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Many statistical methods yield the probability of the observed data – or data more
extreme – under the assumption that a particular hypothesis is true. This probability
is commonly known as ‘the’ p-value. (Null Hypothesis) Significance Testing ([NH]ST)
is the most prominent of these methods. The p-value has been subjected to much
speculation, analysis, and criticism. We explore how well the p-value predicts what
researchers presumably seek: the probability of the hypothesis being true given the
evidence, and the probability of reproducing significant results. We also explore the
effect of sample size on inferential accuracy, bias, and error. In a series of simulation
experiments, we find that the p-value performs quite well as a heuristic cue in inductive
inference, although there are identifiable limits to its usefulness. We conclude that
despite its general usefulness, the p-value cannot bear the full burden of inductive
inference; it is but one of several heuristic cues available to the data analyst. Depending
on the inferential challenge at hand, investigators may supplement their reports with
effect size estimates, Bayes factors, or other suitable statistics, to communicate what
they think the data say.

Keywords: statistical significance testing, null hypotheses, NHST, Bayes’ theorem, replicability, reverse inference

INTRODUCTION

The casual view of the p-value as posterior probability of the truth of the null hypothesis is false and
not even close to valid under any reasonable model.
∼ Gelman (2013, p. 69)

Gelman’s (2013) observation that many views of p-values are too casual to be accurate is itself
surprisingly casual. If the p-value cannot be equated with the probability of the tested hypothesis,
what does it convey? In this article, we explore the association between the p-value produced by
significance testing and the posterior (after study) probability of the (null) hypothesis. To anticipate
our conclusion, we find logical (i.e., built into Bayes’ theorem) and quantitative (after simulation)
reasons to think the p-value ‘significantly’ predicts the probability of the hypothesis being true.
These associations, being neither trivial nor perfect, suggest that the p-value is best understood as a
useful diagnostic cue for the task of statistical inference. It should neither be ignored nor burdened
with the expectation that it reveals everything the researcher wishes to know.

Although our objective is squarely focused on the inductive power of the p-value, we find
it impossible to dissociate our investigation from the debate over Null Hypothesis Significance
Testing. NHST is the preponderant form of significance testing and thus the main producer of
p-values in psychology and many other fields of empirical research. Yet, the jerry-built framework
of NHST invites a host of other types of criticism that lie beyond the scope of this article. For
exposition’s sake, we refer to significance testing or specifically to NHST throughout this article as
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we explore the properties of p-values, but this presentational
device does not mean that we endorse all aspects of NHST as it
is currently practiced.

Significance testing in its various forms has a long tradition
in psychological science, and so do statisticians’ concerns and
search for alternatives. Significance testing, whether or not it
involves null hypotheses, is flawed on logical and probabilistic
grounds. It has systematic biases and blind spots. Yet, logical
and methodological limitations afflict all methods of inductive
inference (García-Pérez, 2016). Hume (1739/1978) famously
observed the impossibility of a rational justification of inductive
inference. The question he asked, and which we should ask today,
is a pragmatic one: how well does a method perform the task
placed before it? And by what criteria can we judge a method’s
worth? In psychological science, much of the critical debate has
been focused on NHST, presumably because many researchers
use it ritualistically with a narrow focus on the p-value, and
without understanding its meaning (Meehl, 1998; Gigerenzer,
2004; see also Mayo, 1996; Perezgonzalez, 2015b). Greenland
et al. (2016) list no fewer than 25 misconceptions regarding p,
chief among them the idea that p reflects the probability of the
research hypothesis being true, that is, Gelman’s gripe. Here,
we can only briefly sketch the main themes of criticism before
considering a specific set of questions in greater depth: what is
the association between the p-value and the revised probability
of the tested hypothesis? What are some of the factors that
affect this association? Should these factors matter to the working
researcher?

We address these questions with computer simulations. As
we progress, it will become clear that we freely draw from
distinctive statistical traditions, including Fisher’s framework,
the Neyman–Pearson paradigm, and Bayesian ideas. We follow
this eclectic and pragmatic route in order to obtain answers
to our chief questions that may translate into applied practice.
We will conclude with reflections on the place of the p-value in
psychological research and the role it may play in informing,
however tentatively, theoretical considerations. Seeing some
value in the use of the p-value, we do not end with a
wholesale condemnation of significance testing (while granting
that there may be other sufficient reasons). If, in the course of
events, significance testing is abandoned or replaced with, for
example, estimation methods (Cumming, 2014) or techniques
of Bayesian model comparison (Kruschke, 2013; Kruschke and
Lidell, 2017), our analysis might be remembered as a requiem
for significance testing and NHST. Then, looking back from the
future, we may come to see what we have lost, for better or for
worse.

A BRIEF HISTORY OF CRITICISM

A radical conclusion from the critical reception of significance
testing is surgical: remove such testing and the p-value from
research altogether (e.g., Schmidt and Hunter, 1997). Indeed, the
journal Basic and Applied Social Psychology no longer accepts
research articles reporting significance tests (Trafimow and
Marks, 2015), while Psychological Science nudges authors toward

other “preferred methods” (Eich, 2014).1 We think it self-evident
that a decision to ban any particular method should clear a
rational threshold. Perhaps a ban is justified if significance testing
(and the resulting p-value) causes more harm than good. Some
believe this to be so (Ioannidis, 2005; but see Fiedler, 2017), but
harm and good are elastic concepts; they are difficult to define
and measure in a probabilistic world. A more cautious position
is to say that the p-value should be abandoned if its contribution
to scientific progress is too small and if other measures perform
better. Here, a difficulty lies in what is meant by ‘too small,’
or ‘better.’ Recall Hume’s skepticism regarding the appraisal of
induction. Scientists trying to evaluate a particular method have
no access to truth outside of the inductive enterprise itself – if
they did, they would not need induction. A method of inductive
inference can be evaluated only indirectly with the help of other
inductions. Recognizing this constraint, we attempt to estimate
the usefulness of the p-value by pragmatically relying on other
(mainly Bayesian) modes of induction.

Criticism of p-values and significance testing takes several
forms. One prominent concern is that researchers misunderstand
the process of inference and fail to comprehend the meaning
of the p-value (Bakan, 1966; Cohen, 1994; Goodman, 2008;
Bakker et al., 2016; Greenland et al., 2016). Gelman’s epigraphic
warning is a notable expression of this view. Another, more
serious, criticism is that researchers deliberately or unwittingly
engage in practices resulting in depressed p-values (Simmons
et al., 2011; Masicampo and Lalande, 2012; Head et al., 2015;
Perezgonzalez, 2015b; Kunert, 2016; Kruschke and Lidell, 2017).
For our purposes, it is essential to note that both these criticisms
are matters of education and professional ethics, which need to
be confronted on their own terms. We will therefore concentrate
on criticism directed at the intrinsic properties of p. Chief
among these is the recognition that p-values show a high
degree of sampling variation (Murdoch et al., 2008; Cumming,
2014). Variability suggests unreliability, and unreliability limits
validity. The strongest reaction is to conclude that the evidentiary
value of p is highly uncertain, or even nil. By implication,
all substantive claims resting on significance testing should be
ignored. Again, this may be an over-reaction. We know of
no critics willing to ignore the entire archival record built on
significance tests. Can we truly say that we have learned nothing
(Mayo, 1996)? If we have learned something, the question is: how
much?

Assuming that significance testing has taught us something,
there remains a strong concern that much of what we think
we have learned is – or will turn out to be – false (Murayama
et al., 2014). Significance testing is not neutral with respect to
the hypothesis being tested. At the limit, as samples become
very large, even very small deviations from the hypothesized
point (e.g., 0) will pass the significance threshold (Kruschke,
2013; Kruschke and Lidell, 2017). Significance testing is thus
biased against the hypothesis being tested (Greenwald, 1975;
Berger and Sellke, 1987). Even when the statistical hypothesis
(most often the null) is true, the p-value will be < 0.05 in 5%

1The “preferred methods” include frequentist and Bayesian methods that advocates
of each school would regard as incommensurable.

Frontiers in Psychology | www.frontiersin.org 2 June 2017 | Volume 8 | Article 908

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-00908 June 9, 2017 Time: 11:56 # 3

Krueger and Heck Heuristic p-Value

of the cases, and by definition so (Lindley, 1957; Wagenmakers
et al., 2016). At the same time, there is also the concern that
most empirical samples are not large enough to detect important
effects (Cohen, 1962; Sedlmeier and Gigerenzer, 1989). That is,
significance testing is not only liable to produce false positives,
but also false negatives. Increases in statistical power – which
is typically achieved with increases in sample size – will lower
p-values (see Hoenig and Helsey, 2001, for a formal proof). Both
of these (seemingly opposite) concerns, the risk of false positives
and the risk of false negatives, imply that many exact replications
will fail (Open Science Collaboration, 2015).2 The meta-problem
of uncertain (and low) replicability has caught the attention of
the scientific community as well as the general public as it goes
to the heart of the question of how much of a contribution
scientific research can make to the well-being of those who pay
for it.

More criticism does not always do more damage. The idea that
p-values have no validity conflicts with the view that samples are
too small. Yet, both lines of criticism raise the specter of false
positives results. Anticipating this concern, Fisher (1935/1971)
recommended a p-value of 0.05 as a prudent threshold the
data should pass before meriting the inference of significance.
He regarded this threshold as a heuristic rather than a firm
or logical one and the p-value as a “crude surprise index.”
“No scientific worker,” Fisher (1956, p. 42) wrote, “has a fixed
level of significance at which from year to year, and in all
circumstances, he rejects hypotheses; he rather gives his mind
to each particular case in the light of his evidence and his
ideas.” A variant of the idea that significance testing is biased
toward ‘positive’ results is the argument that the method does
not allow for a corroboration of the tested hypothesis. It cannot,
by design, detect true negatives. There is only refutation but no
confirmation. Some Bayesian scholars consider it critical that the
evidence must be allowed to support the inference that the tested
hypothesis is indeed true (Kruschke and Lidell, 2017; Rouder
et al., 2017). According to this view, it is a prime task of scientific
research to detect and document ‘invariances,’ that is, to show
that important phenomena do not change even when salient
contextual factors suggest that they would (Wagenmakers, 2007;
Rouder et al., 2009).3 Conversely however, and as noted above,
significance testing may also miss true effects due to lack of power
or precision in measurement (Dayton, 1998; Vadillo et al., 2016)
and it may thereby retard scientific exploration (Fiedler et al.,
2012; Baumeister, 2016).

One general response to these diverse and partially
contradictory criticisms is to place one’s hope in very large
samples. The call ‘Let the data be big!’ might draw more applause
were it not for the ecological constraints of laboratory research
and reduced efficiency of scientific work. Baumeister (2016)
recalls that 10 observations per cell used to be the standard
in social psychology, but that recently expectations have risen
fivefold. Baumeister observes that a commitment to gather

2Replications will fail because samples are too small to detect a true effect, or
because they are large enough to expose the original result as a false positive.
3A phenomenon must first be discovered before it can be shown to be invariant
over contexts, that is, before it can be generalized.

very many observations will decelerate the trial-and-error
exploration of creative ideas. Sakaluk (2016) observes that
many researchers must work with small to medium samples
because they lack the resources to collect large samples for every
scientific question they ask. Classic methods were developed
to provide small-sample statistics whose fidelity should be
evaluated. Aside from such constraints, the pursuit of large
samples is understandable. Large samples make estimates
more reliable and reduce error. In a very large sample, the
obtained effect size (for example, d) approximates the population
effect size (δ) and the p-value is highly diagnostic. If the null
hypothesis is false, p converges on 0; if the null is true, the
probability of a false positive is 0.05. Any reduction in sample
size reduces this validity, but does not eliminate it.4 As part
of our investigation, we will explore the effect of increasing
sample size on the two types of errors, false positives and false
negatives.

THE BAYESIAN CONTEXT

If one is to reject a statistical hypothesis, there needs to be
sufficient reason for the belief that the hypothesis is false. There
needs to be an estimate of the probability of the hypothesis being
true given the data, or p(H|D). However, the standard p-value is
the inverse of this conditional probability, namely the probability
of the data (or data more extreme) given the hypothesis, p(D|H)
(Wasserstein and Lazar, 2016). When researchers reject the
hypothesis, they have presumably inferred a low p(H|D) from a
low p(D|H). They cannot simply equate these two conditional
probabilities because this would assume a symmetry that is rare
in the empirical world (Dawes, 1988; Gelman, 2013). Conversely,
they cannot assume that p(D|H) tells them nothing. Kruschke
and Lidell (2017) warn that “the frequentist p-value has little
to say about the probability of parameter values.” But how
much is little? A lack of symmetry does not mean a lack of
association. If there is a positive association between p(D|H) and
p(H|D), the former has heuristic validity for the estimation of the
latter.

Bayes’ Theorem formalizes the matter of inverse probability
(Jeffreys, 1961; Lindley, 1983). Before turning to the likelihood
version of Bayes’ theorem, which is preferred in formal analysis,
we consider the probability version, which is more familiar. Here,
the probability of the hypothesis given the data is equal to the
probability of the data given the hypothesis times the ratio of two
unconditional probabilities:

p (H|D) = p (D|H)×
p (H)

p (D)

The unconditional probability of the hypothesis, p(H), is its prior
probability, that is, the estimated probability of this hypothesis
being true in the absence of evidence. The unconditional
probability of the data, p(D), is the probability of the empirical

4If the population is finite with size N, a sample of size N is exhaustive and
necessarily valid. A sample of N-1 is only slightly inferior, and a sample of N = 1
remains more informative than no sample at all (Dawes, 1989).
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evidence found in light of any hypothesis, which comprises
the statistical hypothesis (H) and its alternative(s) (∼H). Bayes’
Theorem can thus be written as:

p (H|D) =
p (H) × p (D|H)

p (H)× p (D|H)+ p (∼ H)× p (D| ∼ H)

The theorem teaches two lessons. First, to simply equate p(H|D)
with p(D|H) is to commit a fallacy of reverse inference (Krueger,
2017). Second, to dismiss p(D|H) is to ignore the fact that it is one
of the determinants of p(H|D) (Nickerson, 2000; Krueger, 2001;
Trafimow, 2003; Hooper, 2009).

Some scholars have noted the association between the p-value
and the posterior probability of the hypothesis (Greenland and
Poole, 2013). Using simple assumptions (see below), one of us
estimated the association between p(D|H) and p(H|D) to be
r = 0.38 (Krueger, 2001). This result offered a clue for why many
researchers continue to use practice of significance testing, but it
was too weak to have normative force. Trafimow and Rice (2009)
replicated this result and concluded that significance testing has
little value. How large should this correlation be? It would be
reassuring to see a correlation as large as a typical reliability
coefficient, that is, a coefficient greater than 0.70. Reliability
coefficients rise with the reduction of measurement error. Yet,
the correlation between p(D|H) and p(H|D) is not a matter
of reliability but a matter of predictive validity. Even if both
probabilities were measured with precision, they would not be
perfectly correlated. Beliefs of what constitutes an acceptable
level of predictive validity vary. For measures that are considered
subtle and sensitive, even validity correlations of around 0.3 have
been presented as feats of prediction (e.g., Greenwald et al., 2009).
We propose that a validity correlation of 0.5 is large enough to
warrant scientific and practical interest. This is a realistic aim, and
we ask if the p-value can meet it.

SAMPLING PROBABILITIES

How well does the p-value, p(D|H), predict the criterion measure,
p(H|D), that researchers seek when conducting a significance
test? Bayes’ Theorem implies a positive association. As the
p-value falls, so does the criterion of truth, p(H|D). If p(H)
and p(D|∼H) were constant, the correlation between p(D|H)
and p(H|D) would be perfect. Krueger (2001) and Trafimow
and Rice (2009) assumed flat and independent distributions
for p(H), p(D|H), and p(D|∼H). We replicated their finding
(r = 0.372) with 100,000 sets of three input probabilities drawn
randomly from uniform distributions. The distribution of p(H)
was bounded by 0 and 1 and the distributions of p(D|H) and
p(D|∼H) were bounded by 0 and 0.5. We then proceeded
to use both likelihood ratios and probabilities to compute
p(H|D) and we found very similar results. Here, we report
only the results obtained with likelihood ratios in line with the
Bayesian notion that “only the data actually observed – and
not what might have occurred – are needed, so why use the
might-have-been at all? (Lindley, 1983, p. 6).5 Compared with

5In the standard normal distribution, the correlation between the probability
density [φz(z), the height of the curve at point z] and the complement of the

probability ratios, likelihood ratios are less biased against the
null hypothesis.6 When using likelihoods to compute p(H|D),
the criterion correlation between p(D|H) and p(H|D) dropped to
r = 0.263.7

Assuming that researchers reject a hypothesis when p < 0.05,
we asked whether the posterior probability was less than 0.5,
that is, whether the hypothesis was more likely to be false than
true. This threshold is a heuristic choice; it is prudent in that it
avoids judgments of value, importance, or need. Other (especially
lower) thresholds may be proposed in light of relevant utility
considerations (Lindley, 1983). We then categorized each of the
100,000 simulated experiments in a decision-theoretic outcome
table (cf. Swets et al., 2000). The rejection of an improbable
hypothesis is a Hit in that this hypothesis is less likely than its
alternative in light of the data. In contrast, the rejection of a
hypothesis that is still more probable than its alternative is a
False Alarm. The retention of a probable statistical hypothesis is
a Correct Rejection in standard decision-theoretic terms, but we
will refer to it as a Correct Retention (i.e., retaining a probable
hypothesis) for ease of exposition. Finally, the failure to reject
an improbable hypothesis is a Miss. Figure 1 displays the four
decision-theoretic outcomes8.

Figure 2A plots the posterior probability of the hypothesis,
p(H|D), against the p-value, p(D|H). A linear model predicts
p(H|D) as 0.585p(D|H) + 0.359; R2

= 0.072. For p = 0.05, 0.01,
and 0.001, respectively, p(H|D) = 0.389, 0.365, and 0.360. The
plot shows a mild concavity, and a second-order polynomial
model provides a slightly better fit with −2.352p(D|H)2

+

1.735p(D|H) + 0.267; R2
= 0.092. The predicted values for

p(H|D) are 0.348, 0.284, and 0.269 for the three benchmarks of
p. That is, the predicted posterior probability of the hypothesis
is in each case below 0.5. Yet, these predicted posterior
probabilities are not as low as the corresponding p-values, and
they decrease more slowly. Statistical regression guarantees this
result.9

Figure 2A and the top of Table 1 show the classification of
the results. With p = 0.05, there are few False Alarms (1.94%).
The division of the percent of False Alarms by the total percent
of significant results (Hits + False Alarms) yields a ‘false alarm
ratio’ (Barnes et al., 2009). We find that for 19.34% of the
significant results the null hypothesis remains more probable
than its alternative. A ‘miss ratio’ is obtained by dividing the
percent of Misses by the total percent of non-significant results
(Misses + Correct Retentions, 42.03/[42.03+47.95]). For 46.71%
of the non-significant results, the null hypothesis is less probable
than its alternative. The middle and the bottom parts of Table 1

cumulative probability (the area under the curve to the right of z) is 0.965 when
computed for 400 z-values ranging from 0 to 3.99. When both indices are log
transformed, the correlation rises to 0.989.
6There is no consensus among Bayesians as to whether probability or likelihood
ratios are to be preferred.
7We obtained p(H|D) as 1

1
x+1

, where x = pdf(D|H)
pdf(D|∼H)

×
p(H)

p(∼H) and pdf refers to

probability density function.
8Note that here we refer to any hypothesis as the topic of rejection or retention.
9The value of ST can be expressed in terms of Bayesian updating. The posterior
odds against the null were 0.367, 0.575, and 0.563 respectively for p = 0.05, 0.01,
and 0.001.
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FIGURE 1 | The decision-theoretic context of significance testing.

show that as the p-value decreases to 0.01 and 0.001, the false
alarm ratio decreases, whereas the miss ratio does not change.
In other words, setting a more conservative criterion for the
rejection of the hypothesis provides better insurance against false
positive inferences, although it does not protect against missing
important effects.10

Bayes’ Theorem treats prior and conditional probabilities as
conditionally independent. For any value of p(H), p(D|H) is –
in theory – free to vary. Yet, the assumption of independence
may not hold in empirical research. Theoretical considerations,
past research, and experience-based hunches allow researchers to
gauge the riskiness of their hypotheses (Meehl, 1998; Kruschke,
2013; Kruschke and Lidell, 2017). Doing so, researchers will
select hypotheses non-randomly, and as a result, the prior
probability of the hypothesis, p(H), and the obtained p-values
become positively correlated. A risky alternative hypothesis (∼H,
e.g., Uri can mentally bend spoons when primed with the
name ‘Geller’) means that the probability of the statistical null
hypothesis, p(H), is high and it makes a non-significant outcome
(p(D|H) > 0.05) likely. With a large effect (∼H: δ = 0.8)

10False alarm and miss ratios are frequentist indices. The tabulated data can
submitted to Bayesian calculations with identical results (Gigerenzer and Hoffrage,
1995).

being initially either probable (p(H) = 0.1) or improbable
(p(H) = 0.9), data will more likely be sampled from the
∼H or the H distribution, respectively. The p-value will be
smaller in the first case than in the second case, which yields
a positive correlation between p(H) and p(D|H). As the effect
(d) becomes smaller, the same argument holds, but less strongly
so.11

We will elaborate this argument in a simulation below. For
now we treat it as an ecological constraint and we consider a
simulation in which the correlation between p(H) and p(D|H)
varied from 0 to 0.9 in steps of 0.1. Table 2 shows a sharp rise
in the criterion correlation between p(D|H) and p(H|D), but only
small changes in the prevalence of the two types of error and the
overall accuracy of classification (the phi coefficient). Consider
the case of r(p(H),p(D|H)) = 0.5. The criterion correlation is
0.628 and p(H|D) is predicted as 1.4p(D|H) + 0.159, R2

= 0.395
(see also Figure 2B). For p = 0.05, 0.01, and 0.001, respectively,
the predicted values of p(H|D) are 0.229, 0.173, and 0.160. The
polynomial model is −1.683p(D|H)2

+ 2.243p(D|H) + 0.088;
R2
= 0.404, with predicted values of p(H|D) being 0.207, 0.111,

11Simonsohn et al. (2013) reach the same conclusion with p-curve analysis. If
p(H) = 1, p(D|H) is uniformly distributed. If p(H) = 0, the distribution becomes
increasingly left-skewed (more small p-values) as effects become larger.
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FIGURE 2 | Distribution of p(D|H) and p(H|D) when drawing input terms from
uniform distributions. Dashed lines indicate boundary points for classification,
with the resulting rectangles capturing each category type (bottom left: Hit; top
left: False Alarm; bottom right: Miss; top right: Correct Retention). (A) Shows
the case for r(p(H),p(D|H)) = 0; (B) shows the case for r(p(H),p(D|H)) = 0.5.

and 0.090. In short, the p-value predicts the posterior probability
of the hypothesis more effectively if it is already correlated with
the prior probability. As a comparison, we ran a simulation using
a negative correlation, r = −0.5, between p(H) and p(D|H), and
found a criterion correlation of−0.189. These results suggest that
the p-value works well when it should, and that it does not when
it should not.

We then asked how the correlation between p and the
probability of the data under the alternative hypothesis, p(D|∼H)
affects posterior probabilities. Strong theory provides clear
alternatives to the statistical null hypothesis so that the data are
either probable under the null or probable under the alternative.
In other words, the correlation between p(D|H) and p(D|∼H)
should be negative a priori. Table 3 shows that over a range from
0 to −0.9 for this correlation, the criterion correlation became
stronger, the false alarm ratio dropped, and the miss ratio varied
little. We also used a positive correlation [r between p(D|H)

and p(D|∼H) = 0.5] as input and found a very low criterion
correlation to r = 0.132. In short, a research design that pits
two hypotheses against each other so that the data cannot be
improbable (or probable) under both allows the p-value to reach
its greatest inductive potential.

To recapitulate, we saw in the first set of simulations that
[1] the p-value predicts the posterior probability of the tested
hypothesis, [2] this correlation is strongest under the most
realistic assumptions, [3] false positive inferences are least likely
under the most realistic settings, and that [4] the probability
of false negative inferences (Misses) is high. The p-value thus
appears to have heuristic value for inductive inference. Yet,
these simulations are only first approximations. They were
limited in that input correlations varied only one at a time.
Further, these simulations did not involve a sampling of data
from which correlations were computed; they instead sampled
probability values and stipulated specific correlations among
them. We designed the next round of simulations to address these
limitations.

SAMPLING OBSERVATIONS

To obtain values for p(D|H) and p(D|∼H) from sampled data,
we generated sets of two normal distributions with 100,000 cases
each. In each set, one distribution (M = 50, SD = 10) was paired
with an alternative distribution (M ranging from 50.1 to 60 in
steps of 0.1 and SD = 10). Standardized effect sizes, δ, thus
varied from 0.01 up to 1.0. We then drew mixed samples of 100
observations from each pair of populations, letting the number of
observations drawn from the lower distribution range from 10 to
90 in steps of 10. We drew 50 sets of samples for each combined
setting of effect size and mixed sampling to generate distributions
of means. For each of these 900 distributions, we obtained the
z score, its one-tailed values of p(D|H) and p(D|∼H), and the
corresponding probability densities. Finally, we varied the prior
probability of the hypothesis that µ = 50, p(H), from 0.01
to 0.99 in steps of 0.01 for each of these 900 p-values. This
process yielded a total of 89,100 simulation experiments [100
steps of δ ∗ 9 steps of sampling proportions ∗ 99 levels of
p(H)].

Both conditional probabilities of the data, p(D|H) and
p(D|∼H), were independent of the prior probability of the
hypothesis, p(H). The overall correlation observed between the
two conditional probabilities was 0.200. Of central interest
were the criterion correlations between the p-value and its
inverse conditional, p(H|D), computed for each effect size using
likelihood ratios. The mean of these correlations, after Fisher’s
r-Z-r transformation, was 0.571, mean linear R2

= 0.34, mean
polynomial R2

= 0.46. Figure 3A plots this correlation, the two
error ratios (False Alarm and Miss), and the phi correlations
capturing overall categorical accuracy over variations in effect
size.

We then returned to the issue of risky vs. safe research
in contexts where the tested hypothesis is a statistical null.
Researchers often know the difference between a good bet against
the null hypothesis and a long shot. To model their inferences,
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TABLE 1 | Crossed proportions of conditional probability terms (p < 0.05).

p(H|D) ≤ 0.50 p(H|D) > 0.50

p(D|H) ≤ 0.05 8.080 1.937

p(D|H) > 0.05 42.030 47.953

Crossed proportions of conditional probability terms (p < 0.01).

p(H|D) ≤ 0.50 p(H|D) > 0.50

p(D|H) ≤ 0.01 1.89 0.14

p(D|H) > 0.01 48.38 49.59

Crossed proportions of conditional probability terms (p < 0.001).

p(H|D) ≤ 0.50 p(H|D) > 0.50

p(D|H) ≤ 0.001 0.22 0.00002

p(D|H) > 0.001 49.40 50.38

TABLE 2 | Positive correlation between p(H) and p(D|H).

r(p(H),p(D|H)) r(p(D|H),p(H|D) FA ratio Miss ratio Phi

0 0.267 0.200 0.465 0.201

0.1 0.343 0.157 0.460 0.229

0.2 0.415 0.120 0.449 0.260

0.3 0.494 0.092 0.444 0.278

0.4 0.565 0.063 0.436 0.302

0.5 0.628 0.046 0.430 0.313

0.6 0.698 0.031 0.425 0.327

0.7 0.760 0.018 0.416 0.338

0.8 0.826 0.008 0.411 0.349

0.9 0.891 0.003 0.405 0.356

FA, false alarm.

we departed from assuming a uniform prior distribution of p(H).
Instead, we assumed that researchers had learned enough to
consider a bimodal distribution of priors, seeing some hypotheses
as being either likely or unlikely to be true, while seeing few
hypotheses as equally likely to be true and false.12 We modeled
their inference task by using the posterior probabilities of the
hypothesis obtained after the first round of study (i.e., simulation)
as the priors for the second round. We thereby obtained
a revised value of p(H|D) for each of the 89,100 simulated
experiments using the same diagnostic likelihood information
as before. With this approach, the average criterion correlation
increased to 0.634, mean linear R2

= 0.40, mean polynomial
R2
= 0.54. Figure 3B shows the criterion correlations as well

as the error ratios and the categorical accuracy correlation
(phi) as a function of the effect size. Compared with the
initial simulation, this second simulation, which granted some
knowledge to the researcher, showed a clearer pattern. The
criterion correlation increased earlier and more steeply as effect
sizes increased and the false alarm ratio was lower for small
effects.

12This bimodal distribution of p(H|D) can be seen against the Y-axis in
Figures 2A,B.

Taken together, the two panels of Figure 3 show that the
p-values perform most poorly for small effects and best for
medium effects. The prevalent type of error depends on the
size of the effect. Small effects are easy to miss, whereas large
effects are more likely to be falsely declared significant. The
simulations reinforce the obvious point that small effects tend
to yield higher p-values than large effects (r = −0.642, see
Table 4). If a true effect is small and considered improbable a
priori (p(H) > 0.5), the p-value may not be small enough to
move p(H|D) below 0.5, thereby yielding an inferential Miss.
Conversely, if a true effect is large and considered probable a
priori (p(H) < 0.5), the p-value may be low enough to yield an
inferential False Alarm (p(H|D) < 0.5). Significance testing is
most efficient for medium effects (δ≈ 0.5). Here, the risks of both
types of error are low, and the phi coefficient between decisions
based on the p-value (significant vs. not) and the estimated
posterior probability of the null hypothesis (≤0.5 or >0.5) is
high.

To conclude this section, we estimated the criterion
correlations for the two rounds of simulation by computing them
over the entire set of 89,100 settings. In the initial round of
simulations, r = 0.395, with a linear prediction being p(H|D)
as 0.936p(D|H) + 0.353, R2

= 0.156. For p-values of 0.05,
0.01, and 0.001, the predicted probabilities of the null were

TABLE 3 | Negative correlation between p(D|H) and p(D|∼H).

r(p(D|H),p(D|∼H)) r(p(D|H),p(H|D) FA ratio Miss ratio Phi

0 0.260 0.198 0.468 0.199

−0.1 0.287 0.181 0.464 0.213

−0.2 0.311 0.165 0.462 0.225

−0.3 0.345 0.144 0.462 0.236

−0.4 0.363 0.144 0.463 0.234

−0.5 0.390 0.135 0.461 0.242

−0.6 0.411 0.132 0.461 0.245

−0.7 0.437 0.126 0.459 0.249

−0.8 0.461 0.123 0.463 0.248

−0.9 0.492 0.125 0.456 0.253
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FIGURE 3 | Error rates, the criterion correlation, and the accuracy correlation (phi) over 100 effect sizes (0.01 to 1 in steps of 0.01). The sampling proportion varied
from 0.1 (10% of samples from H) to 0.9 (90% of samples from H) in steps of 0.1. (A) p(H) varied from 0.01 to 0.99 in steps of 0.01 for each effect size. (B) Displays
the same variables after revising p(H|D) using the posterior obtained under uniform assumptions.

TABLE 4 | Correlations for a simulation varying sampling proportion from 0.1 to 0.9, effect size from 0.01 to 1.0, and p(H) from 0.01 to 0.99.

Sampling proportion δ p(H) p(∼H) p(D|H) p(D|∼H) p(H|D) Updated p(H|D)

δ 0.000 –

p(H) 0.000 0.000 –

p(∼H) 0.000 0.000 −1.000 –

p(D|H) 0.564 −0.642 0.000 0.000 −

p(D|∼H) −0.577 −0.636 0.000 0.000 0.200 −

p(H|D) 0.713 −0.002 0.394 −0.394 0.395 −0.400 −

Updated p(H|D) 0.767 0.000 0.279 −0.279 0.435 −0.444 0.969 −

Sample mean −0.634 0.673 0.000 0.000 −0.800 −0.054 −0.593 −0.601

The criterion correlations are in italics.
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0.400, 0.362, and 0.354, respectively. A non-linear fit resulted in
p(H|D) = −5.921p(D|H)2

+ 3.531p(D|H) + 0.258, R2
= 0.273,

yielding posterior probabilities of 0.522, 0.297, and 0.262. The
false alarm ratio was lower (25.22%) than the miss ratio (30.70%),
although the difference was smaller than in previous simulations.
Overall classification accuracy, phi, was 0.438.

In the secondary round of simulations, when assuming an
informed researcher, r increased to 0.435, with a linear prediction
of 1.104p(D|H) + 0.328, R2

= 0.190, and predicted values of
p(H|D) of 0.383, 0.339, and 0.329 for the three benchmarks of
p. The non-linear model is −6.254p(D|H)2

+ 3.845p(D|H) +
0.228, R2

= 0.304, with benchmark predictions of 0.518, 0.2704,
and 0.232. The overall false alarm ratio dropped slightly to
0.233 and the overall miss ratio decreased slightly to 0.290. Phi
increased slightly to 0.474. Table 4 shows the correlations among
these simulated variables, including both the initial (uniform
assumptions) and ‘updated’ p(H|D).

In these simulations, the p-value predicted the posterior
probability of the tested (null) hypothesis, but the associations
were far from perfect. Second-order (non-linear) models
improved prediction, indicating that the linear modeling
underestimated the contribution of the p-value to inductive
inference. Going beyond intuition and back-of-the-envelope
analysis, these simulations show lawful patterns in the size of the
criterion correlation and the types of error attached to imperfect
prediction. We suspect that researchers rarely ask about the
criterion correlation between p and the posterior of the null.
Seeking objectivity, they might hesitate to estimate unknown
probabilities. Judging from informal observation, we surmise that
researchers worry most about missing effects when planning and
conducting a study, whereas they worry most about reporting
false effects after having published their own work or when
reviewing their colleagues’ work.

ARE LARGE SAMPLES BETTER THAN
SMALL SAMPLES?

In empirical research, samples vary in size. Limited resources
or lack of will can keep samples below levels recommended by
power analysis. Contrariwise, some samples exceed the needs
of significance testing or parameter estimation (Gigerenzer and
Marewski, 2015). Yet, the received wisdom is that large samples
are always better, perhaps because large samples resemble what
they are intended to represent, namely the population. Larger
samples deliver greater statistical power and produce fewer
Misses. However, the power perspective obscures the question
of false alarm ratios. Much of the critical literature suggests that
increases in sample size will protect researchers from making false
positive inferences. We ask if this is so.

Building on the foregoing simulations, we chose three effect
sizes (δ = 0.2, 0.5, and 0.8), sampled observations, computed
their means, and performed one-tailed z-tests on 20, 50, 100,
or 200 of these means. We let the probability of the tested
hypothesis, p(H), and the sampling parameter determine how
many samples would be drawn from each distribution, ranging
from 0.01 to 0.99 in steps of 0.01. As before, we assessed the

criterion correlations between p(D|H) and p(H|D) and the R2

for both the linear and the non-linear models. To assess the
performance of the p-value, we again report the two error ratios
and the phi coefficients. As before, we proceeded in two steps.
In step 1, the prior probability of the hypothesis, p(H), varied
independently of the p-value. In step 2, we allowed some prior
knowledge so that there was a positive correlation between p(H)
and p(D|H). To accomplish this, we again used the posterior
probability of the null obtained in round 1 as the prior in
round 2.

The results are displayed in Tables 5, 6 respectively for the
first and the second round of simulations. The patterns were
similar but clearer in the case of prior knowledge. Larger samples
yielded lower p-values, and this effect was clearest when effect
sizes were small. Importantly, the criterion correlations depended
on both the size of the effect and the size of the sample. These
correlations increased with sample size N for small effects, were
fairly stable for medium effects, and decreased for large effects.
This interactive pattern may violate intuition, but it highlights
the need for caution when expecting large samples to be best.
We see that when effects and samples are large, a low p-value is
a poor predictor of the falsity of the hypothesis. The error ratios
provide deeper insights. Perhaps surprisingly, false alarm ratios
go up with sample size unless effects are small. Conversely, miss
ratios are large for small effects and they decrease with sample
size. The combined effects of the two types of error are seen in
the phi coefficients. Phi generally tracks (as it has to) the criterion
correlation, again showing that the p-value is at its diagnostic best
for medium effects.

REPLICABILITY

Simulations of significance testing can help estimate the
probability of certain errors, but it falls to additional research
to help answer the question of whether an error has actually
occurred. Additional research addresses the question of
replicability. Meant to answer limitations of single studies or
sets of studies, replication research reproduces the some of the
inferential patterns and problems at a higher level. Mindful of
this analogy, we adapted our simulations to see whether the
p-value can predict the outcome of replication research.

The issue of replicability cuts to the core of empirical science.
While conceptions of replicability vary considerably, most
scholars seem to agree that the replicability of empirical findings
reflects the reliability of method and measurement, which in
turn enables and constrains the validity of the empirical results
(Asendorpf et al., 2013; Stroebe, 2016). As our investigation
targets the properties of the p-value, we focus on the probability
of re-attaining a statistically significant result once one such
a result has been observed. Doing so, we limit ourselves to
attempts at exact replication, that is, studies that might yield
different p-values because of sampling variation and no other
reason.

When considering the question of whether their findings
might replicate, many researchers look to power analysis.
Power analysis is a feature of the Neyman–Pearson theory of
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TABLE 5 | Varying sample size and effect size.

δ N Mdn p r(p(D|H),p(H|D)) R2 linear R2 poly FA ratio Miss ratio Phi

0.2 20 0.321 0.156 0.024 0.025 0.000 0.503 0.000

50 0.239 0.340 0.116 0.118 0.192 0.496 0.088

100 0.157 0.552 0.305 0.319 0.162 0.429 0.316

200 0.079 0.743 0.552 0.644 0.106 0.222 0.662

0.5 20 0.134 0.643 0.414 0.445 0.147 0.340 0.476

50 0.032 0.761 0.579 0.747 0.134 0.078 0.786

100 0.006 0.651 0.424 0.650 0.261 0.000 0.691

200 0.000 0.519 0.270 0.400 0.340 0.000 0.557

0.8 20 0.032 0.759 0.577 0.742 0.172 0.052 0.764

50 0.002 0.584 0.341 0.506 0.285 0.000 0.644

100 0.000 0.482 0.232 0.331 0.369 0.000 0.507

200 0.000 0.374 0.140 0.203 0.420 0.000 0.404

Round 1 – naïve investigator.

TABLE 6 | Varying sample size and effect size.

δ N Mdn p r(p(D|H),p(H|D)) R2 linear R2 poly FA ratio Miss ratio Phi

0.2 20 0.321 0.300 0.090 0.091 0.000 0.507 0.000

50 0.239 0.583 0.340 0.348 0.051 0.494 0.128

100 0.157 0.785 0.617 0.655 0.035 0.403 0.433

200 0.079 0.820 0.672 0.845 0.026 0.158 0.804

0.5 20 0.134 0.826 0.682 0.762 0.031 0.287 0.632

50 0.032 0.772 0.595 0.840 0.079 0.020 0.899

100 0.006 0.632 0.400 0.629 0.260 0.000 0.692

200 0.000 0.507 0.257 0.382 0.344 0.000 0.554

0.8 20 0.032 0.767 0.588 0.817 0.132 0.009 0.846

50 0.002 0.569 0.323 0.484 0.285 0.000 0.644

100 0.000 0.478 0.228 0.325 0.364 0.000 0.511

200 0.000 0.370 0.137 0.199 0.422 0.000 0.403

Round 2 – experienced investigator.

statistics. It is unknown in the Fisherian framework. Power
analysis requires the stipulation of a second hypothesis, which is
typically a non-null hypothesis or a ‘real’ difference. Assuming
that this alternative hypothesis is true, that is, assuming that
p(∼H) = 1, power analysis yields an estimate of the sample
size needed to reject the hypothesis H with a desired probability
(Cohen, 1988). Power analysis thereby shortcuts the question
of whether, or with what probability, the alternative hypothesis
might be true. Instead, it assumes the best possible case, namely
p(∼H) = 1, i.e., p(H) = 0. It is also important to note that
power analysis ignores the p-value of the original experiment.
No matter if p was 0.05 or 0.00005, the researcher does the
same power analysis, asking whether p will be at most 0.05 in
the replication study. Thus, the p-value is not allowed to play
any role in the power analysis approach to replicability. If we
want to know if the p-value is associated with the probability of
successful replication, we must modify the conventional power
paradigm.

Whereas many researchers are naively optimistic that their
findings will replicate, some scholars are staunchly pessimistic.
Gigerenzer (in press, p. 11), for example, notes that “the chance
of replicating a finding depends on many factors (e.g., [...],
most of which the researcher cannot know for sure, such as
whether the null or the alternative hypothesis is true.).” Our
position is an intermediate one. We submit that researchers
can use a two-step process to estimate the probability that a
successful exact replication from the p-value of the original
study (Krueger, 2001). Specifically, researchers can estimate the
probability of re-attaining statistical significance by predicting
p(∼H|D) from p(D|H) and then multiplying the result with the
power index of 1 – β. They estimate p(H|D) by multiplying
the observed p-value with a regression weight obtained from
a simulated criterion correlation between p(D|H) and p(H|D)
over a range of possibilities, take the complement of this
estimate [i.e., p(∼H|D) = 1-p(H|D)], and multiply the result
with the desired power coefficient. To illustrate this approach,
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consider two criterion correlations from the initial round of
simulations (‘sampling probabilities’). The low estimate of the
criterion correlation was 0.263, yielding the predicted values of
0.389, 0.365, and 0.360 for p(H|D) given the three benchmark
values of p. The corresponding replication probabilities are 0.489,
0.508, and 0.512 if 1 – β = 0.8 and 0.550, 0.572, and 0.576 if
1 – β = 0.9. The more representative criterion correlation of
0.628, obtained under the assumption that researchers have some
insight into the riskiness of their endeavor, suggests replication
probabilities of 0.617, 0.662, and 0.672 for 1 – β = 0.8 and 0.694,
0.744, and 0.756 for 1 – β = 0.9. These probabilities increase
inasmuch as researchers are knowledgeable before study (e.g.,
are able to predict effect sizes), have larger samples, and use
non-linear models to predict the posterior probability of the null
hypothesis. The data of replication studies then contribute to
a cumulative updating of that probability (Moonsinghe et al.,
2007).

The precision and the accuracy of these replicability estimates
depend on judgment and experience (Miller, 2009). Some of the
values we have reported may seem disappointing if researchers
are naively optimistic regarding their chances to replicate a
significant result (Stanley and Spence, 2014). This may be so
because a study result is a recent, salient, and exciting stimulus
that demands attention. As such stimuli generally compromise
judgment under uncertainty (Dawes, 1988; Kahneman, 2011),
misplaced optimism can be expected (Tversky and Kahneman,
1971; Moore and Healy, 2008). Commenting on his own
approving summary of studies on social priming (Kahneman,
2011), Kahneman (2017) acknowledged he had “placed too
much faith in underpowered studies.” Many researchers do
(Bakker et al., 2016). Moreover, asking to find p < 0.05 in a
replication study is a stringent criterion. Finding p = 0.055
after having found p = 0.045 does not mean that a bold
substantive claim has been refuted (Gelman and Stern, 2006).
More lenient criteria may be more realistic (Braver et al., 2014).
For example, when there is a large disutility in missing a true
effect, researchers can ask whether the effect has the same sign
(Meehl, 1998) or whether the pooled data yield a p-value smaller
than the one obtained with the first sample alone (Goh et al.,
2016).

To review, our simulations showed that replicability is
high inasmuch as (a) the research hypothesis is safe, (b) the
p-value of the original study is low, and (c) the power of the
replication study is high. We also saw that statistical regression
constrains replicability. The probability of a successful replication
falls below power estimates and below the complement of
the p-value. This pattern is evident in the report of the
Open Science Collaboration (2015). Regression is a fact to
be respected rather than an artifact to be fought (Fiedler
and Krueger, 2012; Fiedler and Unkelbach, 2014). Even a
researcher who shies away from simulation-based assumptions
can heuristically predict a successful replication with a probability
of about 2/3.13

13Incidentally, 2/3 is the probability Laplace derived for repeating “a successful”
event when the first event emerged against a background of perfect ignorance
(Dawes, 1989; Gigerenzer, 2008).

REVIEW AND DISCUSSION

Our goal was to learn how much the p-value reveals about the
probability of the statistical hypothesis being true. We concur
with Gelman (2013) that a casual inference from p(D|H) to
p(H|D) has little justification. We found, however, that the two
conditional probabilities are positively related. After replicating
the criterion correlation of 0.38 in a baseline simulation,
we found that the p-value and the posterior probability of
the hypothesis are more closely linked under more realistic
conditions. Many correlations were greater than 0.5, a value we
considered necessary for an inferential cue to be useful. We
also found that the probabilities of the two decision errors,
False Alarms and Misses, depend on conditions other than
the p-value itself. The size of the assumed effect and its prior
probability are critical for the estimation of these errors. One
intriguing result was that False Alarms pose a comparatively small
problem. Consideration of sample size clarified this issue further.
Unless effect sizes were small, larger samples invited more false
positives. Large samples thereby weakened the p-value’s predicted
value.

Broad conclusions that the p-value has no evidentiary value
seem overstated. One version of this argument is that a p-value,
however high, cannot corroborate the tested hypothesis. Indeed,
we found that the proportion of Misses was nearly as large as the
proportion of Correct Retentions (i.e., correct decisions not to
reject the null) for most settings. Yet, it is difficult to argue that
there is no difference between p = 0.8 or 0.08. Meehl anticipated
this difficulty when asking “if we were to scrupulously refrain
from saying anything like that [that the hypothesis is probably
true], why would we be doing a significance test in the pragmatic
context” (Meehl, 1998, p. 395).

Meehl (1978) had another significant insight. Noting that
significance testing is conventionally used in its weak form, where
the hypothesis H is a null hypothesis of no effect, he suggested a
stronger use, where it is a non-null (or non-nil) hypothesis, ∼H,
that must be nullified, an argument anticipated by Fisher (1956).
None of the statistical operations change with this reversal of the
conventional frame, but the conceptual shift is considerable. Now
a significant result is a strike against the hypothesis of interest. In
other words, this shift puts significance testing in the service of
a Popperian, falsificationist, approach to research (see also Mayo,
1996, for an epistemological treatise).

It is instructive to consider the implications of the present
simulation experiments for this falsificationist approach. The
p-value would be positively related to p(∼H|D), large samples
would militate against the survival of a theoretical hypothesis,
and false negatives would be perceived to be the greatest threat.
Meehl deplored that few psychological theories are precise
enough to provide hypotheses to be submitted for the strong use
of significance testing. Today the situation is much the same. It is
an epistemic and theoretical issue, not a limitation of significance
testing or the p-value.

Finally, we explored the chances that significance will be
re-attained. Most researchers eventually ask whether an effect
that was statistically significant in an initial study will also be
significant in a repeated experiment. Some researchers know
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enough to cultivate a healthy skepticism and not assume that a
significant result has proven their hypothesis. Clearly, a p-value
of 0.05 does not mean that the probability of finding p < 0.05
again is 0.95.14 But what is it? Our simulations show that
once the posterior probability of the hypothesis is estimated
and a power level has been selected, one may be guardedly
optimistic about the recovery of a significant result, absent
the ethical and educational concerns over questionable research
practices.

In research practice, replications are rarely treated
probabilistically, and there is a risk of placing too much
emphasis on the outcome of a single replication study. The
success or failure of a replication study is often treated as the
input for another all-or-none decision as to whether an effect
is ‘real.’ Yet, the outcome of a replication study is itself no
more decisive than the outcome of the original study. Each
additional study makes a smaller incremental contribution to
the cumulative evidence. Stopping research after one failed or
one successful replication study resembles the much-criticized
practice of stopping data collection when significance is obtained
(Simmons et al., 2011). Stopping after one failed replication
and concluding that a claim has been refuted (i.e., debunked
as a false positive) is as questionable as the claim that the
initial result proved the case. Our simulations show that a
non-significant result is almost as likely to be a Miss (Type II
error) as a Correct Retention. Treating each experiment as one
data point, one may wish to preset a satisfactory number of
experiments, run these experiments, and plot the effect sizes
and p-values (or use other meta-analytic tools). Individual
investigators, however, may find this strategy unrealistic. They
struggle with the opportunities and limitations of small-sample
statistics, and trust the scientific community to eventually
integrate the available data. This strikes us a reasonable
mindset.

Current discussions surrounding the replicability of
psychological research results are, in part, an outgrowth of
the NHST culture.15 Bayesians, who avoid categorical inferences
about hypotheses, also avoid categorical inferences about the
success or failure of a replication study. Bayesian methods
model the gradual updating and refining of hypotheses, not
their categorical acceptance or rejection. Likewise, parameter
estimation methods are not concerned with testing and
choosing, but with integrating the available evidence. Here,
the weighted evidence of an original study and a follow-
up provides the best window into nature. We conjecture
that some of the skepticism about significance testing
is motivated by the desire to overcome the replication
crisis. If significance testing is replaced with “preferred
methods,” the replication crisis is not solved; it is defined
away.

14However, Gigerenzer (in press) asserts that many researchers fail to muster even
this minimal skepticism due to the learned and ritualistic nature of running a
statistical test. Doing the dance of NHST as a ritual, they suffer the “crucial delusion
that the p-value directly specifies the probability of a successful replication (1-p)”
(p. 1).
15This is one reason for why we include an investigation of replicability in the
report.

Though finding heuristic validity in the p-value, we do not
advocate a protocol where p-values shoulder the full burden
of inference (Gigerenzer and Marewski, 2015). The practice of
statistics is best understood as the judicious use of a toolbox
(Gigerenzer, 2004; Senn, 2011). A strategy of “exploring small”
as Sakaluk (2016) recommends, while “confirming big,” calls for
the use of varying techniques whose strengths are best suited to
the problem’s constraints. Data analysis and inference require
experience and judgment (Abelson, 1995; Krantz, 1999). An
eclectic and prudent perspective highlights the need for shared
ethical standards. Researchers need to be open and capable to
analyze their data from a variety of perspectives, using diverse
tools. At the same time, they need to ensure that they do
not report whichever method yields the most rewarding or
desirable outcome (Simmons et al., 2011; Fiedler and Schwarz,
2016).

THE p-VALUE IN A POST-HUMEAN
WORLD

“Any rational evaluation of the significance test controversy must
begin by clarifying the aim of inferential statistics.” With these
words, Meehl (1998, p. 393, italics are his) opened a chapter
in which he claimed that the problem is epistemology, not
statistics (see also Mayo, 1996). We concur that any discussion of
quantitative methods must be informed by reflections on the role
of theory in empirical research. Theory is always broader than
the available data. Yet, theoretically driven science and hypothesis
evaluation depend on evidence. Evidence is limited (there can
always be more), whereas theories and hypotheses refer – by
design – to a broader, even unlimited, world. The appeal of
significance testing is that it honors the need for an inductive
leap from the known (the sampled data) to the unknown (a
hidden reality). That is, significance testing is embedded in an
enterprise of making inferences with statistics. Inferences from
data to theory are “risky bets” (Gigerenzer, 2008, p. 20), decisions
made under uncertainty. The researcher who (tentatively) rejects
a hypothesis bets that this hypothesis is more likely to be false
than true. A bettor does not pretend to know for sure.

We have suggested that the p-value is a heuristic cue allowing
the researcher to estimate the value of the probability of interest,
namely p(H|D). A heuristic approach to the reduction of
uncertainty is useful if normative methods are not available or
computationally too expensive. An alternative to the p-value is
the Bayesian likelihood ratio, which yields a Bayes factor when
multiplied with the prior odds of the hypotheses. If use of the
p-value is a heuristic, then a full Bayesian analysis may be,
according to the Bayesians, the fully rational operation. With
perfect subjective confidence, Lindley (1975, p. 106) asserted that
“The only good statistics is Bayesian statistics.” Setting aside the
challenge of selecting a proper prior probability distribution,
one may prefer likelihood ratios to p-values because they use
information about both a hypothesis and its alternatives. Yet,
when a specific alternative hypothesis is selected, the likelihood
ratio adds surprisingly little – or nothing at all. Senn (2001,
p. 200) noted that “the rank order correlation between p-values
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and likelihood ratio can be perfect for tests based on continuous
statistics.” Consider the case in which theory predicts a large
effect and the data fall between the hypothesis H and the
alternative ∼H. Here, the likelihood ratio is confounded with
the p-value. As the data drift toward ∼H, the p-value drops and
so does the likelihood ratio. In simulation experiments, García-
Pérez (2016) found perfect correlations between log-transformed
p-values and likelihood ratios, concluding that this must be
so because the latter is “only a transformation of the p-value,
something that can be anticipated from the fact that, like the
p-value, the Bayes factor [i.e., the likelihood ratio] is determined
by the value of the t-statistic and the size n of the sample” (p. 11).
We replicated this result in our own simulations.

Now consider a case in which theory predicts a small effect and
the data lie beyond ∼H. Here, the p-value under H drops more
gently than the probability of the data under ∼H. As a result,
the likelihood ratio increases, providing growing relative support
for a hypothesis that is becoming ever less likely. The correlation
between the logged p-value and the likelihood ratio is perfectly
negative.

The Bayesian default test also fails to provide much extra
information. Wetzels et al. (2011) compared 855 empirical
p-values with their corresponding default Bayes Factors [i.e.,
p(∼H|D)/p(H|D)]. The log-log correlation was negative and
virtually perfect.16 Wetzels et al. (2011, p. 295) claimed that
“the main difference between default Bayes factors and p-values
is one of calibration; p-values accord more evidence against
the null than do Bayes factors. Consider the p-values between
0.01 and 0.05, values that correspond to “positive evidence” and
that usually pass the bar for publishing in academia. According
to the default Bayes factor, 70% of these experimental effects
convey evidence in favor of the alternative hypothesis that is only
“anecdotal.” This difference in the assessment of the strength of
evidence is dramatic and consequential.” What appears to be a
difference in calibration is a rather a difference in words. Most
researchers using significance tests consider p-values between
0.01 and 0.05 to be significant, whereas most Bayesians view the
corresponding Bayes factors as reflecting “anecdotal evidence.”
They use benchmarks and language suggested by Jeffreys (1961)
that are no less heuristic than the benchmarks suggested by
Fisher. If p < 0.01 were routinely required for significance, the
calibration issue would be moot.17

16See Figure 3 in Wetzels et al. (2011, p. 295). The authors did not compute a
correlation coefficient for the plotted values.
17Wetzels et al. (2011) assert that “this problem would not be solved by opting
for a stricter significance level, such as 0.01. It is well-known that the p-value
decreases as the sample size, n, increases. Hence, if psychologists switch to a
significance level of 0.01 but inevitably increase their sample sizes to compensate
for the stricter statistical threshold, then the phenomenon of anecdotal evidence
will start to plague p-values even when these p-values are lower than 0.01.” This
argument assumes that increasing sample size will lower the p-value while leaving
the Bayes factor unchanged. How might this be the case if the p-value is needed
for the computation of the Bayes factor? If some of the researchers had collected
more data to lower p, then non-linearities should be seen Figure 3 in Wetzels et al.’s
(2011). They are not, and neither are they seen in our simulations. It can be shown
that raising N, ceteris paribus, lowers p(D|H) and p(D|∼H), but not at the same
rate (unless the data fall precisely between H and ∼H). As a result, the ratio of the
two also drops. To keep the ratio – and thus the Bayes factor – constant,∼H would
need to move away from the data. Moving the research hypothesis while collecting

Another alternative to significance testing is to abandon
heuristic inferences about the probability of a hypothesis
altogether. Instead, one may limit statistics to the calculation
of descriptive indices such as effect size estimates, confidence
intervals, or graphical displays (Tukey, 1977; Cumming, 2012;
Stanley and Spence, 2014). These descriptive methods are useful
tools in the statistical box, but they avoid making inferences about
an uncertain future. We agree with the notion that computing
such descriptive measures does little to change the epistemology
(or: inference) drawn from a mean and its variability by
undermining the researcher’s ability to make predictions (Mayo
and Spanos, 2011; Perezgonzalez, 2015a). If significance testing
were abandoned, the implications would go beyond bidding
farewell to the p-value. Researchers would be nudged away from
thinking in terms of theories and hypotheses. They would be
limited to thinking about the data they can see. Those who
believe that the future belongs to big data may welcome this view
(e.g., Button et al., 2013), but many laboratory experimenters will
doubt the attainment of omniscience.

We believe that there is a need for inductive thinking
and statistical tools to support inductive inferences.18 Asking
theoretical questions about latent populations enables the
researcher to think about the processes that generate the data,
which are then ready to be sampled (Fiedler, 2017). A rich
psychological theory might describe the way in which the
brain/mind produces measurable responses. It is the theorized
psychological process that determines what kind of effect one
may expect – if that alternative to the null hypothesis is true.
For decades, the standard logic of inference has been that if the
data are improbable under the null, they are probable under the
substantive alternative. This logic appears to carry a grain of
truth, the size of which varies.

Discontent with inductive inference is a recurring symptom
of uncertainty aversion, which in turn can lead to contradictory
complaints. Hearing that p-values are terrible and that, by the
way, they are not low enough recalls the vacationer’s complaint
that “The food was horrible – and the portions were so small!”
The two complaints nullify each other. We are not concerned
with the possibility that some individuals hold both types of
belief but with the fact that the field appears to be open to
both types. Likewise, it is odd to categorically call for the
abandonment of significance testing on the grounds that the
method invites categorical inferences. Making strict distinctions
between methods that make strict distinctions and methods
that do not is an instance of the former method and thus
self-contradictory (and perhaps an instance of Russell’s 1902,
paradox).

To be sure, contradictory critiques do not validate the
method under investigation. Indeed, we confess an incoherence
of our own. As we noted at the outset, we drew upon
ideas from three discrete schools of statistical thought. The
emphasis on exact p-values comes from the Fisherian school,

data in order to hold the Bayes factor constant hardly seems to be a recommendable
intervention.
18This itself is an inductive inference based on past experience, and therefore
tautologically true.
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the use of power analysis and decision errors comes from
the Neyman–Pearson school, and the estimation of posterior
probabilities of hypotheses comes from the Bayesian school.
Gigerenzer (2004, in press) warned that the tools offered by
these schools ought to not be ritually combined, but he did
not proscribe any mixing of methods under all circumstances.
Hence, our admission is only a partial one. We think that an
integration of statistical analysis tools can be attempted and
gainfully employed (see Cohen, 1994, for an eloquent example),
and we regard our integration as mindful rather than ritualistic.19

Our main concern is with the future of statistical practice
and how our results might inform it. We submit that the use of
significance testing in experimental work with small to medium-
sized samples may remain beneficial, especially in cases involving
new questions, and assuming that researchers will consider a
variety of options from the statistical toolbox. This conclusion
resembles Fisher’s original advice (see also Cohen, 1990; Abelson,
1995; Wilkinson and The Task Force on Statistical Inference,
1999; Nuzzo, 2014; Sakaluk, 2016). In contrast, the eminent
Bayesian Lindley (1975, p. 112) asserted that “all those methods
that violate the likelihood principle” should be left to die. Later,
one of us predicted that significance testing will be around
because it has been around (Krueger, 2001). This prediction was
an inductive one, and thus lacked logical force. But the data have
supported it. Some critics of significance testing use p-values to
support their arguments (e.g., Bakker et al., 2016; see Gigerenzer,
in press, for a similar observation). We find this ironic but
reassuring.

Much care is needed when it comes to a discussion of the
limitations of significance testing and the traps they may set. One
well-known concern is about the strict enforcement of the 0.05
threshold (which Fisher himself discouraged) and the all-or-none
decision-making it begets. Bayesians lament the incoherence
of significance testing, by which they mean – among other
things – the intransitivity of inferences: if X is significantly greater
than Z, but Y is not significantly greater than Z, it does not
follow that X is greater than Y. We share these concerns, but
regard them, as noted above, as a matter of education. Our

19 The reader may wonder why we do not endorse a full-fledged Bayesian approach.
Following orthodox sample statistics, we have treated the data and not the
hypotheses as random variables. Bayesians do the opposite. Throughout our
treatment, we have assumed competitive testing for sets of two specific hypotheses.
By contrast, Bayesians consider hypothetical density distributions. As Lindley
(1975, p. 108) declared, Bayesian statistics does not only supersede significance
testing, but also makes “problems of point estimation disappear: the ‘estimate’ is
the probability distribution and any single value is nothing more than a convenient
partial description of this distribution.” See Koenderink (2016) for a more balanced
view of the strengths and limitations of Bayesian statistics.

principal concern belongs to the predictive validity of the p-value.
We used a categorization scheme anchored on p = 0.05 to
compute false alarm and miss ratios only for illustrative purposes.

Another concern is which types of hypothesis researchers
select for study in the first place. Using prediction markets,
Dreber et al. (2015) concluded that many researchers chase risky
research hypotheses, which means that the statistical hypotheses
they seek to reject are highly probable a priori.20 Even when these
risky hypotheses turn out to be true, their effect sizes are likely
small. This conjecture matches the finding that in most natural
and cultural fields, the size of a desired reward is inversely related
to its probability (Pleskac and Hertwig, 2014). In the context of
statistical effects it is easier to imagine how many forces conspire
to create small differences or low correlations (i.e., effects) than it
is to imagine forces strong enough – and operating unopposed –
to create large effects. When seeking significance under such
conditions, some researchers bemoan nature’s uncooperativeness,
while others invest resources to increase the size of their samples.
Although this strong-effort strategy raises the probability of
finding significance, our simulations suggest that it also raises the
false alarm ratio.

Significance testers face a dilemma. In an idealized world, they
find a significant result for a novel but risky hypothesis, replicate
significance in the lab, publish in a high-impact journal, and see
the results replicated by independent labs. Such is the journey
of a hero who makes lasting discoveries. Alas, most researchers
must accept reality and make a living by corroborating reasonably
probable hypotheses. There is no shame in that.
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