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In this article, we evaluated the performance of statistical methods in single-group

and multi-group analysis approaches for testing group difference in indirect effects

and for testing simple indirect effects in each group. We also investigated whether

the performance of the methods in the single-group approach was affected when the

assumption of equal variance was not satisfied. The assumption was critical for the

performance of the twomethods in the single-group analysis: themethod using a product

term for testing the group difference in a single path coefficient, and the Wald test for

testing the group difference in the indirect effect. Bootstrap confidence intervals in the

single-group approach and all methods in the multi-group approach were not affected

by the violation of the assumption. We compared the performance of the methods and

provided recommendations.

Keywords: moderated mediation, moderated indirect effect, group difference in mediation, multi-group analysis,

simple indirect effect

INTRODUCTION

In mediation analysis, it is a standard practice to conduct a formal statistical test on mediation
effects in addition to testing each of the individual parameters that constitutes the mediation effect.
Over the past few decades, statistical methods have been developed to achieve valid statistical
inferences about mediation effects. The sampling distribution of a mediation effect is complicated
because the mediation effect is quantified by a product of at least two parameters. For this reason,
numerous studies have proposed and recommended methods that do not rely on distributional
assumption (e.g., bootstrapping) for testing mediation effects (e.g., Bollen and Stine, 1990; Shrout
and Bolger, 2002; MacKinnon et al., 2004; Preacher and Hayes, 2004).

It is often a question of interest whether a mediation effect is the same across different
groups of individuals or under different conditions, in other words, whether a mediation effect
is moderated by another variable (called a moderator) that indicates the group membership
or different conditions. For example, Levant et al. (2015) found that the mediation effect of
endorsement of masculinity ideology on sleep disturbance symptoms via energy drink use was
significantly different between white and racial minority groups. Schnitzspahn et al. (2014) found
that time monitoring mediated the effect of mood on prospective memory in young adults, but
not in old adults. Gelfand et al. (2013) showed that the effect of cultural difference (US vs. Taiwan)
on the optimality of negotiation outcome is mediated by harmony norm when negotiating as a
team but not when negotiating as solos. In these studies, the mediation effect was moderated by
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a categorical moderator (e.g., racial group, age group,
experimental condition). With a categorical moderator, the
moderated mediation effect concerns the difference in the
indirect effect between groups. Treating a moderator categorical
is appropriate when the moderator is truly categorical, but
it is not appropriate to create groups based on arbitrary
categorization of a continuous moderator (Maxwell and
Delaney, 1993; MacCallum et al., 2002; Edwards and Lambert,
2007; Rucker et al., 2015).

Structural equation modeling (SEM) is a popular choice for
many researchers to test a mediation model and to conduct a
formal test onmediation effects. In SEM, the mediation effect can
be specified as an indirect effect (Alwin and Hauser, 1975; Bollen,
1987) such as “the indirect effect of an independent variable (X)
on a dependent variable (Y) via a mediator (M)” in which X
affects M, which in turn affects Y. For incorporating a categorical
moderator, there are two approaches in SEM: single-group and
multi-group analysis. In the single-group analysis approach, the
categorical moderator is represented by a variable, or a set of
variables, in the model. On the other hand, the multi-group
analysis approach uses the categorical moderator to separate the
observations into groups at each level of the moderator, and the
moderator does not appear in the model as a variable.

In this article, we present the single-group and multi-
group analysis approaches to comparing indirect effects between
groups, and introduce statistical methods in each approach for
testing the group difference in the indirect effect and for testing
the simple indirect effect in each group. Then we present a
simulation study to compare the performance of the methods. In
particular, we examine how robust the methods in single-group
analysis approach are when the assumption of homogeneity of
variance is not satisfied (the assumption is described in a later
section).

GROUP DIFFERENCE IN INDIRECT
EFFECT AND SIMPLE INDIRECT EFFECT
IN EACH GROUP

We use the following example throughout this article. Suppose
that we hypothesize a mediation model in which the effect of an
independent variable X on a dependent variable Y is mediated by
a mediator M (Figure 1).

We also hypothesize that the X to M relationship is not
the same in two groups of individuals (e.g., men and women).
This model can be considered as a special case of the first
stage moderation model in Edwards and Lambert (2007) and the

FIGURE 1 | A mediation model.

Model 2 in Preacher et al. (2007), in which the moderator is a
categorical variable with two levels.When comparing the indirect
effect between two groups, estimating and making statistical
inferences about the following two effects are of interest. First,
what is the estimated difference in the indirect effect between
the groups? Second, what is the estimated indirect effect in each
group (i.e., simple indirect effect)?

In the single-group analysis, a (set of) categorical variable
indicating the group membership is used as a covariate in the
model and an interaction term of X with the group membership
(Group) is included to test the difference in the X to M
relationship between groups (See Figure 2A).

The interpretation of the parameters depends on how the
group membership is coded. For example, when the group
membership (Group) is dummy coded as 1 = Group 1 and 0 =

Group 2, a1 = simple effect of X on M in Group 2; a2 = group
difference in conditional mean of M for those whose level of X
is at zero (i.e., conditional mean of M in Group 1—conditional
mean of M in Group 2); a3 = difference in simple effect of X on
M between groups (i.e., simple effect of X on M in Group 1—
simple effect of X on M in Group 2). If a3 6= 0, it means that the
relationship between X and M is not the same between groups.

When the relationship between X and M differs between
groups, the indirect effect of X on Y via M is conditional on the
group membership, because the indirect effect consists of X to
M relationship and M to Y relationship. In the model shown
in Figure 2A, an estimate of the indirect effect of X on Y via

M is obtained by
[

â1 + â3
(

Group
)]

b̂ (Preacher et al., 2007). So
the simple indirect effect (i.e., the conditional indirect effect)

FIGURE 2 | (A) Single-group and (B) multi-group analysis models for testing

group difference in the indirect effect. In (A) single-group model, Group is a

categorical variable that indicates distinctive group membership.
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TABLE 1 | Methods for testing group difference in a path, group difference in the indirect effect, and simple indirect effect in each group.

Abbreviation Description

SINGLE-GROUP ANALYSIS

Group difference in a path zS
a3 z = â3/sea3

Group difference in the indirect effect WS
diff

Wald test for a3b = 0

Simple indirect effect in each group PCS
ind

Percentile bootstrap CI for the simple indirect effect in each group

BCS
ind

Bias-corrected bootstrap CI for the simple indirect effect in each group

MULTI-GROUP ANALYSIS

Group difference in a path LRMa Likelihood ratio test for aG1 = aG2

Group difference in the indirect effect LRM
diff

Likelihood ratio test for aG1bG1 = aG2bG2

WM
diff

Wald test for aG1bG1 = aG2bG2

PCM
diff

Percentile bootstrap CI for the group difference in the indirect effect

BCM
diff

Bias-corrected bootstrap CI for the group difference in the indirect effect

MCM
diff

Monte Carlo CI for the group difference in the indirect effect

Simple indirect effect in each group PCM
ind

Percentile bootstrap CI for the simple indirect effect in each group

BCM
ind

Bias-corrected bootstrap CI for the simple indirect effect in each group

MCM
ind

Monte Carlo confidence interval for the simple indirect effect in each group

The superscripts “S” and “M” indicate the single-group and multi-group approaches, respectively. The subscript “ind” indicates the simple indirect effect in each group; the subscript

“diff” indicates the group difference in the indirect effect. CI, confidence interval. We used 95% confidence for all interval estimates.

estimate is
[

â1 + â3 (1)
]

b̂ =
(

â1 + â3
)

b̂ in Group 1 (coded 1),

and
[

â1 + â3 (0)
]

b̂ = â1b̂ in Group 2 (coded 0). The estimated

group difference in the indirect effect is
[

(

â1 + â3
)

b̂
]

− â1b̂ =

â3b̂ (Hayes, 2015).
In multi-group analysis, group membership is not used

as a predictor variable in the model. Instead, a set of
hypothesized models (e.g., a set of two models if there are two
distinctive groups) are specified and estimated simultaneously
(See Figure 2B). The group difference in the simple effect of
X on M (that is estimated by a3 in the single-group analysis)
is estimated by

(

âG1 − âG2
)

. The simple indirect effect is

estimated by âG1b̂G1 and âG2b̂G2 in Group 1 and in Group 2,
respectively. The estimated difference in the indirect effect is
(

âG1b̂G1 − âG2b̂G2

)

.

STATISTICAL INFERENCES

There are numerous methods for making statistical inferences
about the simple indirect effects and inferences about the group
difference in the indirect effect. The methods can be categorized
into the following branches: (1) normal-theory standard error, (2)
bootstrapping methods, (3) Monte Carlo method, (4) likelihood
ratio (LR) test, (5) Wald test1. Table 1 summarizes the methods
and shows the abbreviation to refer to each method. In the

1In mediation analysis, the poor performance of the method based on the

normality assumption is well-known. We included the normal theory standard

error method in the simulation study. As expected, and consistent with the

previous findings in the literature, the normal standard error method did not

performwell. We introduce the method here for the purpose of reviewing previous

literature but do not consider the normal-theory standard error method hereafter

to avoid redundancy. The normal-theory standard error does not appear in

Table 1. We do not present simulation results regarding this method.

abbreviation, the superscripts “S” and “M” indicate the single-
group and multi-group approaches, respectively. The subscripts
indicate which effect is tested by the method, e.g., “diff” means
the group difference in the indirect effect, “ind” means the simple
indirect effect in in each group.

Normal-Theory Standard Error
The normal-theory standard error method is based on the
assumption that the sampling distribution of the estimate follows
a normal distribution. In testing an indirect effect, it is well-
known that the normality assumption is not appropriate to
represent the sampling distribution of the indirect effect, and
the normal-theory based method do not perform well in testing
the indirect effect (e.g., MacKinnon et al., 2002; Shrout and
Bolger, 2002; MacKinnon et al., 2004; Preacher and Selig, 2012).
In moderated mediation models, Preacher et al. (2007) has
advocated the bootstrapping methods over the normal standard
error methods for testing the simple indirect effect.

Bootstrapping Methods
The bootstrapping methods can provide interval estimates
without relying on a distribution assumption. For this reason,
the bootstrapping methods have been recommended for testing
indirect effects in previous studies (e.g., MacKinnon et al., 2004;
Preacher and Hayes, 2004). The bootstrapping methods can
be applied for obtaining interval estimates for any effect of
interest, e.g., simple indirect effect in Group 1, simple indirect
effect in Group 2, group difference in the indirect effect. In
bootstrapping methods, a large number of bootstrap samples
(e.g., 1,000 bootstrap samples), whose sizes are the same as
the original sample size, are drawn from the original sample
with replacement. An estimate is obtained in each bootstrap
sample. An empirical sampling distribution is constructed
using the set of 1,000 bootstrap estimates. From the bootstrap

Frontiers in Psychology | www.frontiersin.org 3 May 2017 | Volume 8 | Article 747

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Ryu and Cheong Comparing Indirect Effects in Different Groups

sampling distribution, percentile bootstrap confidence intervals
([100 ∗ (1−α)]%) can be computed by the (α/2) and (1−α/2)
percentiles. Bias-corrected bootstrap confidence intervals can be
computed with the percentiles adjusted based on the proportion
of bootstrap estimates lower than the original sample estimate
(see MacKinnon et al., 2004).

In the single-group analysis, the estimate of the simple

indirect effect in each group is computed by
(

â∗1 + â∗3
)

b̂∗ in

Group 1 (coded 1), and â∗1 b̂
∗ in Group 2 (coded 0) in each

bootstrap sample. The superscript ∗ denotes that the estimates
are obtained in bootstrap samples. In each group, the percentile
(PCS

ind
in Table 1) and the bias-corrected (BCS

ind
) bootstrap

confidence intervals for the simple indirect effect are computed
from the bootstrap sampling distribution [i.e., the distribution of
(

â∗1 + â∗3
)

b̂∗ for Group 1; and the distribution of â∗1 b̂
∗ for Group

2] as described above.
In the multi-group analysis, the estimate of the simple indirect

effect is computed by â∗G1b̂
∗
G1 in Group 1 and â∗G2b̂

∗
G2 in Group 2.

The percentile (PCM
ind

) and the bias-corrected (BCM
ind

) bootstrap
confidence intervals for the simple indirect effect are obtained

from the distribution of â∗G1b̂
∗
G1 and the distribution of â∗G2b̂

∗
G2,

in Group 1 and Group 2, respectively. The percentile (PCM
diff

)

and the bias-corrected (BCM
diff

) bootstrap confidence intervals for

the group difference in the indirect effect are obtained from the

bootstrap sampling distribution of
(

â∗G1b̂
∗
G1 − â∗G2b̂

∗
G2

)

.

Monte Carlo Method
The Monte Carlo method provides a statistical test or an interval
estimate of an effect by generating parameter values with a
distributional assumption (e.g., multivariate normal). For testing
the group difference in the indirect effect in the multi-group
analysis model, the parameter estimates and standard errors are
used to specify a joint sampling distribution of the parameter
estimates from which the parameter values are generated for a
large number of replications, e.g., 1,000 (Preacher and Selig, 2012;
Ryu, 2015), such that the joint distribution of the four parameters
aG1, bG1, aG2, and bG2 is a multivariate normal distribution
shown below.









aG1
bG1
aG2
bG2









∼ MVN

















âG1

b̂G1
âG2

b̂G2









,









σ̂ 2
aG1
0 σ̂ 2

bG1
0 0 σ̂ 2

aG2
0 0 0 σ̂ 2

bG2

















(1)

where âG1, b̂G1, âG2, and b̂G2 are the estimates in the original
sample, and σ̂aG1 , σ̂bG1 , σ̂aG2 , and σ̂bG2 are the estimated standard
errors in the original sample. The parameters in Group 1 (aG1,
bG1) are independent of the parameters in Group 2 (aG2, bG2)
because Group 1 and Group 2 are independent as long as the
assumption of independent observations is valid. In mediation
model, the covariance between a and b paths are often replaced
with zero (Preacher and Selig, 2012). So the covariance between a
and b paths is zero in each group (σ̂bG1 ,aG1 = 0; σ̂bG2 ,aG2 = 0). For

a large number of replications, parameter values â+G1, b̂
+
G1, â

+
G2,

and b̂+G2 are generated from the multivariate normal distribution
shown in (1). The superscript + denotes the parameter values
generated by Monte Carlo method. In each replication, the

simple indirect effect estimate is computed by â+G1b̂
+
G1 in Group

1 and by â+G2b̂
+
G2 in Group 2. The group difference in the

indirect effect is computed by
(

â+G1b̂
+
G1 − â+G2b̂

+
G2

)

. The Monte

Carlo confidence intervals ([100 ∗ (1−α)]%) are obtained by
the (α/2) and (1−α/2) percentiles in the set of generated values.
For the simple indirect effect in Group 1, the Monte Carlo
confidence intervals (MCM

ind
) are computed using the set of

â+G1b̂
+
G1 values, and using the set of â+G2b̂

+
G2 values in each group,

respectively. The Monte Carlo confidence interval for the group
difference in the indirect effect (MCM

diff
) is obtained using the

set of
(

â+G1b̂
+
G1 − â+G2b̂

+
G2

)

values. The Monte Carlo method

is less computer-intensive and less time-consuming than the
bootstrapping method.

Likelihood Ratio Test
The likelihood ratio (LR) test and the Wald test can be used to
test a (set of) constraint. The LR test (Bentler and Bonett, 1980;
Bollen, 1989) is obtained by estimating two nested models with
(M1) and without (M0) the constraints. The LR test results in a
chi-square statistic with the degrees of freedom (df) equal to the
difference in the number of freely estimated parameters in the
two models.

χ2 = −2log

[

L (M1)

L (M0)

]

=
{

−2log [L (M1)]
}

− {−2log [L (M0)]}

(2)

where L (Mk) = likelihood of model k. The LR test can be used
to test the group difference in the “X → M” relationship in the
multi-group analysis model, by comparing two models with and
without the constraint aG1 = aG2, with df = 1 (LRMa ). Likewise,
the LR test can be used to test the group difference in the indirect
effect by comparing two models with and without the constraint
aG1bG1 = aG2bG2, with df= 1 (LRM

diff
).

Wald Test
TheWald test (Wald, 1943; Bollen, 1989) evaluates a constraint in
a model in which the constraint is not imposed. For testing group
difference in the indirect effect, the constraint a3b= 0 is tested in
the single-group analysis (WS

diff
). TheWald statistic (with df= 1)

is obtained by

W = θ̂21 /avar
(

θ̂1

)

(3)

Where θ1 = a3b and avar
(

θ̂1

)

= estimated asymptotic variance

of θ̂1, i.e., estimated asymptotic variance of â3b̂. Likewise, for
testing group difference in the indirect effect in the multi-group
model, the constraint aG1bG1 = aG2bG2 is tested (WM

diff
). The

Wald statistic (df = 1) is obtained by (3) with θ1 = aG1bG1 −

aG2bG2 in the multi-group model.
A previous simulation study (Ryu, 2015) compared the

performance of different methods for testing group difference in
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the indirect effect in multi-group analysis. In the previous study,
the LR test performed well in terms of Type I error rate and
statistical power. The percentile bootstrap confidence intervals
for the group difference in indirect effect showed coverage rates
that are close to the nominal level. The bias-corrected bootstrap
confidence intervals were more powerful than the percentile
bootstrap confidence intervals but the bias-corrected bootstrap
confidence intervals showed inflated Type I error rates.

SINGLE-GROUP AND MULTI-GROUP
APPROACHES

The multi-group analysis model shown in Figure 2B is less
restrictive the single-group analysis model shown in Figure 2A.
In the single-group model shown in Figure 2A, b and c′ paths
are assumed to be equal between groups, whereas b and c′

paths are allowed to differ between groups in the multi-group
model, unless additional equality constraints are imposed. It is
possible to specify a single-group model that allow b or c′ paths
to differ between groups. In order to allow these parameters
to differ between groups in the single-group model, additional
parameters need to be estimated or additional interaction terms
need to be added. If the model shown in Figure 2A is modified
by specifying the path coefficients “Group → Y” and “X∗Group
→ Y” to be freely estimated, that will allow c′ to differ between
groups. In order to allow b to differ between groups, the model
needs an additional variable “M∗Group” and the path coefficients
“Group→ Y” and “M∗Group→ Y” need to be freely estimated.
The multi-group model can be simplified by imposing equality

constraints b̂G1 = b̂G2 and / or ĉ′G1 = ĉ′G2.
In the single-group model, the variance and covariance

parameters are assumed to be equal as well, whereas in the
multi-group model those parameters are not restricted to be
the same between groups unless additional equality constraints
are imposed. Specifically, in the single-group analysis model
(as shown in Figure 2A) the residual variances of M and Y
are assumed to be equal in both groups. The equal variance
assumption in the single-group analysis is one of the standard
assumptions in general linear models. The assumption is that the
conditional variance of the dependent variable is homogeneous at
all levels of the independent variables. For example, in regression
analysis, the conditional variance of the dependent variable is
assumed to be equal at all levels of the predictor variable. In
between-subject analysis of variance or in t-test to compare two
independent means, the within-group variance is assumed to be
equal across all groups. It is well-known that the empirical Type I
error rate can be different from the nominal level when the equal
variance assumption is violated (e.g., Box, 1954; Glass et al., 1972;
Dretzke et al., 1982; Aguinis and Pierce, 1998).

The purpose of this study is to introduce the single-group and
multi-group approaches in SEM to comparing indirect effects
between groups, and to empirically evaluate the performance
of the statistical methods. Specifically, we aim to empirically
evaluate how well the statistical methods (summarized in
Table 1) perform for three questions in the moderated mediation
model: (i) comparing the a path (X → M) between groups,

(ii) comparing the indirect effect between groups, (iii) testing
simple indirect effect in each group. The methods we considered
are summarized in Table 1. We also evaluate how robust the
methods in the single-group analysis are when the assumption
of equal variances does not hold between groups. We expected
that the performance of the methods in multi-group analysis
would not be affected by the violation of the assumption of
equal variances, because the multi-group analysis model does
not rely on the assumption. In the single-group analysis, we
expected that the performance of the zSa3 and WS

diff
methods

would be affected by the violation of the equal variance
assumption, and that the confidence intervals produced by the
bootstrapping methods (PCS

ind
, BCS

ind
) would not be affected by

the violation of the assumption. The estimates are expected to
be unbiased regardless of the equal variance assumption violated.
The bootstrap sampling distribution is constructed using the
estimates in bootstrap samples. Therefore, as long as the violation
of the equal variance assumption does not affect the unbiasedness
of the estimates, the performance of the bootstrap confidence
intervals is not expected to be affected by the violation of the
assumption.

SIMULATION

We used the mediation model shown in Figure 2B as the
population model. There were two distinctive groups (denoted
by G1 and G2). We considered a total of 63 conditions: 21
populations× 3 sample sizes.

As shown in Table 2, the 21 populations were created by
combinations of three sets of parameter values for structural
paths (Populations I, II, and III) and seven sets of parameter
values for residual variances (Populations -0, -M1, -M2, -M3,
-Y1, -Y2, -Y3). In Population I, there was no group difference
in the indirect effect (aG1bG1 = 0.165; aG2bG2 = 0.165). In
Population II, there was no indirect effect in G1; there was a small

TABLE 2 | Parameter values for structural paths a and b, and for residual

variances of M and Y in population.

Population Parameter values

PARAMETER VALUES FOR STRUCTURAL PATHS

Population I aG1 = 0.424, bG1 = 0.390; aG2 = 0.424, bG2 = 0.390

Population II aG1 = 0.000, bG1 = 0.390; aG2 = 0.141, bG2 = 0.390

Population III aG1 = 0.000, bG1 = 0.390; aG2 = 0.424, bG2 = 0.390

PARAMETER VALUES FOR RESIDUAL VARIANCES

0 ψM(G1) = 1.0, ψY(G1) = 1.0; ψM(G2) = 1.0, ψY(G2) = 1.0

M1 ψM(G1) = 0.5, ψY(G1) = 1.0; ψM(G2) = 1.0, ψY(G2) = 1.0

M2 ψM(G1) = 0.5, ψY(G1) = 1.0; ψM(G2) = 1.5, ψY(G2) = 1.0

M3 ψM(G1) = 0.5, ψY(G1) = 1.0; ψM(G2) = 2.0, ψY(G2) = 1.0

Y1 ψM(G1) = 1.0, ψY(G1) = 0.5; ψM(G2) = 1.0, ψY(G2) = 1.0

Y2 ψM(G1) = 1.0, ψY(G1) = 0.5; ψM(G2) = 1.0, ψY(G2) = 1.5

Y3 ψM(G1) = 1.0, ψY(G1) = 0.5; ψM(G2) = 1.0, ψY(G2) = 2.0

21 populations were created by 3 (structural paths) by 7 (residual variances) combinations,

e.g., Population I–0, Population I–M1, ..., Population III-Y3. The direct effects of X on Y

ĉ′G1 = ĉ′G2 = 0 in all populations.
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indirect effect in G2 (aG1bG1 = 0.000; aG2bG2 = 0.055); the group
difference in the indirect effect was

(

aG1bG1 − aG2bG2
)

=−0.055.
In Population III, there was no indirect effect in G1; there was a
large indirect effect in G2 (aG1bG1 = 0.000; aG2bG2 = 0.165); the
group difference in the indirect effect was –0.165. The direct effect
of X on Y was set to zero (i.e., ĉ′G1 = ĉ′G2 = 0) in all populations.
It has been shown in a previous simulation study (Ryu, 2015) that
the population value of the direct effect had little influence on the
performance of the five methods for testing the group difference
in indirect effect. With each set of the parameter values for
structural paths, there were seven patterns of residual variances
of M and Y. In Population -0, the residual variances of M and Y
were equal between the groups in the population. In Populations
-M1, -M2, and -M3, the residual variance of Mwas smaller in G1.
In Populations -Y1, -Y2, and -Y3, the residual variance of Y was
smaller in G1. Note that the effect sizes varied depending on the
residual variances. The proportions of explained variance in M
and Y in the 21 populations are summarized in Table 3.

We considered three different sample sizes for each of the 21
populations. Sample size 1: nG1 = 150; nG2 = 150. Sample size 2:
nG1 = 200; nG2 = 100. Sample size 3: nG1 = 100; nG2 = 200. With
Sample size 2, the residual variances were smaller in the larger
group. With Sample size 3, the residual variances were smaller
in the smaller group. We used Mplus 7 for data generation
and estimation (Muthén and Muthén, 1998–2012). We used
SAS PROC IML for resampling of the data to create bootstrap
samples. We conducted 1,000 replications in each condition.

TABLE 3 | Proportion of explained variance in M and Y in population.

Population Group 1 Group 2

M Y M Y

I-0 0.152 0.152 0.152 0.152

I-M1 0.264 0.094 0.152 0.152

I-M2 0.264 0.094 0.107 0.204

I-M3 0.264 0.094 0.082 0.249

I-Y1 0.152 0.264 0.152 0.152

I-Y2 0.152 0.264 0.152 0.107

I-Y3 0.152 0.264 0.152 0.082

II-0 0.000 0.132 0.019 0.134

II-M1 0.000 0.071 0.019 0.134

II-M2 0.000 0.071 0.013 0.188

II-M3 0.000 0.071 0.010 0.235

II-Y1 0.000 0.233 0.019 0.134

II-Y2 0.000 0.233 0.019 0.094

II-Y3 0.000 0.233 0.019 0.072

III-0 0.000 0.132 0.152 0.152

III-M1 0.000 0.071 0.152 0.152

III-M2 0.000 0.071 0.107 0.204

III-M3 0.000 0.071 0.082 0.249

III-Y1 0.000 0.233 0.152 0.152

III-Y2 0.000 0.233 0.152 0.107

III-Y3 0.000 0.233 0.152 0.082

See Table 2 for population parameter values.

We analyzed each of the generated data sets both in single-
group analysis (0 = Group 1, 1 = Group 2) and in multi-
group analysis to test the group difference in a path, the group
difference in the indirect effect of X on Y via M, and the simple
indirect effect in each group. We used the methods summarized
in Table 1. We provide the sample syntax for data generation and
analysis in the Appendix.

Evaluation of Methods
In order to check the data generation and estimation, we first
examined the bias of the estimates. Bias was computed by
(mean of estimates–true value in the population). Relative bias
was computed by (bias/true value in the population) for the
effects whose population values were not zero. In the single-
group analysis, we compared the following estimates to their
corresponding population values: individual path coefficients

â1, â3, b̂, the simple indirect effect in Group 1 â1b̂, and the

simple indirect effect in Group 2
(

â1 + â3
)

b̂. In the multi-
group analysis, we compared the following estimates to their
corresponding population values: individual path coefficients

âG1, b̂G1, âG2, b̂G2, the simple indirect effects in each group

âG1b̂G1, âG2b̂G2, and the group difference in the indirect effect
(

âG1b̂G1 − âG2b̂G2

)

.

To evaluate the performance of the methods, we examined the
rejection rates that can be interpreted as Type I error rate (when
the effect was zero in population) or statistical power (when there
was a non-zero effect in population) for each method. For the z
test of a3 path (zSa3), LR test (LRMa , LRM

diff
), and Wald test (WS

diff
,

WM
diff

), we used α = 0.05 criterion. For confidence intervals

(95%), we computed the rejection rate by the proportion of
replications in which the interval estimates did not include zero.
We also examined coverage rates, width of confidence intervals,
rate of left-side misses, rate of right-side misses, and ratio of
left-side misses to right-side misses for interval estimates.

RESULTS

As expected, the estimates were unbiased in all populations with
all sample sizes. In the single-group analysis, the bias ranged
from 0.007 to −0.005, and the relative bias ranged from −0.038
to 0.007. The estimates obtained in the single-group analysis
were unbiased regardless of whether the assumption of equal
residual variances was satisfied. In the multi-group analysis, the
bias ranged from −0.004 to 0.007, and the relative bias ranged
from−0.011 to 0.051.

We present the simulation results in three sections: methods
for testing the group difference in a path, methods for testing the
group difference in the indirect effect, and methods for testing
simple indirect effect in each group.

Group Difference in a Path
Table 4 shows the empirical Type I error rates (nominal α= 0.05)
of themethods for testing the group difference in a path in single-
group (zSa3) and multi-group analysis (LRMa ) in Population I.
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TABLE 4 | Type I error rates of the methods for testing group difference in a path.

Sample size

nG1 = 150; nG2 = 150 nG1 = 200; nG2 = 100 nG1 = 100; nG2 = 200

Population zS
a3 LRMa zS

a3 LRMa zS
a3 LRMa

I-0 0.051 0.049 0.052 0.051 0.056 0.053

I-M1 0.055 0.052 0.086 0.056 0.031 0.053

I-M2 0.048 0.051 0.113 0.057 0.019 0.058

I-M3 0.048 0.047 0.129 0.057 0.015 0.056

I-Y1 0.051 0.049 0.052 0.051 0.056 0.053

I-Y2 0.051 0.049 0.052 0.051 0.056 0.053

I-Y3 0.051 0.049 0.052 0.051 0.056 0.053

The superscripts “S” and “M” indicate the single-group and multi-group approaches, respectively. W, Wald test; LR, likelihood ratio test. See Table 1 for description of each method.

See Table 2 for population parameter values. The Type I error rates that are smaller than 0.025 or greater than 0.075 are shown in bold.

FIGURE 3 | Empirical power for testing group difference in X to M relationship (a path) in Population II (A) and in Population III (B). See Table 1 for

description of the methods.

The Type I error rates of the LRMa method stayed close to the
nominal level. But the zSa3 method resulted in inflated Type I error
rates when the residual variance of M was smaller in the group
with a larger sample size (Populations I-M1 to I-M3; nG1 = 200;
nG2 = 100). The zSa3 method resulted in deflated Type I error rates
when the residual variance of M was smaller in the group with
a smaller sample size (Populations I-M2 and I-M3; nG1 = 100;

nG2 = 200). Whether or not the residual variance of Y was equal
between groups did not affect the Type I error rates of the zSa3
method. Figure 3 shows the empirical power of the two methods
for Populations II and III.

Note that the effect sizes are different in different populations.
Figure 3 is to compare the two methods zSa3 and LRMa in each
condition. When the group sizes were equal, the power was
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similar for the twomethods.When the residual variance ofMwas
not equal (Populations II-M1 to II-M3, Populations III-M1 to III-
M3), the zSa3 method showed higher power than the LRMa method
with the Sample size 2 (nG1 = 200; nG2 = 100); the zSa3 method
showed lower power than the LRMa method with the Sample size
3 (nG1 = 100; nG2 = 200).

Group Difference in the Indirect Effect
Type I Error Rates
Table 5 shows the empirical Type I error rates of the methods for
testing the group difference in the indirect effect in Population I.

The Type I error rates for the WS
diff

method were higher than

the nominal level when the residual variance of M was smaller
in the group with a larger sample size (Populations I-M2 and
I-M3; nG1 = 200; nG2 = 100); and the Type I error rates were
smaller than the nominal level when the residual variance of M
was smaller in the group with a smaller sample size (Populations
I-M1 to I-M3; nG1 = 100; nG2 = 200). This is a similar pattern to
the Type I error rates of the zSa3 method in Table 4.

For the five methods in the multi-group analysis, the Type I
error rates ranged from 0.049 to 0.068 with Sample size 1; ranged
from 0.047 to 0.070 with Sample size 2; and ranged from 0.053 to

TABLE 5 | Type I error rates of the methods for testing group difference in

the indirect effect.

Population WS
diff

LRM
diff

WM
diff

PCM
diff

BCM
diff

MCM
diff

SAMPLE SIZE 1: nG1 = 150; nG2 = 150

I-0 0.040 0.060 0.058 0.061 0.067 0.062

I-M1 0.037 0.054 0.051 0.049 0.055 0.057

I-M2 0.036 0.057 0.055 0.060 0.062 0.056

I-M3 0.039 0.058 0.053 0.066 0.065 0.063

I-Y1 0.042 0.061 0.062 0.067 0.063 0.060

I-Y2 0.040 0.066 0.065 0.059 0.068 0.065

I-Y3 0.038 0.066 0.062 0.062 0.066 0.065

SAMPLE SIZE 2: nG1 = 200; nG2 = 100

I-0 0.044 0.050 0.054 0.056 0.060 0.051

I-M1 0.063 0.047 0.047 0.058 0.053 0.051

I-M2 0.086 0.053 0.055 0.055 0.061 0.053

I-M3 0.105 0.057 0.059 0.055 0.062 0.062

I-Y1 0.047 0.056 0.058 0.061 0.064 0.055

I-Y2 0.046 0.058 0.060 0.059 0.064 0.059

I-Y3 0.044 0.057 0.059 0.064 0.070 0.060

SAMPLE SIZE 3: nG1 = 100; nG2 = 200

I-0 0.049 0.054 0.054 0.060 0.059 0.054

I-M1 0.018 0.054 0.053 0.054 0.064 0.058

I-M2 0.011 0.056 0.056 0.057 0.061 0.060

I-M3 0.010 0.055 0.057 0.057 0.058 0.055

I-Y1 0.050 0.058 0.059 0.057 0.064 0.061

I-Y2 0.047 0.060 0.056 0.058 0.064 0.062

I-Y3 0.042 0.060 0.059 0.063 0.065 0.059

The superscripts “S” and “M” indicate the single-group and multi-group approaches,

respectively. W, Wald test; LR, likelihood ratio test; PC, percentile bootstrap; BC, bias-

corrected bootstrap; MC, Monte Carlo method. See Table 1 for description of each

method. The Type I error rates that are smaller than 0.025 or greater than 0.075 are

shown in bold.

0.065 with Sample size 3. The equality of residual variances of M
and Y in the population did not affect the Type I error rates of the
five methods in the multi-group analysis. The Type I error rates
of the BCM

diff
method were slightly higher than the Type I error

rates of the other methods.

Power
The empirical power for testing the group difference in the
indirect effect in Populations II and III are shown in Figure 4.

Note that the difference in empirical power across populations
(i.e., across different lines) are due to different effect sizes as
shown in Table 3. The BCM

diff
method showed higher power than

the other methods. The WM
diff

method showed lower power than

the other methods in multi-group analysis. For Population III
in which the group difference in the indirect effect was larger,
the differences in empirical power between the methods were
greater with the sample size nG1 = 200; nG2 = 100, i.e., when
the indirect effect was zero in the larger group and larger in
the smaller group. When the residual variance of M was not
equal between groups (e.g., II-M1,..., II-M3, III-M1,..., III-M3),
the WS

diff
method yielded higher power than the other methods

with the sample size nG1 = 200; nG2 = 100. Note that the WS
diff

method showed inflated Type I error rates in these conditions.
The WS

diff
method yielded lower power than the other methods

with the sample size nG1 = 100; nG2 = 200. In these conditions,
the Type I error rates were lower than the nominal level.

Coverage Rates, Width, and Misses
Threemethods inmulti-group analysis produced 95% confidence
intervals for the group difference in the indirect effect: PCM

diff
,

BCM
diff

, and MCM
diff

. The results showed similar patterns in all

simulation conditions. The performance of the three confidence
intervals was comparable in terms of coverage, width, andmisses.
The coverage rates of the PCM

diff
confidence intervals ranged

from 0.927 to 0.951 (average = 0.939). The coverage rates of the
BCM

diff
confidence intervals ranged from 0.923 to 0.947 (average

= 0.935). The coverage rates of the MCM
diff

confidence intervals

ranged from 0.926 to 0.949 (average = 0.934). On average, the
coverage rates were slightly lower than the nominal level. The
width of the confidence intervals produced by the three methods
was similar to one another. The average width was 0.248 for
PCM

diff
, 0.250 for BCM

diff
, and 0.246 forMCM

diff
.

For PCM
diff

, the average ratio of left-to right-side misses was

1.427, 1.927, and 1.824 in Populations I, II, and III, respectively.
For BCM

diff
, the average ratio was 1.274, 1.521, and 1.249 in

Populations I, II, and III, respectively. For MCM
diff

, the average

ratio was 1.397, 1.783, and 1.664 in Populations I, II, and III,
respectively. All three confidence intervals showed higher rates
of left-side misses than right-side misses2. The BCM

diff
confidence

intervals were most balanced (i.e., average ratio closer to 1).

2The confidence intervals were obtained for
(

aG1bG1 − aG2bG2
)

. The rates of left-

side and right-side misses would be reversed if the group difference is calculated in

the opposite direction.
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FIGURE 4 | Empirical power for testing group difference in the indirect effect in Population II (A) and in Population III (B). See Table 1 for description of the

methods.

Simple Indirect Effect in Each Group
Type I Error Rates
The indirect effect was zero in Group 1 in Populations II and III.
The Type I error rates for testing the simple indirect effect are
shown in Table 6. The results were similar in Populations II and
III, and the results for Population II are shown in Table 6.

In the single-group analysis, the Type I error rates were higher
for the BCS

ind
method than for the PCS

ind
method. In the multi-

group analysis, the PCM
ind

andMCM
ind

methods showed the Type I

error rates that were close to the nominal level. Overall, the BCM
ind

method resulted in higher Type I error rates than the PCM
ind

and

MCM
ind

methods. The Type I error rates of the BCM
ind

method were
greater than 0.075 in some conditions (shown in bold).

Power
Figure 5 shows the power for testing the simple indirect effect
in Group 2 in Population II, in which a = 0.141 and b = 0.390.
When a = 0.424 and b = 0.390 in population (i.e., both groups
in Population I, and Group 2 in Population II), the power for
testing the simple indirect effects in each group was very high in
all conditions.

Again, note that the difference in empirical power across
populations (i.e., across different lines) are due to different effect
sizes as shown in Table 3. The BCS

ind
and BCM

diff
methods were

slightly more powerful than the other methods. The PCS
ind

, PCM
ind

,

andMCM
ind

showed similar power.

Coverage Rates, Width, and Misses
In the single-group analysis, the coverage rates of the PCS

ind
confidence intervals ranged from 0.926 to 0.952 (average =

0.939). The coverage rates of the BCS
ind

confidence intervals
ranged from 0.919 to 0.950 (average= 0.934). In the multi-group
analysis, the coverage rates ranged from 0.920 to 0.962 (average
= 0.937) for the PCM

ind
method; from 0.910 to 0.953 (average =

0.932) for the BCM
ind

method; from 0.919 to 0.962 (average =

0.938) for theMCM
ind

method. The results showed similar pattern
in Populations I, II, and III. We present the coverage rates for
Group 1 in Population II in Figure 6.

The BCS
ind

and BCM
ind

methods yielded lower coverage rates

than the other methods. The PCS
ind

, PCM
ind

, and MCM
ind

methods

showed more accurate coverage rates than the BCS
ind

and BCM
ind

methods.
On average, the confidence interval methods in the multi-

group analysis resulted in wider intervals than those in the single-
group analysis. The average width across all conditions was 0.147
for PCS

ind
, and 0.148 for BCS

ind
. In the multi-group analysis, the

average width was 0.169 for PCM
ind

, 0.172 for BCM
ind

, and 0.168 for

MCM
ind

.
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TABLE 6 | Type I error rates for testing simple indirect effect in Group 1 in

Population II.

Population PCS
ind

BCS
ind

PCM
ind

BCM
ind

MCM
ind

SAMPLE SIZE 1: nG1 = 150; nG2 = 150

II-0 0.050 0.065 0.056 0.073 0.049

II-M1 0.048 0.068 0.049 0.075 0.043

II-M2 0.048 0.067 0.047 0.071 0.042

II-M3 0.048 0.066 0.046 0.075 0.040

II-Y1 0.050 0.063 0.053 0.063 0.054

II-Y2 0.050 0.065 0.052 0.064 0.051

II-Y3 0.050 0.067 0.052 0.061 0.046

SAMPLE SIZE 2: nG1 = 200; nG2 = 100

II-0 0.060 0.074 0.062 0.082 0.059

II-M1 0.058 0.074 0.061 0.090 0.059

II-M2 0.058 0.071 0.062 0.085 0.058

II-M3 0.058 0.072 0.055 0.082 0.061

II-Y1 0.060 0.066 0.062 0.069 0.061

II-Y2 0.060 0.071 0.063 0.071 0.059

II-Y3 0.060 0.071 0.065 0.077 0.061

SAMPLE SIZE 3: nG1 = 100; nG2 = 200

II-0 0.051 0.069 0.053 0.082 0.056

II-M1 0.051 0.071 0.039 0.077 0.038

II-M2 0.051 0.067 0.040 0.077 0.045

II-M3 0.051 0.064 0.042 0.072 0.038

II-Y1 0.051 0.067 0.058 0.076 0.059

II-Y2 0.051 0.072 0.061 0.078 0.063

II-Y3 0.051 0.072 0.065 0.077 0.056

The superscripts “S” and “M” indicate the single-group and multi-group approaches,

respectively. PC, percentile bootstrap; BC, bias-corrected bootstrap; MC, Monte Carlo

method. See Table 1 for description of each method. Type I error rates that are smaller

than 0.025 or greater than 0.075 are shown in bold.

Table 7 shows the average ratio of left- to right-side misses of
confidence intervals methods for simple indirect effects.

The confidence intervals showed higher rates of right-side
misses for the simple indirect effects whose population values
were positive, except BCM

ind
in Population I. The confidence

intervals showed higher rates of left-side misses for simple
indirect effects whose population values were zero. Both in
the single-group and multi-group analysis, the bias-corrected
confidence intervals, BCS

ind
and BCM

ind
, were most balanced (i.e.,

average ratio closer to 1).

EMPIRICAL EXAMPLE

We illustrate the methods using empirical data from PISA 2003
database (Programme for International Student Assessment,
Organisation for Economic Co-operation Development, 2004,
2005). We adopted a conceptual model in Yeung (2007). We
compared the indirect effect of teachers’ emotional support on
math interest via math self-concept in Australia (AUS; N =

1,2551) and Austria (AUT; N = 4,597). The estimated multi-
group and single-group structural equation models are shown
in Figure 7. We applied the methods for (i) comparing the a

path between groups, (ii) comparing the indirect effect between
groups, (iii) testing simple indirect effect in each group. In the
multi-group model (Figure 7A), with the b path (Math self-
concept → Math interest) and c′ path (Emotional support →
Math interest) set equal between groups, χ2 (2) = 0.464, p =

0.793, CFI= 1.000, RMESA= 0.000, SRMR= 0.003.We kept the
equality constrains on b and c′ paths in the multi-group model so
that the specification of the fixed effects is equivalent to the single-
group model. In the single-group model (Figure 7B), we created
a group variable to represent the two countries that 0= Australia
(AUS) and 1 = Austria (AUT). The results are summarized in
Table 8. In the multi-group model, the residual variances were
slightly smaller in AUS whose sample size was larger. This is
similar to Sample size 2 (nG1 = 200; nG2 = 100) condition in
the simulation. In Table 8, LRMa was slightly more conservative
than zSa3 in testing the group difference in a path; LRM

diff
andWM

diff

were slightly more conservative than WS
diff

in testing the group

difference in the indirect effect. For the difference in the indirect
effect, PCM

diff
, BCM

diff
, and MCM

diff
yielded in comparable results.

For the simple indirect effect, PCS
ind

, BCS
ind

, PCM
ind

, BCM
ind

, and

MCM
ind

resulted in comparable interval estimates.

SUMMARY AND DISCUSSION

When the research question involves comparing indirect effects
between distinctive groups, researchers can choose single-
group or multi-group analysis approach in SEM framework to
incorporating the group membership as a categorical moderator.
In this article, we evaluated statistical methods for (i) comparing
a structural path (in our example, a path or X→M relationship)
between groups, (ii) comparing the indirect effect between
groups, and (iii) testing simple indirect effect in each group.
We continue to use the abbreviated names of each method to
summarize and discuss the results (See Table 1).

The key findings in the simulation study are:

(1) In the single-group analysis, the zSa3 and WS
diff

methods may

result in invalid statistical inferences when the assumption of
equal variances is neglected.

(2) However, the performance of bootstrapping confidence
intervals is robust even when the bootstrap estimates are
obtained in the single-group model.

(3) The bias-corrected bootstrap confidence intervals are slightly
more powerful than the percentile bootstrap and Monte Carlo
confidence intervals, but at the cost of higher Type I error rate,
and;

(4) For comparing an indirect effect between groups, the
likelihood ratio test in the multi-group analysis is as powerful
as the other methods with the Type I error rate staying close
to the desired level.

For testing the group difference in the a path, the assumption
of equal variances was critical for the zSa3 method, but not
for the LRMa method in the multi-group analysis. When the
assumption was not satisfied, the zSa3 method showed inaccurate
Type I error rates, as expected. The Type I error rates were
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FIGURE 5 | Empirical power for testing simple indirect effect in Group 2 in Population II. See Table 1 for description of the methods.

FIGURE 6 | Coverage rates of 95% confidence intervals for the simple indirect effects in Group 1 in Population II. See Table 1 for description of the

methods.

TABLE 7 | Average ratio of left-to-right misses of confidence intervals methods for simple indirect effects.

Population I Population II Population III

Group1a Group2a Group1b Group2a Group1b Group2a

PCS
ind

0.627 0.486 1.674 0.606 1.674 0.494

BCS
ind

0.969 0.791 1.467 0.770 1.476 0.790

PCM
ind

0.613 0.474 1.670 0.493 1.644 0.491

BCM
ind

1.025 0.851 1.491 0.660 1.486 0.886

MCM
ind

0.604 0.506 1.626 0.488 1.638 0.499

The superscripts “S” and “M” indicate the single-group and multi-group approaches, respectively. PC, percentile bootstrap; BC, bias-corrected bootstrap; MC, Monte Carlo method.

See Table 1 for description of each method. aThe simple indirect effect was positive in population. bThe simple indirect effect was zero in population.

inflated when the variance was larger in the smaller group,
and deflated when the variance was larger in the larger
group.

For testing the simple indirect effect in each group, the
bootstrap confidence intervals in the single-group analysis
(PCS

ind
, BCS

ind
) were not affected by the violation of the equal
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FIGURE 7 | Estimated multi-group and single-level structural equation models. In (A) Multi-group model, the path coefficient “Math self-concept → Math

interest” was set equal between groups; the path coefficient “Emotional support → Math interest” was set equal between groups. The estimate of the indirect effect

was 0.292*0.497 = 0.145 in Australia (AUS) and 0.234*0.497 = 0.116 in Austria (AUT). In (B) single-group model, group was coded 0 = AUS and 1 = AUT. The

estimated indirect effect was 0.292*0.496 = 0.145 for AUS and (0.292–0.058)*0.496 = 0.116 for AUT. The estimated group difference in the indirect effect was

0.116–0.145 = –0.029.

variances assumption. The PCS
ind

and BCS
ind

confidence intervals
were obtained based on the set of 1,000 estimates in bootstrap
samples. As shown in the simulation results, the estimates in the
single-group analysis model were unbiased regardless of whether
the assumption of equal variances is satisfied. So the empirical
sampling distribution of the indirect effect is expected to be
comparable with or without the assumption of equal variances
satisfied. Therefore, the bootstrap confidence intervals obtained
from the empirical sampling distribution were not affected by the
assumption.

In the multi-group analysis, all methods did not show
differences in their performance depending on whether or not
the equal variances assumption is satisfied. These results were
expected, because the variances were estimated in each group
separately in the multi-group model.

In both single-group and multi-group approaches, the bias-
corrected bootstrap methods (BCS

ind
, BCM

ind
, BCM

diff
) tended to

show slightly higher Type I error rates, higher statistical power,
and lower coverage rates than the percentile bootstrap methods
(PCS

ind
, PCM

ind
, PCM

diff
). This pattern of results is consistent with

what has been found in previous studies (e.g., Preacher et al.,
2007; Preacher and Selig, 2012; Ryu, 2015). The Monte Carlo
methods (MCM

ind
, MCM

diff
) performed similarly to the percentile

bootstrap methods. The Type I error rates and the coverage rates

of the confidence intervals were close to the desired level in
all conditions. The empirical power was slightly lower than the
bias-corrected bootstrap methods, but not by much. The largest
difference in power was 0.091.

For the interval estimates of the group difference in the
indirect effect, the average widths were comparable for all three
methods in the multi-group analysis (PCM

diff
, BCM

diff
, MCM

diff
).

For the interval estimates of the simple indirect effects, the
two methods in the single-group analysis (PCS

ind
, BCS

ind
) showed

similar average widths, and the three methods in the multi-
group analysis (PCM

ind
, BCM

ind
, MCM

ind
) showed similar average

widths. The multi-group methods resulted in wider interval
estimates of the simple indirect effects than the single-group
methods.

The confidence intervals for the simple indirect effects were
unbalanced with higher rate of left-side misses when the simple
indirect effect was zero in population, and unbalanced with
higher rate of right-side misses when there was a positive simple
indirect effect in population. For both the group difference in the
indirect effect and the simple indirect effects, the bias-corrected
bootstrappingmethods (BCM

diff
,BCS

ind
,BCM

ind
) weremost balanced

in terms of the ratio of left- and right-side misses.
In the multi-group analysis, the likelihood ratio test (LRM

diff
)

and the Wald test (WM
diff

) performed well in terms of Type I
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TABLE 8 | Empirical example results.

Method Result

GROUP DIFFERENCE IN a PATH

zS
a3 â3 = −0.058, standard error = 0.020, p = 0.005

LRMa LR statistic = 7.122, df = 1, p = 0.0076

GROUP DIFFERENCE IN THE INDIRECT EFFECT

WS
diff

Wald statistic = 7.903, df = 1, p = 0.0049

LRM
diff

LR statistic = LR statistic = 7.122, df = 1, p = 0.0076

WM
diff

Wald statistic = 7.115, df = 1, p = 0.0076

PCM
diff

95% confidence intervals = (–0.057, –0.001)

BCM
diff

95% confidence intervals = (–0.057, –0.001)

MCM
diff

95% confidence intervals = (–0.051, –0.008)

SIMPLE INDIRECT EFFECT IN EACH GROUP

PCS
ind

95% confidence intervals = (0.128, 0.161) in AUS; (0.093, 0.139) in AUT

BCS
ind

95% confidence intervals = (0.129, 0.161) in AUS; (0.093, 0.140) in AUT

PCM
ind

95% confidence intervals = (0.128, 0.162) in AUS; (0.093, 0.139) in AUT

BCM
ind

95% confidence intervals = (0.130, 0.163) in AUS; (0.092, 0.139) in AUT

MCM
ind

95% confidence intervals = (0.134, 0.157) in AUS; (0.098, 0.135) in AUT

See Table 1 for description of each method.

error rates. But the WM
diff

method showed lower power than the

LRM
diff

and the confidence intervals methods for testing the group

difference in the indirect effect. The empirical power of the LRM
diff

method was comparable to the power of PCM
diff

andMCM
diff

. These

results are consistent with those found in a previous study (Ryu,
2015). In the single-group analysis, the performance of the Wald
test (WS

diff
) for testing the group difference in the indirect effect

was affected by the violation of the equal variance assumption,
particularly with unequal group sizes. The Type I error rates were
higher than the desired level when the variance was larger in
the smaller group. The Type I error rates were smaller than the
nominal level when the variance was larger in the larger group.

In many cases, studies are conducted to address questions on
means (unconditional or conditional) and relationships between
variables, and the variance estimates are often neglected. It is
important for researchers to pay attention to variance estimates,
even when they are not of key interest. When the research
question involves moderation effect by a distinctive group
membership, it is recommended that the variance parameters
are examined first with no restriction that the variances are
equal in all groups. When it is reasonable to assume that
the variances are equal, researchers may choose to adopt
single-group or multi-group analysis approach. When it is not
reasonable to assume equal variances, multi-group analysis is
recommended. The single-group analysis resulted in unbiased
parameter estimates even with the assumption violated. But some
methods for statistical inference were affected by the violation
of the assumption. If single-group analysis is adopted, statistical
methods must be chosen with careful consideration.

Multi-group analysis approach has advantages over single-
group approach in incorporating a categorical moderator in

the model. First, the multi-group approach does not depend
on the assumption of equal variances, and so the parameter
estimates and statistical inferences are not affected by the
assumption satisfied or violated. Second, it is less complicated
to specify and test the group difference in more than one
indirect effect. For example, suppose that a mediation model
is hypothesized in which three indirect effects are specified
between one independent variable (X), three mediating variables
(M1, M2, and M3), and one dependent variable (Y). In
order to specify a model that allows the three indirect
effects to differ between groups, the single-group approach
requires at least three additional product terms to represent
the interaction with the group membership. The number of
required product terms can increase if there are more than two
levels of the categorical moderator, or if both the relationship
between X and the mediators and the relationship between
the mediators and Y differ between groups. In the multi-
group analysis, however, the group differences can be specified
and tested without increasing the number of variables in the
model.

In conclusion, when the data are from more than one
distinctive group, we recommend that researchers first examine
parameter estimates (including variance parameters) in each
group with no restriction before choosing to adopt single-
group analysis. For testing the group difference in the indirect
effect in multi-group analysis, the likelihood ratio test is more
powerful than Wald test, with Type I error rate close to the
desired level. For confidence intervals of the group difference
in the indirect effect, bias-corrected bootstrap confidence
intervals were more powerful and more balanced than the
percentile bootstrap and Monte Carlo confidence intervals, but
at the cost of higher Type I error rates and lower coverage
rates. For the simple indirect effect in each group, bias-
corrected bootstrap confidence intervals were more powerful
than the percentile bootstrap and Monte Carlo confidence
intervals, but again the Type I error rates were higher with
bias-corrected bootstrap confidence intervals. Taken together,
we recommend the likelihood ratio test along with the
percentile or Monte Carlo interval estimates for the group
difference in the indirect effect. We recommend the percentile
or Monte Carlo interval estimates for the simple indirect
effect.
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