning of a motor action
can be considered as perceptual-cognitive reorganization,
with the perceptual-cognitive representation of action
functionally developing throughout the learning process.
This research furthermore indicates that the perceptual-cognitive
reorganization taking place during learning depends on the state
of action used for practice. Learning by way of imagery differs
from learning by way of execution, with practice through imagery
promoting the functional development of a perceptual-cognitive
action representation (perceptual-cognitive explanation of
mental practice), while not necessarily transferring one-to-one
to motor performance. This points to a differential influence of
mental and physical practice with regards to different levels of
action organization, with mental practice operating primarily
on higher levels within the motor action system, particularly
during early skill acquisition (for a more detailed discussion,
see Frank, 2014). This approach, particularly together with
neurophysiological approaches, may add to the picture of
potential basic mechanisms that underlie each type of practice,
an issue still being highly debated (e.g., Annett, 1995; Jackson
et al,, 2001; Munzert et al., 2008; Murphy et al., 2008; Cumming
and Williams, 2012; Glover and Dixon, 2013). By complementing
existing evidence from a performance and a brain perspective
on learning by mental and physical practice (e.g., Driskell
et al., 1994; Allami et al,, 2014), these findings contribute to a
better understanding of the adapting motor action system, by
disentangling changes on various levels within the motor action
system during learning.

DISCUSSION AND CONCLUSION

While there is ample evidence on the functional equivalence
between different states of action (such as the imagery and the
execution of an action; e.g., Decety, 1996, 2002; Jeannerod and
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Frak, 1999), research addressing the similarity or difference with
respect to the influence that each of the states of action has on
the motor action system during learning has remained scarce to
date. Meanwhile, more and more researchers have claimed to take
into account potential differences between the states of action
and their contribution to motor control and learning, as these
might be as well (or in particular) meaningful to fully understand
the motor action system (e.g., Munzert et al.,, 2009; Wakefield
et al., 2013; O’Shea and Moran, 2017). Given that each state of
action differs to some degree, the repeated use of imagery or
execution is likely to differ in their influence on the motor action
system. In other words, while the repeated use of imagery and
execution of an action is suggested to result in learning, learning
is likely to differ as a function of the state of action used for
practice.

Here, we outlined learning by way of imagery and execution
from three perspectives. While there is ample evidence from
the performance perspective (for a review, see e.g., Driskell
et al., 1994), the research from a brain perspective (for a
review, see e.g., Di Rienzo et al, 2016), and from a mind
perspective (e.g., Frank et al., 2016) on action representation
as it relates to learning by imagery and execution has just
started to gain momentum. Despite these initial steps, the
potential of imagery and execution to induce changes within
the motor action hierarchy during learning, however, remains to
be explored more thoroughly. Interestingly, although sometimes
not explicitly introduced as the theoretical background of their
studies, (indirect or direct) conclusions about the formation
of action representations are drawn from the brain changes
observed, linking neurophysiological findings to hierarchical
motor control and learning theories: for instance, Pascual-Leone
et al. (1995, p. 1043) discussed that repeated imagery may
help establish a cognitive model of the motor action; Zhang
et al. (2014, p. 4) state that motor schemas have developed;
Jackson et al. (2003, p. 1178) discuss from the lack of striatum
activation after mental practice, that the re-organization relates
to the planning and the anticipation of motor actions rather
than to its motor execution. By doing so, each of the studies
implicitly refers to a theoretical background of motor control
and learning, and alludes to some form of representational
format in memory. However, the results of these studies have
not yet been discussed in the light of hierarchical models of
action organization, focusing on higher and lower levels of
action representation, as the one delineated in the present
perspective paper. By suggesting that mental practice helps
promote a ‘cognitive model; ‘attenuated cognitive processing, and
the ‘planning and the anticipation of actions, these findings are in
line with the perceptual-cognitive explanation of mental practice
and the idea that the repeated use of imagery particularly helps
establish perceptual-cognitive representations of action (Frank
etal, 2014, 2016).

Future studies may place more emphasis on the role
of action representation and compare learning by way of
imagery and learning by execution with regards to brain-
and mind-related changes on different levels within motor
action system. For instance, related research disentangling
neurophysiological representations of actions within a motor

hierarchy (e.g., Grafton and Hamilton, 2007), research on the
degree of abstractness of neurophysiological representation of
actions (e.g., Tucciarelli et al., 2015; Wurm and Lingnau,
2015; Turella et al.,, 2016), or research on neurophysiological
representations’ structural geometry across states of action
(Zabicki et al.,, 2016) in conjunction with perceptual-cognitive
approaches to motor learning might be promising avenues
to better understand learning across states of action. In a
recent study, for instance, Zabicki et al. (2016) investigated
imagined and executed actions using a multivariate approach
and a representational similarity analysis to neurophysiological
representations of action, highlighting a similar structural
geometry as well as distinct differences in action representation
between the two states of action. Using such approaches together
with hierarchical, perceptual-cognitive ones in the realm of motor
cognition might help to further approach the phenomenon of
action representation in motor control and learning and the
unique potential of imagery and execution to induce changes
on different levels within the motor action system during
learning.

In sum, research directly comparing the two modes of
learning has remained scarce to date, with many studies
focusing on one mode only (e.g., imagery: Zhang et al., 2014;
execution: Lafleur et al, 2002). Furthermore, most of the
studies conducted so far focus on the potential similarities that
learning by way of motor imagery may share with learning
by way of motor execution, thereby disregarding potential
differences across learning types, such as a differential influence
on various levels within the motor action system. And finally,
the brain and the mind perspective have been considered
merely isolated, investigating neurophysiological representations
or perceptual-cognitive representations. Accordingly, three main
challenges may have to be addressed by future studies
in order to advance research comparing learning by way
of execution, imagery, and observation, and thus to more
thoroughly understanding intelligent systems and learning by
different states of action. First, research comparing learning by
different states of action should be conducted in a systematic
manner, employing research designs that allow for examining
states of action both in isolation as well as in combination
(cf. four group design in mental practice research, e.g.,
Corbin, 1967b; Hall et al., 1992). Second, research questions
and hypotheses should be directed toward the differences
between learning by different states of action, and thus going
beyond the traditional focus on the functional equivalence
between the states of action, and the potential similarities
across learning types, toward a hierarchical view of the
motor action system. Third, learning by different states of
action should be approached in future research by integrating
findings and methods from different disciplines (e.g., Moran
et al., 2012) such as the ones exemplified above in order
to approach the problem from distinct, but complementary
perspectives.

To systematically examine learning by different states of
action from various perspectives focusing on both the similarities
and the differences across higher and lower levels of action
organization may contribute to a better understanding of the
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motor action system. Complementing both the performance
and the brain perspective by a mind perspective may
lead to advancing our understanding of intelligent systems
in general, and the learning of (inter)action across states
of action in particular, in order to better be able to
design training tools that facilitate motor (re)learning.
Future research should therefore build bridges between the
perspectives in order to more thoroughly understand functional
changes throughout learning across states of action, and to
subsequently address specific levels within the motor action
hierarchy as part of individualized coaching in robotics,
rehabilitation, or sports settings (e.g., Hiilsmann et al,
2016).
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