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Effective functioning in a complex environment requires adjusting of behavior according
to changing situational demands. To do so, organisms must learn new, more adaptive
behaviors by extracting the necessary information from externally provided feedback.
Not surprisingly, feedback-guided learning has been extensively studied using multiple
research paradigms. The purpose of the present study was to test the newly
designed Paired Associate Deterministic Learning task (PADL), in which participants
were presented with either positive or negative deterministic feedback. Moreover, we
manipulated the level of motivation in the learning process by comparing blocks with
strictly cognitive, informative feedback to blocks where participants were additionally
motivated by anticipated monetary reward or loss. Our results proved the PADL to be a
useful tool not only for studying the learning process in a deterministic environment, but
also, due to the varying task conditions, for assessing differences in learning patterns.
Particularly, we show that the learning process itself is influenced by manipulating both
the type of feedback information and the motivational significance associated with the
expected monetary reward.

Keywords: learning dynamics, learning curve, deterministic learning, decision-making, motivation

INTRODUCTION

Functioning in a complex and unpredictable environment forces organism to adjust behavior
according to changing situational demands. It is crucial to learn new, more adaptive behaviors
in accordance with external feedback and to test whether these new behaviors lead to the expected,
more efficient outcomes. Not surprisingly, feedback-guided learning has become an extensively
studied topic over decades of experimental research (De Houwer, 2009; Chase et al., 2011; De
Houwer et al., 2013).

There are various paradigms used in experimental research to assess the process of learning. In
general, they can be classified into two main categories based on the character of the environment

Frontiers in Psychology | www.frontiersin.org 1 June 2017 | Volume 8 | Article 935

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
https://doi.org/10.3389/fpsyg.2017.00935
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2017.00935
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2017.00935&domain=pdf&date_stamp=2017-06-08
http://journal.frontiersin.org/article/10.3389/fpsyg.2017.00935/abstract
http://loop.frontiersin.org/people/416597/overview
http://loop.frontiersin.org/people/117442/overview
http://loop.frontiersin.org/people/101716/overview
http://loop.frontiersin.org/people/423217/overview
http://loop.frontiersin.org/people/296660/overview
http://loop.frontiersin.org/people/417602/overview
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-00935 June 5, 2017 Time: 13:2 # 2

Gawlowska et al. Learning Dynamics in the PADL Task

that learning takes place in: paradigms operating on uncertain
(probabilistic) feedback, and those operating on certain
(deterministic) feedback. In probabilistic learning paradigms,
it is harder for participants to achieve perfect performance
due to the fact that feedback information does not always
match a given response. On the contrary, in deterministic
learning the response to certain stimulus is associated with only
correct or incorrect feedback, but not both (the probability of
a certain outcome equals 1). Besides this obvious distinction,
learning in probabilistic and deterministic conditions differs
in other ways. Probabilistic tasks are perceived as more
difficult, because the feedback information is not always
valid (Mehta and Williams, 2002; Juslin et al., 2003). The
dynamics of learning have been extensively studied using
probabilistic learning paradigms (e.g., Frank et al., 2005,
2007a; Krigolson and Holroyd, 2006; Holroyd and Krigolson,
2007; Frank and Kong, 2008) because they are believed to
better simulate the decision process and probability of a
favorable outcome in every-day life (van de Vijver et al., 2014).
However, as probabilistic learning is considered more difficult,
not every participant is able to comply with task demands.
For example, older adults or amnesic patients are known to
present greater impairment in probabilistic than deterministic
learning (Vandenberghe et al., 2006; Eppinger et al., 2008;
van de Vijver et al., 2014). To identify the optimal response,
a participant has to integrate the outcomes of multiple trials
featuring the same stimulus; therefore, probabilistic learning
paradigms are associated with higher cognitive demands
(Reed et al., 2014), whereas deterministic learning seems to
mirror the pure contingency learning process (Vanes et al.,
2014).

Behavioral studies on learning with cognitive feedback suggest
that tasks in which subjects have to rely on gradually acquired
stimulus–outcome contingencies are sensitive to both the type of
presented feedback and its temporal proximity (Maddox et al.,
2003). Common sense implies the more feedback information
during learning, the better, as it provides additional details that
can be used when adapting more efficient learning strategies
(Salmoni et al., 1984). However, as feedback frequency increases,
individuals must respond to and process more information
which, in turn, consumes more of the available cognitive
resources. When provided feedback is too frequent, it can
impair an individual’s ability to learn (Lam et al., 2011;
Mohammadi et al., 2011). A common strategy in most learning
paradigms is to follow each response with feedback; however,
as showed by Lam et al. (2011), it may be more beneficial
for the learning process to decrease the overall feedback
amount.

The aforementioned difficulties regarding experimental
paradigms designed to study the learning process prompt one
to ask whether using simpler learning tasks involving reduced,
deterministic feedback would allow all the necessary information
about learning dynamics to be collected. Thus, in this paper, we
present a new experimental paradigm that is designed to study
the learning process in a simple, less demanding deterministic
environment: The Paired Associate Deterministic Learning task
(PADL). Moreover, using the PADL we investigate if participants

presented with a reduced amount of deterministic feedback are
able to master a task sufficiently.

Finally, the learning process may be influenced not only
by the difficulty of the task or the cognitive overload, but
also by the motivational salience participants ascribe to their
performance and to the consequences of their performance.
As shown by Kahneman and Tversky, people tend to be more
sensitive to the possibility of losing than they are to the possibility
of gaining objects or money (Tversky and Kahneman, 1992).
This trend of loss aversion is seen both in young children
and primates (e.g., capuchin monkeys), thus suggesting its
evolutionary basis (Tom et al., 2007). However, most studies
in humans have used monetary rewards and punishments as
feedback and it is not entirely clear whether monetary incentives
are qualitatively different from non-monetary performance
feedback (e.g., ‘correct’ or ‘incorrect’) (Wheeler and Fellows,
2008). Some conclusions can be drawn from neuroimaging
studies which show the activation of different brain structures
during processing of positive and negative feedback. The
rostral cingulate zone (RCZ), associated with transmission of a
prediction error (PE) signal by the mesencephalic dopaminergic
system, is more active during the processing of negative
feedback, whereas the nucleus accumbens (NAcc) shows greater
activity during the processing of positive feedback (Daniel
and Pollmann, 2010). Moreover, the anticipation of monetary
reward reflects in higher activation in the NAcc, compared
to the anticipation of cognitive feedback. Activation in the
NAcc has been shown to increase with both reward magnitude
and reward probability (Knutson et al., 2001; Abler et al.,
2006). These results, although they cannot be transferred
to the behavioral level, encourage the search for possible
differences.

Taken together, the aim of our study was to test whether
the PADL, an experimental paradigm operating on the rules of
deterministic environment with feedback information limited
to either positive or negative, is suitable to provide data
describing the dynamics of the deterministic learning process.
We extend the presented results by comparing blocks with
strictly cognitive, informative feedback that refers only to the
correctness of an answer (“good” or “bad”) with blocks in
which participants were additionally motivated by anticipated
monetary reward or loss. Thus, we hypothesize that the PADL
can be considered a useful experimental task for analyzing
both the dynamics of a deterministic learning process and the
accompanying differences due to the motivational significance
of the experimental conditions. In particular: 1) it allows the
differences in learning dynamics to be investigated due to the
type of presented feedback and 2) it allows the differences in
learning dynamics to be investigated, depending on the presence
of a monetary incentive.

MATERIALS AND METHODS

Participants
The study was conducted on a group of 62 participants (mean
age: 23, SD = 2.3, 32 females). Participation was voluntary
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and each subject was paid for taking part in the experiment.
All the participants were right-handed Caucasians without any
history of neurological disorders. Participants were informed
about the procedure and goals of the study and gave their written
consent. The data analyses were performed on 58 participants.
The four participants were excluded due to failure to comply with
the task instruction. The study was approved by the Bioethics
Commission at Jagiellonian University and all subjects gave
written informed consent in accordance with the Declaration of
Helsinki.

Task
The task consisted of four learning blocks, each followed by a
test phase. In the learning blocks, participants were presented
with pairs of pictures and asked to learn based on the presented
feedback whether the pair was correct or not and to submit the
answer by pressing 1 (“correct”) or 2 (“incorrect”) on a keypad.
In every block, there were nine unique stimuli sets. Each set
comprised one correct pair of pictures and three distracting
pairs that were similar to the correct one (Figure 1A). The
similarity was established based on the shape, color or category
appurtenance, e.g., if the correct pair was a round, white light
bulb and raspberries, the distracting pairs were: a round, white
light bulb and cherry tomatoes; a transparent, elongated light
bulb and raspberries; or a transparent, elongated light bulb and
cherry tomatoes. Thirty-six stimuli (nine sets × four stimuli
in every set) were presented five times each: a total of 180
stimuli per block. The stimuli were designed using pictures
from BOSS, the Bank of Standardized Stimuli (Brodeur et al.,
2010). As the stimuli order was semi-randomized, it allowed five
time-points of the learning process to be distinguished: the first
time-point was marked by a single presentation of every correct
pair and its variations (36 pairs in total), the second time-point
was marked by the second presentation, etc. Every subsequent
presentation of the stimuli was faster than the previous one:
first presentation – 1500 ms, second presentation – 1250 ms,
third presentation – 1000 ms, fourth presentation – 750 ms,
and fifth presentation – 500 ms. After the stimulus, a blank
screen was displayed until 800 to 1200 ms (mean: 1000 ms)
after the response was submitted. The response time limit was
set to 4000 ms for the 1st presentation of stimuli and gradually
decreased by 250 ms in subsequent blocks to 3000 ms for the
5th presentation. A feedback screen displayed for 900 ms was
followed by a blank screen for the next 1000 to 2000 ms (mean:
1500 ms), thus accounting for the inter-trial interval (ITI). See
Figure 1B.

Participants were informed that after each learning block they
would take part in the test phase to assess how well they had
learned the correct pairs. The test phase consisted of 18 boards
(Figure 1C). Each board depicted one half of the correct pair
(one picture) to which participants had to match the second half
from two possible options (picture 1 or picture 2). Pictures were
presented in semi-randomized order: the first and the second half
of boards (i.e., nine boards) included all the correct pairs. There
was no time-limit to submit the response.

The four learning blocks differed in terms of feedback type.
In the “GOOD” block participants received feedback only after

correct responses; in the “BAD” block participants received
feedback only after the incorrect responses. In the “WIN” block
participants received feedback after correct responses and were
additionally informed that they would be able to win money in
the test phase (up to 15 PLN, ∼4$) if they matched pictures
correctly. However, in the “LOSE” block participants received
feedback only after incorrect responses. Moreover, they were
informed they had been given the amount of 15 PLN and they
might lose it all if they matched pictures incorrectly in the test
phase. Every block was preceded by sufficient information about
the feedback and possible reward. In both the “GOOD” and
the “WIN” block, subjects were presented with a green “Good!”
screen, while in the “BAD” and the “LOSE” block they were
presented with a red “Bad!” screen (Figure 1B). If a participant
exceeded the response time limit, a “too slow” feedback screen
was displayed. Block order was semi-counterbalanced across
participants: half of the participants started with a “GOOD”
block and half with a “BAD” block. However, the block without
monetary incentive always preceded the block with money, i.e.,
the “GOOD” block preceded the “WIN” block and the “BAD”
block preceded the “LOSE” block. The full randomization scheme
was not applied due to the expected motivational effect of the
money condition and to avoid a situation in which participants
would not engage in the learning process during blocks without
monetary reward.

Experimental Procedure
The experimental task was prepared and generated using E-Prime
2.0 (©Psychology Software Tools). Stimuli were presented on
a 17′′ LCD monitor and participants responded by pressing
keys 1 or 2 on the Serial Response Box (©Psychology Software
Tools) with the left and right index finger, respectively. The
day before the main experiment, all participants took part in
a training session to get familiarized with the task demands.
Subjects were presented with a brief description of the experiment
and were given a printed version of the task instruction. Finally,
participants performed a training version of the task procedure.
At the beginning of the main experiment, participants were again
presented with the task instruction. Afterward, they performed
the experimental task, which took approximately 40 min.

Data Analysis
The effect of learning, i.e., the number of learned correct pairs,
was assessed by separately computing the percentage of correct
responses in the test phase for the four learning conditions.

To examine the learning dynamics, the behavioral data were
divided into five learning time-points of 36 trials each, i.e.,
the first learning time-point contained trials 1–36, the second
contained trials 37–72, and so forth. Within each learning time-
point, mean reaction times (RTs) were computed separately for
the four learning conditions. Further, following the measure
implemented by Toni et al. (2001), we analyzed the change
in RT variability (vRT) dynamics, i.e., the change in the
standard deviation of RTs across the learning time-points and
experimental conditions.

As a direct measure of learning, performance discriminability
index (D-prime, Signal Detection Theory, see: Macmillan
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FIGURE 1 | Experimental task: (A) Sample stimuli set from the learning block. (B) Task design. (C) Sample pair of stimuli from the test phase.

and Creelman, 1990) values were computed for all learning
time-points and conditions. Applying D-prime to measure
performance accuracy allows not only situations in which a
participant learns to choose correctly target stimuli to be
considered, but also the situations in which distractors are
properly rejected. As a model of task learning, an exponential
curve was chosen since it fits better than the power function in
most data sets depicting the dynamics of knowledge acquisition
(Heathcote et al., 2000) and is equivalent to the sigmoid model
for tasks in which correct and erroneous responses have the same
potential to affect learning (Leibowitz et al., 2010). In the PADL,
the actual amount of feedback information in all the learning
blocks was the same since the lack of negative feedback can be
interpreted as a sign of a correct response (the converse is also

true for positive feedback and erroneous response); therefore,
the assumption about the comparable influence of positive and
negative feedback on the learning process holds in the case of the
PADL. The exact form of the learning curve model is:

Pn = P∞ − (P∞ − P0)e−An (1)

where Pn denotes performance measure in the n-th learning
time-point, P0 and P∞ denote the initial and asymptotic
performance, respectively, and A is a constant rate coefficient.
Due to the task construction, it can be assumed that D-prime
during the first learning time-point was equal to zero in all
experimental conditions. This reduces the equation to the form:

Pn = P∞ − P∞e−An (2)
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where A is a parameter corresponding to the shape of the curve
and P∞is its horizontal asymptote. The first parameter can be
interpreted as a general pattern of learning and the second one
as the maximal level of accuracy possible to attain in a short time
frame. The curve of this form was then fitted separately for every
participant to find P∞ and A, which were then compared between
conditions.

Finally, the literature focusing on behavioral analysis of the
modulators of the learning process points to the role of not
only reward or punishment itself, but the discrepancy between
the predicted and received amount of reward (Garrison et al.,
2013). The learning process continues until the difference—the
PE—reaches a point of zero-value, i.e., the state where there is
no longer any discrepancy between the predicted and obtained
outcome (Schultz, 2016). The decrease in this discrepancy
depends on the learning rate, i.e., how quickly a participant
gathers the information necessary to minimize PE, and depends
on multiple factors, such as reliability of feedback and the amount
of information useful for the learning process associated with
the particular stimulus (Ullsperger et al., 2014). Following Frank
et al. (2007b) and Cavanagh et al. (2010), we use the modified
Q-learning approach with different learning rate parameters
corresponding to different sources of information during the
task in order to assess the learning rate associated with different
motivational conditions introduced in the PADL. Usually, in
the Q-learning approach different Q-values are assigned to all
possible reactions for a given stimulus and then updated each
time the reaction occurs. However, in the PADL average number
of actions which are never chosen oscillates around 20% of total
possible actions (i.e., some distractor stimuli are never chosen
and some targets are never rejected). Thus, the Q-values of never
chosen stimuli remain at their initial level and in consequence,
they disturb optimal model fitting. To resolve this issue, we have
chosen simpler model in which the single Q-value is assigned
to every stimulus as an estimate of the answer certainty, i.e.,
the 0 value corresponds to absolute certainty of stimuli being of
different type that it actually is (i.e., being target for distractor
stimuli and being distractor for target stimuli) and 1 to certainty
of stimuli being of a correct type. The estimates are updated after
each reaction for the stimulus and the feedback (or lack thereof)
and initialized as 0.25, which corresponds to the probability that
the stimulus may be a target and is not based on participants’
prior knowledge.

Four different models based on these premises were fitted
separately for each participant and condition (i.e., each model was
fitted 4∗58 = 232 times) using maximum likelihood estimation,
where the mean of squared differences between Q-values and
actual responses was chosen as the measure of error. To
choose which of the four models the most accurately describes
the learning process, they were compared using the Akaike
Information Criterion (AIC, Akaike, 1974), using equation:

AIC = −2 ln(L)+ 2k (3)

where L is a likelihood function and k is a number of model
parameters.

The likelihood of every model was calculated for each
participant as the probability of executed response, where the
Q-values were interpreted as probabilities of choosing correct
answers.

(1) Model 1 fitted single learning rate α for all types of stimuli
and feedbacks according to the formula:

Qs(t + 1) = Qs(t) + α[1− Qs(t)] (4)

where r(t)= 1 for correct and 0 for incorrect answer.
(2) Model 2 fitted separate learning rates for target and

distractor stimuli both based on the same formula:

Qs(t + 1) = Qs(t) + αT[1− Qs(t)] (5)

(3) Model 3 fitted separate learning rates for correct and
incorrect answers, based on formulas:

Qs(t + 1) = Qs(t) + (rα+ + (1− r)α−)[1− Qs(t)] (6)

for target stimuli and

Qs(t + 1) = Qs(t) + ((r − 1)α+ + rα−)[1− Qs(t)] (7)

for distractor stimuli, where r is participant’s response (1 –
choose or 0 – avoid) for stimulus s. Note that only two
parameters, namely α+ and α−, are fitted here.

(4) Model 4 fitted separate learning rates for correct and
incorrect answers and target and distractor stimuli,
therefore it uses information gathered from four sources:
correctly chosen targets (T+), correctly rejected distractors
(D+), incorrectly rejected targets (T−), and incorrectly
chosen distractors (D−) based on the formulas:

Qs(t + 1) = Qs(t) + (rαT+ + (1− r)αT−)[1− Qs(t)] (8)

for target stimuli and

Qs(t + 1) = Qs(t) + ((r − 1)αD+ + rαD−)[1− Qs(t)] (9)

for distractor stimuli.

Note that in all the above models t refers to trial number, α is
learning rate, and s denotes stimulus index.

The average AIC values over all model fits for models 1, 2, 3,
and 4 equaled 35.4, 37.3, 35.2, and 33.6, respectively, hence model
4 was chosen for further analysis.

All the statistical analyses were performed using Statistica 12
(Stat-Soft Inc.) and Matlab 2015b (Mathworks, Inc.).

RESULTS

Indicator of Task-Mastering
To assess whether participants mastered the task, i.e., they learned
the correct pairs, we counted the percentage of correct responses
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FIGURE 2 | Mean percentage of correct responses in the test phase for every task block. The table presents the mean percentage of correct responses in
subsequent test phases. Vertical bars denote standard errors. The asterisk denotes significant difference (∗p < 0.01).

TABLE 1 | Mean RTs (in ms) for correct and erroneous responses for every task
block (bad, good, loose, win) in subsequent learning time-points.

Erroneous responses

Bad Good Lose Win

Learning time-point

1 935.59 (246.81) 812.60 (204.76) 906.64 (222.78) 937.57 (273.02)

2 846.46 (212.35) 841.74 (169.90) 835.00 (185.05) 836.26 (222.39)

3 744.55 (137.80) 793.47 (137.16) 772.97 (159.00) 783.24 (216.91)

4 755.51 (237.05) 738.68 (156.78) 694.79 (167.95) 697.91 (202.93)

5 606.54 (137.81) 680.43 (174.57) 636.58 (199.15) 578.81 (236.06)

Correct responses

Learning time-point

1 970.11 (248.95) 836.25 (194.94) 911.43 (214.75) 947.38 (265.44)

2 821.70 (136.00) 814.62 (132.33) 802.44 (137.12) 809.65 (151.05)

3 749.98 (110.53) 767.33 (104.01) 727.22 (109.43) 748.00 (131.48)

4 721.75 (114.00) 710.17 (92.20) 695.94 (96.63) 710.09 (113.33)

5 661.55 (122.86) 653.28 (120.5) 642.43 (102.43) 653.43 (117.07)

Standard deviations are presented in brackets.

in the test phase after every single block. As presented in Figure 2,
the percentage of correct responses was greater than 95% in
all four cases. These results suggest that participants gathered
all the necessary knowledge through the learning process and,
as a consequence, responded with close to perfect accuracy.
Moreover, the percentage of correct responses was submitted to
a 2 × 2 repeated measures ANOVA with type of feedback (two
levels: negative vs. positive feedback) and monetary incentive
(two levels: no-money vs. money condition) factors. We observed
a main effect of money [F(1,57) = 9.12, p < 0.01, η2

p = 0.14] with

the percentage of correct responses significantly higher in blocks
where the performance score was associated with either gaining
or losing money.

Response Time
Mean RTs were submitted to a 2 × 2 × 2 × 5 repeated measures
ANOVA with response accuracy (two levels: erroneous vs. correct
response), type o feedback (two levels: negative vs. positive
feedback), monetary incentive (two levels: no-money vs. money
condition), and progress in learning (five levels: five learning
time-points) factors (mean RTs are presented in Table 1). We
observed a main effect of learning time-points [F(4,228) = 107.31,
p < 10−6, η2

p = 0.65], with responses significantly faster in
every subsequent learning time-point (Figure 3A). Main effects
of neither response accuracy [F(1,57) = 0.58, p > 0.1], type
of feedback [F(1,57) = 0.19, p > 0.1] nor monetary incentive
condition [F(1,57) = 1.02, p> 0.1] were found.

Further, we analyzed the dynamics of vRT using an ANOVA
test analogical to that applied to the mean RT measure
(Table 2). The analysis showed significant response accuracy,
monetary incentive and progress in learning effect. The vRT was
significantly lower for erroneous compared to correct responses
[F(1,57) = 27.60, p < 0.001, η2

p = 0.33] and blocks where there
was a possibility of losing or winning money [F(1,57) = 8.19,
p < 0.01, η2

p = 0.13]. The significant interaction of response
accuracy and monetary incentive [F(1,57) = 5.58, p < 0.05,
η2

p = 0.09] revealed significantly lower vRTs for erroneous
responses in blocks with monetary incentive, compared to no
money blocks (p < 0.01), whereas the vRT for correct responses
did not differ due to the presence of monetary incentive.
Moreover, vRT gradually decreased through the learning process
[F(4,228) = 93.42, p< 0.001, η2

p = 0.62], being highest for the first
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FIGURE 3 | (A) Mean response times for subsequent learning time-points for
all learning blocks. (B) Mean response time variability for subsequent learning
time-points for all learning blocks. Vertical bars denote standard errors.

learning time-point, and lowest for the fifth learning time-point
(Figure 3B). The type of presented feedback did not significantly
influence the magnitude of vRT [F(1,57) = 0.05, p > 0.5].
Additionally, we uncovered a significant interaction effect of
response accuracy and progress in learning [F(4,228) = 6.59,
p< 0.001, η2

p = 0.10] and feedback type and progress in learning
[F(4,228) = 4.09, p < 0.01, η2

p = 0.07] with vRT decreasing
faster when participants committed errors (compared to correct
responses), and when they were presented with negative feedback
(compared to positive). The remaining interaction effects did not
exceed the level of statistical significance.

Learning Dynamics
Figure 4 shows averaged participant performance in all trials for
all experimental conditions.

Both parameters of the learning curve model, P∞ and A
(Table 3) were subjected to 2 × 2 repeated measures ANOVA
with feedback type (two levels: negative vs. positive feedback)
and monetary incentive (two levels: no-money vs. money
condition) factors. No significant effect was found for parameter
A [monetary incentive: F(1,57) = 0.43, p > 0.5; feedback type:
F(1,57) = 0.29, p > 0.5]. For P∞, the main effect of feedback type
was observed [F(1,57) = 17.03, p< 0.0001, η2

p = 0.23], indicating
that the asymptote P∞ was significantly greater for negative
than for positive feedback (see Figure 5A). The asymptote
was significantly greater for conditions with financial reward

TABLE 2 | Mean RT variability (in ms) for correct and erroneous responses, for
every task block (bad, good, loose, win) for subsequent learning time-points.

Erroneous responses

Bad Good Lose Win

Learning time-point

1 275.88 (126.36) 233.06 (01.31) 272.95 (120.68) 255.26 (104.14)

2 182.23 (152.48) 176.55 (79.19) 170.57 (137.21) 165.31 (121.78)

3 140.23 (124.42) 163.57 (123.56) 114.08 (120.17) 131.20 (165.31)

4 148.54 (146.60) 159.81 (137.86) 93.03 (122.17) 123.75 (180.09)

5 104.29 (101.59) 131.07 (95.06) 85.89 (22.65) 95.61 (133.73)

Correct responses

Learning time-point

1 280.04 (102.76) 231.99 (97.39) 245.04 (113.05) 249.45 (128.80)

2 206.74 (110.96) 174.86 (72.03) 188.64 (72.58) 184.13 (106.64)

3 175.77 (87.75) 174.21 (88.30) 168.35 (88.17) 174.00 (114.32)

4 172.13 (88.01) 163.51 (84.50) 147.06 (60.68) 163.09 (87.64)

5 150.34 (76.10) 149.03 (77.29) 155.00 (77.01) 156.48 (85.68)

Standard deviations are presented in brackets.

[F(1,57) = 53.35, p < 0.0001, η2
p = 0.48] (see Figure 5B). The

interaction effect of feedback type and monetary incentive on
the asymptote was also significant [F(1,57) = 11.51, p < 0.01,
η2

p = 0.17]. The Bonferroni post hoc test revealed a significant
difference between blocks with negative and positive feedback
in the no-money condition (p < 0.0001), while there was no
significant difference in the money condition (p > 0.1) (see
Figure 5C).

Learning Rate Estimation
Estimated learning rates (alphas) (Table 4) were subject to
a 4 × 2 × 2 repeated measures ANOVA with information
source (four levels: T+, T−, D+, D−), feedback type (two
levels: negative vs. positive feedback), and monetary incentive
(two levels: no money vs. money condition) factors. The post
hoc analyses were performed using the Tukey HSD test. The
analysis showed the main effects of information source and
monetary incentive. Learning rates significantly differed with
respect to information source [F(3,171) = 74.14, p < 0.001,
η2

p = 0.57]. The post hoc analysis showed that participants had
the highest learning rate based on correctly chosen distractor
stimuli, and significantly the lowest learning rate based on the
stimuli incorrectly classified as distractors (see Figure 6A). The
main effect of monetary incentive (Figure 6B) revealed learning
rates significantly higher in blocks where the monetary incentive
was introduced [F(1,57) = 19.93, p < 0.001, η2

p = 0.26], and
the main effect of feedback type (Figure 6C) revealed learning
rates significantly higher in blocks with negative feedback
[F(1,57) = 11.03, p < 0.002, η2

p = 0.16]. The interaction analysis
showed significant interactions between information source and
feedback type [F(3,171) = 6.75, p< 0.001, η2

p = 0.11] and between
information source and monetary incentive [F(3,171) = 4.39,
p < 0.01, η2

p = 0.07]. Based on the post hoc test, compared to
the no money condition, participants had a higher learning rate
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FIGURE 4 | Mean D-prime values averaged separately for each trial in all (A),
good and bad (B), and win and lose (C) conditions. Vertical bars denote
standard errors.

TABLE 3 | Mean α and P∞ parameters for every task block.

α P∞

Bad 5.82 (11.77) 2.53 (0.83)

Good 5.56 (12.29) 1.99 (0.98)

Lose 7.56 (13.48) 2.80 (0.77)

Win 5.91 (11.68) 2.66 (0.77)

in blocks with a monetary incentive for all information sources,
except the correctly classified targets (p = 0.7, see Figure 6E).
Further, compared to blocks with positive feedback, the post
hoc analysis of information source and feedback type interaction
disclosed significantly higher learning rates for blocks with
negative feedback when participants learned using information
about correctly chosen targets (see Figure 6D).

DISCUSSION

The purpose of the present study was to test whether the newly
design PADL task allows advancements in the deterministic
learning process in varying motivational conditions to be
described. Introducing a new, behaviorally verified task operating
on the rules of deterministic learning provides an opportunity to
depict learning dynamics using a relatively simple contingency
learning model. This is especially important if we consider that
groups with cognitive impairments do not always comply with
the demands of commonly used probabilistic learning tasks,
such as older adults (van de Vijver et al., 2014) or people with
neurological or psychiatric disorders (Paus et al., 2001; Frank
et al., 2004; Vandenberghe et al., 2006; McGirr et al., 2012;
Endrass et al., 2013).

All the applied measures consistently show progress in
individual performance. D-prime values, which constitute
learning curves, depict increasing response accuracy. Decreasing
response times and RT variability indicate increasing mastery of
tasks, as in every subsequent learning time-point the response
times were significantly shorter and more consistent than in
previous ones. Overall, our results show that participants did
learn while performing the PADL and prove it to be suitable for
assessing changes during the learning process.

The analysis of learning curve dynamics and response time
measures show that learning process dynamics are modulated
by motivational conditions introduced in the task. In blocks
where participants were presented with the possibility of losing
or gaining money, they learned significantly quicker than in
blocks with no monetary incentive, as indicated by the significant
difference in the learning curve asymptote. The motivation to
learn precedes the process of learning. Learning can be driven
by anticipation of external or internal reward, such as good
grades at school or self-satisfaction. The amount of effort we
put into the learning process depends on the perceived value
of the outcome (Adcock et al., 2006). Overall, as suggested by
multiple theoretical accounts, introducing monetary incentives
affects task performance by inducing increased effort to maximize
the possible rewarding outcome, which leads to improvements in
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FIGURE 5 | Mean P∞values computed for: (A) negative vs. positive feedback
condition; (B) no-money vs. money condition; (C) interaction effect between
money vs. money and negative vs. positive feedback conditions. Vertical bars
denote standard errors. Asterisks denote significant differences (∗p < 0.0015;
∗∗p < 0.0001).

performance (Bonner and Sprinkle, 2002). The presented results
are even more interesting when the delayed nature of payoff of
considered. Participants learned faster even though the reward
was associated not with the learning process itself, but with the
recollection of learned pairs. The effect of monetary incentive
was also observed when assessing the level of task mastery.
Participants learned significantly more pairs in blocks followed
by the test phase, in which there was the chance to either gain or
not lose money for matching pictures correctly. Together, these
results support the notion that introducing money as a motivator
facilitates both the speed of the learning process and the number
of memorized correct pairs.

TABLE 4 | Mean learning rates for all the sources of information (T+, D+, T−,
D−), for every task block.

T+ D+ T− D−

Bad 0.47 (0.27) 0.51 (0.32) 0.29 (0.03) 0.13 (0.05)

Good 0.34 (0.04) 0.34 (0.45) 0.35 (0.04) 0.01 (0.04)

Lose 0.52 (0.04) 0.61 (0.48) 0.45 (0.04) 0.19 (0.05)

Win 0.40 (0.05) 0.58 (0.57) 0.49 (0.04) 0.17 (0.05)

Standard deviations are presented in brackets.

Money was not the only factor affecting the learning
performance. We compared the learning dynamics between
blocks varying in provided feedback information. The results
show the main effect of type of feedback information (see
Figure 3B). In blocks where participants were presented with
feedback after incorrect responses, the learning process was
faster than in blocks with feedback about correct responses. As
indicated by the exponential learning curve, the increase in the
acquisition of knowledge about correct and incorrect pairs was
sharper in the negative feedback condition. It has been shown
that learners prefer to receive feedback after a “good” rather
than a “poor” trial (Chiviacowsky and Wulf, 2007). Negative
feedback after an erroneous response indicates an insufficient
level of knowledge or skills required in the given task. Therefore,
it is considered an irritating reminder that there is a need to
change behavior and improve the learning process (Ullsperger
and von Cramon, 2004). As noted by Bak and Chialvo (2001),
the primary focus of the human brain is to get rid of irritating
negative feedback signals. Additionally, from the evolutionary
perspective, errors are treated as events that may place an
organism in danger, therefore they should be avoided (Hajcak
and Foti, 2008). In the light of the presented facts, it is not
surprising that the process of learning was amplified in blocks
where participants were presented only with negative feedback.
The motivation to avoid information about “not being good
enough” exceeded the motivation to learn in blocks where
feedback was associated only with good responses. These results
are also supported by the framing effect that derives from the
classic prospect theory of loss aversion by Tversky and Kahneman
(1981), which shows that loss is motivationally more significant
than the equivalent gain. It should be noted that some studies
report equal learning results from negative and positive feedback
in healthy participants (Frank et al., 2004; Wheeler and Fellows,
2008). However, these studies operate on a concept of learning
as an effect of the learning process, while we focus on learning
dynamics: the way knowledge is gathered. Moreover, we also
report no significant difference between blocks with positive
feedback and blocks with negative feedback in the percentage of
correct responses in the test phase, which is an indicator of task
mastery.

Finally, we found the interaction effect of feedback type and
monetary incentive factors. A significant effect of feedback type
was revealed for blocks without any monetary incentive, while
there was no significant effect for blocks in which participants
were informed about the possibility of losing or gaining money.
At first, these results seem surprising: how does receiving
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FIGURE 6 | (A) Mean learning rates for all sources of information (T+, D+, T–, D–); (B) Mean learning rates for blocks with and without monetary incentive; (C) Mean
learning rates for blocks with negative and positive feedback; (D) Mean learning rates all sources of information (T+, D+, T–, D–) in blocks with negative and positive
feedback; (E) Mean learning rates all sources of information (T+, D+, T–, D–) in blocks with and without monetary incentive. Vertical bars denote standard errors.

negative rather than positive feedback without the prospect of
a payoff lead to increased learning speed, and how is a similar
effect absent when we introduce the possibility of losing or
winning money? As mentioned before, the perceived value of
the outcome determines the amount of effort we put into the
learning process. In blocks with money incentives, participants
could win a total of 30 PLN (∼8$): they had to pair all the
stimuli correctly in the test phase to either win the full amount
(15 PLN, ∼4$), or not lose anything from the given sum (15
PLN, ∼4$). Thereby, the desired effect in both blocks was the
same: to get as much money as possible. In consequence, the
motivational value of both monetary conditions was similar
and affected participants’ performance in the same manner.
When participants know that they can win money, the type
of presented feedback does not seem to make a difference.
Further, it can be concluded that the prospect of a monetary
incentive overrides the influence of the aversive effect of negative
feedback, as described by Tversky and Kahneman (1981). This
result becomes less surprising when we consider the scale of
reference on which we put gains and losses. When we assume
the scale is bipolar, meaning we compare something considered
as “good” with something considered as “bad,” the loss aversion
mechanism almost always works (see Novemsky and Kahneman,
2005). However, when the difference between loss and gain is
not so easily interpreted, the loss aversion mechanism may not
act as classic prospect theory suggests (McGraw et al., 2010).
In our experiment, participants’ perception of the difference
between winning and losing money may be based on the
simple assumption that they must learn equally effectively in
both the winning and losing conditions to minimize the risk
of not receiving the full amount of money provided for the
task.

It should be noted that the design of the PADL involves
a fixed order of blocks with purely cognitive feedback always

preceding the possible reward. Despite the observed difference
in the learning process between conditions, the block order may
act as the interfering factor. To exclude the possibility of practice
effect accounting for differences between the blocks with and
without monetary incentive, a follow-up study with a mixed
condition needs to be conducted. Although we believe the use of
a fixed order was justified, it is also a design limitation.

The literature focusing on behavioral analysis of the
modulators of the learning process indicates the role of not only
reward or punishment, but the discrepancy between the predicted
and received amount of reward (Garrison et al., 2013). The
learning process continues until the difference—the PE—reaches
a point of zero-value, i.e., the state where there is no longer any
discrepancy between the predicted and obtained outcome (Sutton
and Barto, 1998; Hare et al., 2008; Schultz, 2016). The decrease
in PE value depends on the speed of an individual’s learning
process, i.e., the learning rate. Introducing the Q-learning model
as a method to assess trends in learning makes it possible to
investigate the differences in learning due to the source of utilized
information and provides an opportunity to more thoroughly test
whether the experimental paradigm we have introduced allows
us to study the learning process (Schultz and Dickinson, 2000;
Cavanagh et al., 2010; Den Ouden et al., 2012). According to
the results we obtained using our modified Q-learning model,
participants presented the highest learning rate when they based
learning on information from correctly chosen distractor stimuli.
On the other hand, the least learning-beneficial information,
which is associated with correctly rejected distractors, resulted
in the lowest observable learning rate. Moreover, similar to the
dynamics of the learning curve, the learning rate was sensitive
to motivational manipulation. When learning occurred in blocks
without monetary incentive, the learning rate was significantly
lower than in blocks with the possibility of receiving money (see
Figures 6B,E), except the correctly chosen targets, which were
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treated by participants as redundant information. Again, this
indicates the highly motivational value of monetary incentives,
even when postponed.

Additional support for the described modulatory effect of the
motivational conditions introduced in the PADL comes from the
analysis of RT variability. Even though the change in RT itself was
influenced only by progress in the learning process, its variability
across the learning time points was sensitive to task conditions.
The homogeneous RTs across learning conditions rule out the
possibility that participants manipulated the learning strategies
they used depending on the experimental block and exclude
the possibility that different learning strategies account for the
differences in RT variability (Toni et al., 2001). Studies reporting
differences in RT variability indicate a strong relationship
between this performance measure and executive control of
performed actions. For example, lapses of attention in older
adults result in increased RT variability (Myerson et al., 2007).
Moreover, children diagnosed with ADHD, who are known to
have impaired ability to control the focus of attention, can also
be characterized by increased RT variability (Epstein et al., 2011).
Considering this data, the decrease in response time variability
may be interpreted as a result of the opposite process: an increase
of attention engagement in the task. In addition, the significantly
smaller RT variability in blocks in which participants were
either presented with the prospect of a monetary incentive or
were presented with negative feedback indicates more profound
cognitive engagement in these parts of the task due to their
motivational properties.

To summarize, our study presents the dynamics of the
learning process using a newly designed deterministic learning

task, the PADL. All the measures implemented to assess the
learning process (i.e., level of task mastery, RT analysis, RT
variability analysis, learning curve dynamics, and learning rate)
clearly show that the PADL is an experimental paradigm that is
well-suited to studying learning in a deterministic environment.
We prove the PADL to be a useful tool while assessing
condition-induced differences during learning. Particularly,
we show that the learning process itself is influenced by
manipulating both the type of feedback information and the
motivational significance associated with the expected monetary
reward.
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