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This article introduces Bayesian estimation and evaluation procedures for the

multidimensional nominal responsemodel. The utility of this model is to perform a nominal

factor analysis of items that consist of a finite number of unordered response categories.

The key aspect of the model, in comparison with traditional factorial model, is that

there is a slope for each response category on the latent dimensions, instead of having

slopes associated to the items. The extended parameterization of the multidimensional

nominal response model requires large samples for estimation. When sample size is

of a moderate or small size, some of these parameters may be weakly empirically

identifiable and the estimation algorithm may run into difficulties. We propose a Bayesian

MCMC inferential algorithm to estimate the parameters and the number of dimensions

underlying the multidimensional nominal response model. Two Bayesian approaches to

model evaluation were compared: discrepancy statistics (DIC, WAICC, and LOO) that

provide an indication of the relative merit of different models, and the standardized

generalized discrepancy measure that requires resampling data and is computationally

more involved. A simulation study was conducted to compare these two approaches,

and the results show that the standardized generalized discrepancy measure can be

used to reliably estimate the dimensionality of the model whereas the discrepancy

statistics are questionable. The paper also includes an example with real data in the

context of learning styles, in which the model is used to conduct an exploratory factor

analysis of nominal data.

Keywords: multidimensional nominal response model, multidimensional item response theory, standardized

generalized discrepancy measure, WAICC, LOO, Bayesian inference

Nominal variables are routinely obtained from a number of item response formats in the fields of
ability measurement, attitude scales, sample surveys, market research, etc. One example is multiple-
choice items that contain one correct option and several distractors. When the data come from
multiple-choice items, the factorial analysis of nominal variables often proceeds by dichotomizing
the data into right and wrong responses and submitting the dichotomous data matrix into a
categorical factor analysis procedure. However, there are situations when dichotomization is not an
option because the interest is in the relation between latent dimensions and the response categories.
For example, in an item from amarket research each category may represent a purchase option and
there is not a natural way to dichotomize the data.

The factorial analysis of responses that have an implicit ordering has long been
discussed in the psychometric literature as well as their estimation and testing procedures
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(Christoffersson, 1975; Bartholomew, 1980; Reckase, 2009).
Such models are based on a normal or logistic function that
links observed responses and dimensions by using a vector
of slopes. Moreover, a set of intercept parameters determine
the distribution of responses across the categories of the item
(Mislevy, 1986). The factor analysis of nominal variables is
more recent due to the inherent difficulties of the underlying
psychometric model. This model is a multidimensional extension
of the nominal response model by Bock (1972), which assumes
that items load in a single dimension. In the nominal response
model the slopes are parameters of the categories instead of
parameters of the items. One item that has three response
categories and measures two dimensions (say) would have two
thresholds and two slopes for the ordinal model, whereas there
would be two thresholds and four slopes for the nominal model
(one category has no parameters and the other categories have
one slope in each dimension).

Applications of constrained versions of the multidimensional
nominal response model (MNRM) have been published in the
psychometric literature. For example, Hoskens and de Boeck
(2001) applied a constrained MNRM to evaluate cognitive
components involved in item solving, in this model parameter
constraints are imposed to reflect the components measured
by the categories. Johnson and Bolt (2010) developed another
version of the MNRM aimed at the separation of a general
dimension of ability from secondary dimensions that represent
the test taking strategy. In this article, the MNRM will be
used in its full generality to conduct an exploratory factor
analysis of nominal variables. In the exploratory analysis none
of the parameters is fixed to a constant value, except when
necessary to identify the model. The extended parameterization
of the MNRM introduces difficulties related to interpretation of
parameters and estimation. Regarding parameter interpretation,
several parameterizations have been introduced by Thissen et al.
(2010) and Falk and Cai (2016) aimed at obtaining parameters
with a clear meaning. This article focuses on the inferential
aspects, in particular on the estimation of the number of
dimensions.

The estimation problems of the MNRM emerge because the
contingency table of the response patterns is typically too sparse
due to the large number of response categories that have to
be modeled. Maximum likelihood estimates can be obtained
using computer programs such as Latent GOLD (Vermunt and
Magidson, 2016). However, the maximum-likelihood estimation
algorithm may run into difficulties that render high standard
errors when sample size is around a few hundred individuals.
Typically convergence problems will show up for the parameters
of those categories that have a low response frequency, which
can appear even when the sample size is relatively high. For
example, with a sample of 500 or more individuals, it is
not uncommon to find categories with frequencies below 10,
which obviously cannot render stable estimates for the many
parameters that describe the category. Apart from the estimation
difficulties, testing the fit of the nominal model in the frequentist
framework is not easy because goodness-of-fit statistics are based
on asymptotic arguments that hardly conform to the realistic
conditions of model application.

The statistical problems of the nominal model may be
addressed by the definition of prior distributions for the
parameters and moving the inference to a Bayesian context.
Bayesian inference combines the information from the sample
with the information in the prior distributions, which stabilizes
estimates, alleviates the problems of lack of convergence for some
parameters and provides a means for simulating the posterior
distribution of model evaluation statistics.

The purpose of this article is to introduce a Bayesian
inferential algorithm for the evaluation of the latent
dimensionality of the MNRM. The proposed procedure is
based on standard Bayesian estimation algorithms by Markov
chain Monte Carlo (MCMC) procedures. Bayesian estimation
has already been applied to ordinal responses (Kieftenbeld and
Natesan, 2012) and multidimensional models (Levy et al., 2009)
in the context of item response theory. Bayesian procedures
have been successfully applied to testing model fit by simulating
the distribution of evaluation statistics (Sinharay et al., 2006).
However, the definition of model evaluation statistics for a
nominal model is a newer field of research. We have applied two
model evaluation statistics that have been recently proposed in
a Bayesian statistical context, the widely applicable information
criterion (WAIC) and the leave-one-out cross-validation (LOO),
based on the information theory (Gelman et al., 2014b), and
which, to our knowledge, have not been applied before in
a psychometric context. Moreover, the article includes an
extension to the nominal case of the standardized generalized
dimensionality discrepancy measure (SGDDM) by Levy et al.
(2015). The SGDDM was originally proposed for the evaluation
of the dichotomous item response model, and subsequently
extended to ordinal factorial models. This article shows that
the SGDDM provides useful information for dimensionality
assessment of the nominal model.

The rest of the article is organized in the following sections.
Section Multidimensional Nominal Response Model describes
the MNRM, the constraints for parameter identification, and the
rotation problem. The MCMC Bayesian estimation algorithm
is presented in Section Bayesian Parameter Estimation, Section
Bayesian Model Evaluation describes the model evaluation
statistics. Section Simulation Study consists of a simulation study
that evaluates the Bayesian inferential algorithm in realistic
conditions. Section Real Data Analysis contains a real data study
in the context of a questionnaire of learning styles whose response
categories represent different learning styles, and there is no
implicit order among them. Section Final Remarks concludes the
article.

MULTIDIMENSIONAL NOMINAL
RESPONSE MODEL

The Multidimensional Nominal Response
Model
The MNRM was introduced by Takane and de Leeuw (1987)
and McFadden (1974). Recent developments appear in Thissen
et al. (2010). Revuelta (2014) describes maximum likelihood
estimation algorithms and a structural model for the dimensions.
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Suppose that an item is scored in K nominal categories. Under
the MNRM, the probability of category k, where, k = 1, ...., K,
conditional on a vector of D dimensions in the latent space,
θ = (θ1, . . . , θd, . . . , θD), is given by the logistic function:

Pk(θ) =
exp(zk)

K
∑

k′ = 1

exp(zk′ )

, (1)

where zk is the response value of category k and is given by a
linear function of the dimensions:

zk = ck + ak1θ1 + · · · + akdθd · · · + akDθD. (2)

The parameters of the model in Equation (2) are the intercept ck
and the slopes, ak1,..., akd,..., akD. TheMNRM is usually estimated
under the assumption that the mean of the dimensions is zero;
then the intercept represents the value of the response value
for an individual whose vector of dimensions is equal to the
population mean. The slope akd represents the relation of the
response value zk with dimension d.

The model in Equations (1) and (2) with only one dimension
(D= 1) is the nominal response model by Bock (1972). Equation
(2) follows the classical parameterization of themodel introduced
by Bock (1972), although there are newer parameterizations that
will be commented below.

An item with K categories that measures D dimensions has K
intercepts and K ×D slopes, resulting in K × (D+ 1) parameters
per item. However, not all of these parameters can be estimated
because in that case there would be indeterminacy in the model.
This is because if a constant is added to all the utilities, the
probability given by Equation (1) remains unchanged. Suppose
that we define z∗

k
= zk+T, where T is a constant. The probability

given by (1) is the same irrespective of the value of T:

exp(z∗
k
)

K
∑

k′ = 1

exp(z∗
k′
)

=
exp(zk + T)
K
∑

k′ = 1

exp(zk + T)

=
exp(T) exp(zk)

exp(T)
K
∑

k′ = 1

exp(zk)

=
exp(zk)
K
∑

k′ = 1

exp(zk)

. (3)

The indeterminacy problem is resolved by imposing a constraint
on the utilities. Possibly the easiest methods of identification
for the parameters of Equation (2) are simple constraints and
deviation constraints.

Simple constraints consist of setting to zero the response value
of one of the categories. Simple constraints are useful for those
items that have a reference category against which the other
categories are compared, for example, a don’t know category in
an attitude scale or the correct category in a multiple-choice
item. Suppose that the reference category is K. The parameters
cK and aK are set to 0, which implies that zK = 0. The utilities of
the remaining categories are interpreted relative to zK using log-
odds. In particular, the parameters of category k are indicative of
the log-odds of categories k and K:

log
Pk(θ)

PK(θ)
= ck + ak1θ1 + · · · + akDθD. (4)

Deviation constraints consist of setting to zero the sum of the
utilities,

∑K
k=1 zk = 0. This constraints implies that the sum of

parameters across categories is zero:

∑K

k= 1
ck =

∑K

k= 1
ak1 = · · · =

∑K

k= 1
akD = 0. (5)

Deviation constraints are useful for those items in which it is
undesirable to have one category with zero parameters, which
are items that do not have a reference category; Section Real
Data Analysis below shows one example. Deviation constraints
involve trade-offs between parameters because if one parameter
increases, the others should decrease so that the sum of the
parameters will be constant at zero. These trade-offs introduce
technical complications in the estimation algorithm. For these
reasons the model is estimated under simple constraints and the
estimates are subsequently transformed to deviation constraints
if necessary. Suppose that ε is a vector of K item parameters
under simple constraints [ε can be either a vector of intercepts,
ε = (c1, . . . , cK), or a vector of slopes in the same dimension,
ε = (a1d, . . . , aKd)]. Parameters can be transformed to deviation
constraints by subtracting the mean of the vector:

ε
(deviation constrain) = ε −

K
∑

k= 1

εk

K
(6)

For example, suppose that an item has the following intercepts
under simple constraints: c1 = 5, c2 = 4, and c3 = 0; these
parameters indicate that the probability of categories 1 and 2
is higher than the probability of category 3 for an individual
whose vector of dimensions is zero. According to Equation (6)
the intercepts under deviation constraints are c1 = 2, c2 = 1, and
c3 = −3. Although simple and deviation constraints convey the
same information regarding the probabilities of the categories,
parameter values under simple constraints will vary depending
on which category is used as a reference. When the choice of the
reference category is arbitrary deviation constraints are preferred.

Both simple and deviation constraints imply that 1 + D item
parameters are set to a constant value (one intercept andD slopes
are fixed). Thus, the number of effective item parameters reduces
to K× (1+D)− (1+D) = (K− 1)× (D+ 1), which is the result
of having one intercept and D slopes for K−1 categories.

Recent developments of the MNRM have been proposed by
Thissen et al. (2010), Falk and Cai (2016) and Thissen and
Cai (2017) to facilitate the interpretation of parameters without
altering the statistical properties of the model. The idea of these
developments is to separate a vector of item slope parameters
from the scoring of the categories. In the newer parameterization
the slopes no longer represent the categories but the item, as
in the traditional factor models, and categories are represented
by vectors of scoring parameters that indicate their ordering in
relation to the dimension. In particular, the response value of
category k for the model by Falk and Cai (2016) is:

zk = ck + sk1a1θ1 + · · · + skdadθd + · · · + skDaDθD. (7)

The parameters of Equation (7) are the intercept, ck, a vector
of item slopes, a1, ..., ad, ..., aD and the scoring parameters
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of category k in the D dimensions: sk1, · · · , skd, · · · , skD. The
intercept has the same interpretation as in Equation (2) and the
constraint c1 = 0 is imposed for identification. The scoring
parameter skd represents the weight of category k in dimension
θd, and the slope ad is the weight of the item in θd.

The model in Equation (7) assumes that there exists an
ordering among the categories albeit unknown. The ordering is
represented by the scoring parameters and is estimated from the
data. Consider the scoring parameters of the K categories in the
same dimension θd, that s1d, ..., skd, ... sKd. These scores are used
to obtain an ordering of the categories according to their weight
in the dimension θd. The scoring parameters of two categories
in θd must be fixed to constant values to identify the model and
serve as anchor points. Typically the scores of the first and the last
category are fixed as s1d = 0 and sKd = K− 1, whereas the values
of skd for the remaining categories are estimated.

The model in Equation (7) has D item slopes, (K − 2) × D
scoring parameters and (K − 1) estimated intercepts, which
renders a total of (K−1)×(D+1) estimated parameters. Because
the models given in Equations (2) and (7) have the same number
of parameters, they are statistically equivalent and cannot be
distinguished on the basis of goodness of fit statistics. The choice
of parameterization depends on the intended use of the model
and interpretation.

The slopes in Equation (2) and the slopes in Equation (7) are
related by the equation:

akd = skdad (8)

where k= 1, ...,K and d= 1, ...,D. Suppose that the anchor points
for the scoring parameters are s1d = 0 and sKd = K − 1. Then,
developing Equation (8), item slopes and scoring parameters can
be computed from the slopes under simple constraints by the
equations:

ad =
aKd

K − 1

skd =
akd

ad
for k = 2, . . . ,K − 1 (9)

Note that the intercept parameter is the same in Equations (2)
and (7) and there is no need to transform one another.

The model in Equation (7) has been applied to multiple-
choice items, in which category K is the correct response and
categories 1, ..., K − 1 are distractors. All distractors are wrong
but have differential values of correctness that can be estimated
from observed responses. In such a case, s1d = 0 is arbitrarily
assigned to the first distractor that serves as a reference, sKd =
K − 1 is the scoring of the correct response, and skd is estimated
for distractors 2, ..., K − 1 and represent their degree of
correctness. When the estimated value of skd is smaller than 0,
the interpretation is that distractor k is less correct than the first
distractor. When the estimated skd is higher than K − 1, the
interpretation is that the item content has to be revised because
no distractor should be more correct than the correct category.
Apart from the multiple-choice case, the model in Equation (7) is
useful for the analysis of ordinal items when the distance between
the scores of the categories varies from one pair of categories

to another; examples of the application to Likert-type items are
given in Falk and Cai (2016).

The classic parameterization of the MNRM is appropriate
when the interest is to estimate the relation of each category
with each dimension. On the other hand, the parameterization
in Equation (7) would be preferable when the interpretation of
item slopes and the ordering of the categories aremeaningful. For
instance, consider the following item taken from a sample survey
about social attitudes.

The item in Table 1 is intended to measure traits such
as conservatism and religious feelings. The item has a very
short stem and almost all the content is contained in the
alternatives. For an item like this, the classic parameterization
in Equation (2) would suffice because the relevant information
is the strength of the association of each category with each
dimension. Moreover, in this item there is not a natural choice
of the two categories that serve as anchor points for the scoring
parameters, and the estimation of slopes associated with the item
instead of the categories would not enhance the interpretation of
results.

The focus of this paper is on the use of Bayesian methods
to estimate the number of dimensions under the MNRM.
From a computational point of view, simple constraints
are preferable for simplicity and numerical stability.
However, the other parameterizations shall be preferred
in application depending on the specific items that are
being analyzed. The results of this paper regarding Bayesian
methods are irrespective of the parameterization and will
be equally applicable when using deviation constraints or
item slopes and scoring parameters to interpret results. The
recommended computational strategy is to estimate the
model under simple constraints and transform the output
of the estimation algorithm to the other parameterizations if
desired.

Rotation of Slopes
Akin to any other factor model, the parameters for the MNRM
are subject to rotational indeterminacy. To fix rotation during
estimation, we have implemented the same solution as in the
NOHARM computer program, which estimates the normal ogive
model for dichotomous data (Fraser and McDonald, 1988). The

TABLE 1 | Example of item from a survey of social attitudes.

Choose the most important attitude that children must learn at home

- Independence

- Hard work

- Responsibility

- Imagination

- Tolerance and respect for other persons

- Perseverance

- Religious faith

- Abnegation

- Obedience

- Don’t know
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solution consists of setting to zero the first (t − 1) slopes for
dimensions t = 2, ..., D during estimation. Moreover, the t-th
slope for dimension t is set to 1 to fix the scale of the dimensions,
as will be commented in Section Bayesian Parameter Estimation.

Let A be the matrix of slopes under simple constraints. The
elements of A are the slopes for all items and all categories but
category K (the slopes of category K are structural zeros and are
not included in A). Every item has K − 1 vectors of slopes after
taking into account that the reference category has no slopes.
Then A has items ×(K − 1) rows and D columns. Suppose, for
example that a test contains three items with three categories that
measure three dimensions. Then, matrix A is given by:

A =

















1 0 0
a121 1 0
a211 a212 1
a221 a222 a223
a311 a312 a313
a321 a322 a323

















, (10)

where the subscripts refer to item, category, and dimension,
respectively. For example, a321 is the slope of item 3 and category
2 in dimension 1. Equation (10) shows the pattern of zeros
and ones that have to be imposed on the slopes to avoid
rotational indeterminacy during estimation. Bayesian estimation
algorithms are applied assuming that these zeros and ones are
constant values, and the remaining slopes are estimated. After
estimation is complete, the resulting matrix A can be rotated to
obtain a more interpretable solution.

The vector of utilities can be written in matrix form as:

z = c+ Aθ . (11)

Rotation consists of finding a nonsingular rotation matrixM and
transforming the estimated slopes to rotated slopes, A∗, by the
equation (Lawley and Maxwell, 1971):

A∗ = AM. (12)

Rotated scores, θ∗, are given by:

θ
∗ = M−1

θ . (13)

Because M is nonsingular MM-1 = I, where I is an identity
matrix. Then, rotation does not alter the utilities of the categories
because A∗

θ
∗ = AMM−1

θ = Aθ . Moreover, rotation preserves
the identification constraints. The unrotated and rotated slopes
have the same type of identification constraints, either simple or
deviation constraints.

Matrix M can be obtained by any of the algorithmic methods
that are common in factor analysis for orthogonal or oblique
rotation: varimax, oblimin, etc. General purpose computer
algebra systems or statistical languages such as R (RDevelopment
Core Team, 2011) have functions that receive a matrix A,
generate M and perform rotation according to the desired
criterion.

Estimation of the Model
The process of estimating the model consists of three steps:

(1) Apply the Bayesian estimation algorithm described in
Section Bayesian Parameter Estimation to estimate the
model under simple constraints and imposing the pattern
of zeros and ones described in Section Rotation of Slopes to
avoid rotational indeterminacy. Model evaluation statistics
described in Section Bayesian Model Evaluation are used to
test model fit. If the model does not fit, a model with a higher
number of dimensions has to be estimated. The output of this
step is a model parameterized with simple constrains that
satisfactory fits the data.

(2) Estimated parameters may be transformed to deviation
constraints with Equation (6) or to the item slopes and
scoring parameters with Equation (9). The transformation of
parameterizations is optional and depends on the intended
interpretation and the type of items.

(3) Rotate the slopes using a rotation algorithm or by graphical
rotation. This step is optional. The choice of a rotation
method depends on the judgment of the data analyst.

BAYESIAN PARAMETER ESTIMATION

The MNRM has a heavy parameterization because there are
slopes for (K − 1) item categories. Inference is facilitated
by incorporating additional information through prior
distributions, which contribute to obtain stable inferences.
More specifically, item parameters are estimated via Markov
chain Monte Carlo (MCMC; Gelman et al., 2014a). The
application of Bayesian MCMC simulation to item response
modeling is originally due to Albert (1992), Albert and Chib
(1993) and Patz and Junker (1999a,b). An introduction to the
topic is given by Baker and Kim (2004), and a book-length
treatment can be found in Fox (2010).

MCMCprovides draws from the posterior distribution of item
parameters. These samples can be summarized using descriptive
statistics to obtain a point-estimate, the simulated expected a-
posteriori estimate (EAP), and the posterior variance. Previous
application of MCMC to factorial and multidimensional item
response models can be seen, for example, in Béguin and Glas
(2001), Edwards (2010) and Chen (2016).

One property of factorial models is that the orientation of
the dimensions can be reverse without altering the fit of the
model. That is, if one dimension θd and the slopes in that
dimension are multiplied by −1, the resulting model will be
statistically equivalent. This problem is especially compelling for
MCMC estimation because several Markov chains of simulated
parameters are run in parallel and some procedure must be
applied to ensure that all chains are oriented in the same
direction. In this article we have fixed the orientation of the
dimension trait by setting the first slope of each dimension
trait to 1, as mentioned in Section Rotation of Slopes. This
is compensated by freeing the standard deviations of the
dimensions (σ1, ..., σd, ..., σD), for the total number of estimated
parameters to remain unchanged.
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The estimated parameters are the intercepts (c), the slopes
(a), and the standard deviations (σ), whereas θ is regarded as a
random effect. Let i= 1, ...,N be the number of the examinee and
j = 1, ..., J be the item number, the following prior distributions
are used:

cjk ∼ normal(0, δ)

ajkd ∼ normal(0, γ )

σd ∼ lognormal(µ, τ )

θid ∼ normal(0, σd) (14)

The hyper-parameters δ, γ , µ, and τ will be held to constant
values in this article. A more general procedure has been
proposed by Natesan et al. (2016), in which the hyper-parameters
are estimated to avoid bias. MCMC simulation is run using
the Stan computer language (Gelman et al., 2015). Stan is
based on a Hamiltonian dynamics sampling algorithm that
supersedes the traditional Gibbs-sampling used in MCMC and
converges to the posterior distribution with chains of shorter
length (Martín-Fernández and Revuelta, 2017). Convergence of
parameter estimates is monitored by the scale reduction factor,√
R statistic, in Gilks et al. (1996) and Brooks and Gelman (1998).

BAYESIAN MODEL EVALUATION

Model Evaluation via Posterior Predictive
Checks
A crucial problem when performing an exploratory factor
analysis is the selection of the number of dimensions. In the

TABLE 2 | Item parameters used in data generation.

Item Category c a1 a2 a3

1 1 −1 1.0 0.0 0.0

2 0 0.5 1.0 0.0

3 1 −1.0 0.5 1.0

4 0 0.0 0.0 0.0

2 1 −1 1.0 −0.5 −1.0

2 0 0.5 1.0 −0.5

3 1 −1.0 0.5 0.5

4 0 0.0 0.0 0.0

3 1 −1 1.0 0.5 0.5

2 0 0.5 −0.5 −1.0

3 1 −1.0 1.0 −0.5

4 0 0.0 0.0 0.0

4 1 −1 1.0 1.0 −0.5

2 0 0.5 0.5 0.5

3 1 −1.0 −0.5 −1.0

4 0 0.0 0.0 0.0

Category 4 is the reference category and its parameters have been set to zero to identify

the model. Column a1 is used for the model with one dimension, columns a1 and a2 are

used for the model with two dimensions, and columns a1 to a3 are used for the model

with three dimensions.

frequentist framework, there are many criteria suitable for this
purpose, the chi-square goodness of fit statistics, the RMSEA
statistic for the hypothesis of close fit, parallel analysis, and
many others (Brown, 2006). However, these quantities are not
immediately transferable to the Bayesian context, where model
fit is typically tested by computationally intensive resampling
methods that simulate the posterior predictive distribution of
evaluation statistics (Gelman et al., 2014a).

One readily interpretable model evaluation statistic is the
standardized generalized dimensionality discrepancy measure
(SGDDM), introduced by Levy et al. (2015) as a variant of the
procedure in Levy et al. (2009). The SGDDM is a quantification
of the standardized model-based covariance between two items,
j and j′, and thus, it is interpretable as a model-based posterior
correlation between a pair of responses.

The SGDDM applies to dichotomous and ordinal responses
(Yel et al., 2013). In this article, we generalize the SGDDM to
the nominal case and compute the covariance between pairs of
categories. The response of individual i to item j is represented
by a vector of K − 1 binary variables. The variable Xijk takes the
value 1 when the response is k and 0 otherwise; thus, the upper
category K is represented by a vector of zeros. The SGDDM for
the pairing of categories k and k′ of items j and j′ is given by:

SGDDMjk,j′k′ =

1
N

∣

∣

∣

∣

N
∑

i= 1
(Xijk − Pijk)(Xij′k′ − Pij′k′ )

∣

∣

∣

∣

√

1
N

N
∑

i= 1
(Xijk − Pijk)

2

√

1
N

N
∑

i= 1
(Xij′k′ − Pij′k′ )

2

,

(15)

where N is the number of individuals, J is the number of items,
and Pijk is the response function given by Equation (1). Pijk is
computed conditional on the item parameters and the values of θ
realized in the MCMC simulation.

Posterior predictive checks proceed as follows. Suppose that
ω1, ..., ωl, ..., ωL are vectors of parameters simulated in the
MCMC chains, that is ωl = (c, a, σ , θ). Conditional on ωl,

simulate a matrix of predicted responses, X
pred.

l
, of the same

size as the observed response matrix; compute the value of the
SGDDMjk,j′k′ for the observed and predicted responses, denoted

by SGDDMjk,j′k′ (X;ωl) and SGDDMjk,j′k′ (X
pred;ωl). A posterior

predictive p-value for the paring of categories (jk) and (j′k′) is
given by:

ppostjk,j′k′ =
1

L

L
∑

l= 1

δ

(

SGDDMjk,j′k′ (X
pred;ωl)

≥ SGDDMjk,j′k′ (X;ωl)

)

, (16)

where δ(·) returns the value 0 or 1 when its argument is false or
true, respectively.

A discrepancy statistic for the whole model is obtaining by
averaging the value of SGDDMjk,j′k′ for all nonredundant pairs
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of items and categories:

SGDDM(X;ω) =
2

J(K − 1)(J(K − 1)− 1)
J

∑

j= 1

J
∑

j′=j+ 1

K− 1
∑

k= 1

K− 1
∑

k′=1

SGDDMjk,j′k′ . (17)

The posterior predictive p-value, ppost , is the proportion of cases
in which the SGDDM for the predicted data is equal to or higher
than the SGDDM for the observed data; that is:

ppost =
1

L

L
∑

l= 1

δ

(

SGDDM(Xpred;ωl) ≥ SGDDM(X;ωl)
)

, (18)

Alternatively, Levy and Svetina (2011) recommend the evaluation
of model adequacy by plotting the values of SGDDM(X;ω) and

SGDDM(Xpred;ω) to evaluate the magnitude of the discrepancies
between the two vectors instead of computing a posterior
predictive p-value that loses the information of the magnitude of
the difference between SGDDM(X;ω) and SGDDM(Xpred;ω).

Model Selection Using Discrepancy
Statistics
Model evaluation by posterior predictive checks is a
computationally intensive method based on resampling
data. Several summary statistics have been proposed to avoid
resampling. Possibly, the most popular statistic within the
Bayesian context is the deviance information criterion (DIC;
Spiegelhalter et al., 2002). DIC is a version of the Akaike
information criterion (AIC) that combines the log posterior
probability of the model with an estimation of the effective
number of parameters.

TABLE 3 | Model evaluation statistics for the simulation study.

SGDDM DIC WAIC LOO

N Est. M-Obs. M-Sim. M-ppost EPR Mean EPS Mean EPS Mean EPS

250 1D 0.072 0.070 0.42 0.00 2,542.0 10.00 2,295.7 0.00 2,312.2 0.22

2D 0.069 0.070 0.55 0.00 3,079.5 0.00 2,281.7 0.24 2,305.9 0.58

3D 0.068 0.070 0.59 0.00 3,586.0 0.00 2,277.9 0.76 2,305.7 0.20

500 1D 0.058 0.058 0.47 0.00 5,023.3 10.00 4,594.5 0.00 4,621.4 0.16

2D 0.057 0.058 0.57 0.00 6,101.4 0.00 4,571.7 0.20 4,608.8 0.64

3D 0.056 0.057 0.59 0.00 7,227.7 0.00 4,565.3 0.80 4,611.8 0.20

1,000 1D 0.049 0.048 0.44 0.00 10,047.3 10.00 9,099.0 0.00 9,142.3 0.18

2D 0.047 0.048 0.58 0.00 12,103.0 0.00 9,066.0 0.04 9,122.5 0.46

3D 0.047 0.048 0.61 0.00 14,537.9 0.00 9,052.0 0.96 9,124.5 0.36

Generating model D = 1 and informative priors.

Est. is the estimated model. M-Obs. is the mean of the observed SGDDM. M-Sim. is the mean of the simulated SGDDM. M-ppost is the mean of the ppost. EPR is the empirical proportion

of rejection multiplied by 100, where a model is rejected when ppost ≤ 0.05. EPS is the empirical proportion of selection.

TABLE 4 | Model evaluation statistics for the simulation study.

SGDDM DIC WAIC LOO

N Est. M-Obs. M-Sim. M-ppost EPR Mean EPS Mean EPS Mean EPS

250 1D 0.089 0.070 0.02 0.86 2,534.9 10.00 2,285.6 0.00 2,304.5 0.00

2D 0.069 0.069 0.47 0.00 2,980.9 0.00 2,199.9 0.12 2,199.9 0.50

3D 0.068 0.068 0.54 0.00 3,755.7 0.00 2,187.3 0.88 2,187.3 0.50

500 1D 0.079 0.058 0.00 0.98 5,114.2 10.00 4,594.7 0.00 4,623.5 0.00

2D 0.057 0.056 0.42 0.00 6,027.7 0.00 4,464.8 0.04 4,527.8 0.64

3D 0.056 0.056 0.52 0.00 7,593.6 0.00 4,451.4 0.96 4,529.6 0.36

1,000 1D 0.078 0.049 0.00 10.00 10,204.2 10.00 9,089.4 0.00 9,136.8 0.00

2D 0.048 0.047 0.40 0.00 12,013.9 0.00 8,780.5 0.02 8,907.7 0.54

3D 0.047 0.047 0.49 0.00 15,398.4 0.00 8,757.6 0.98 8,906.8 0.46

Generating model D = 2 and informative priors.

Est. is the estimated model. M-Obs. is the mean of the observed SGDDM . M-Sim. is the mean of the simulated SGDDM. M-ppost is the mean of the ppost. EPR is the empirical proportion

of rejection multiplied by 100, where a model is rejected when ppost ≤ 0.05. EPS is the empirical proportion of selection.
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Recently, several alternatives to DIC have been proposed in
the area of Bayesian inference to overcome the dependence of
the DIC on a precise point-wise estimator and its assumption of
posterior normality. These new statistics are the widely applicable
information criteria (WAIC; Watanabe, 2010, 2013) and the
leave-one-out cross validation (LOO, Gelman et al., 2014b). The
WAIC and the LOO are approximations to cross-validation
computed from a single matrix of observed data. All of these
measures are based on adjusting the log predictive density of
the observed data by subtracting an approximate bias correction
based on the effective number of estimated parameters.

Similar to AIC and other measures of model adequacy based
on information theory,WAIC and LOO quantify the discrepancy
between the model and the data that also take into account
model complexity. The purpose is not to test a hypothesis of
model fit but to compare several competing models and select
the one that most closely approaches the data. The WAIC closely
approximates cross-validation although it is computed in a single
sample instead of re-fitting the model using different samples.
The WAIC is potentially useful in the psychometric context
because it still works with highly parameterized models, where
other alternatives such as AIC and DIC are no longer applicable.
However, to our knowledge, they have not been previously
applied to item response or factorial models.

SIMULATION STUDY

A Monte Carlo simulation study was conducted to evaluate the
performance of the SGDDM and the discrepancymeasures (DIC,
WAIC, and LOO) in recovering the true number of dimensions
for the MNRM.

Simulation Conditions and Analysis
We simulated 50 data sets from models with one, two, and
three dimensions. Models with one, two, and three dimensions
are estimated from each simulated sample. We have used only
a limited number of samples because MCMC is highly time

consuming and the simulation study has to be kept within our
limit of computational resources. The figure of 50 samples was
taken from Levy et al. (2015), who ran similar simulations and
pointed out that this figure is sufficient to identify broad patterns
in the data.

Two set of prior distributions were used, informative priors
and uniform priors. Informative priors are given in Equation
(14), the values of δ and γ set to 3 because, in our previous
experience, this value renders a relatively flat prior that at
the same time avoids the occurrence of extreme values in the
estimated parameters. The prior distribution for σd was more
stringent to avoid excessive indeterminacy in the scale of the
dimension. σd had a lognormal (0, 0.5) prior, which has a median
of 1, an expectation of 1.13, and a standard deviation of 0.6.
This lognormal prior is the same as the one used by the BILOG
computer software (Zimowski et al., 1996). It is preferable to
set the median of the lognormal to 1 instead of to the expected
value because the lognormal distribution has a thick right tail
and a significant skewness, and high values of σd are realized
in the simulated samples if the distribution is too flat. Thus, the
informative priors are:

cjk ∼ normal(0, 3)

ajkd ∼ normal(0, 3)

σd ∼ lognormal(0, 0.5)

θid ∼ normal(0, σd) (19)

And the uniform priors are:

cjk ∼ uniform(−10, 10)

ajkd ∼ uniform(−10, 10)

σd ∼ lognormal(0, 0.5)

θid ∼ normal(0, σd) (20)

The simulation was repeated with sample sizes of 250, 500, and
1,000 simulees for each number of dimensions. The total number

TABLE 5 | Model evaluation statistics for the simulation study.

SGDDM DIC WAIC LOO

N Est. M-Obs. M-Sim. M-ppost EPR Mean EPS Mean EPS Mean EPS

250 1D 0.093 0.072 0.01 0.92 2,564.9 10.00 2,272.3 0.00 2,294.0 0.00

2D 0.078 0.070 0.19 0.12 3,238.9 0.00 2,222.2 0.00 2,262.0 0.10

3D 0.070 0.069 0.46 0.00 4,315.8 0.00 2,188.1 10.00 2,245.0 0.90

500 1D 0.099 0.059 0.00 10.00 5,308.4 10.00 4,726.4 0.00 4,760.0 0.00

2D 0.066 0.057 0.05 0.66 6,267.0 0.00 4,585.6 0.00 4,653.5 0.08

3D 0.057 0.058 0.06 0.00 8,621.4 0.00 4,519.1 10.00 4,626.8 0.92

1,000 1D 0.082 0.050 0.00 10.00 10,598.8 10.00 9,337.7 0.00 9,403.6 0.00

2D 0.056 0.046 0.02 0.86 13,185.2 0.00 9,070.7 0.00 9,197.4 0.00

3D 0.064 0.046 0.45 0.00 18,358.9 0.00 8,925.7 10.00 9,133.6 10.00

Generating model D = 3 and informative priors. Est. is the estimated model. M-Obs. is the mean of the observed SGDDM . M-Sim. is the mean of the simulated SGDDM. M-ppost is

the mean of the ppost. EPR is the empirical proportion of rejection multiplied by 100, where a model is rejected when ppost ≤ 0.05. EPS is the empirical proportion of selection.
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of conditions is 18 (3 values of dimensions × 3 sample sizes × 2
sets of priors). Responses were simulated from a test with 4 items
with four categories each one.

FIGURE 1 | Scatterplot of the realized and predicted values of SGDDM. The

line indicates equality of realized and predicted values and is included as a

reference. Gray, black and white symbols refer to fitted models with one, two,

and three dimensions, respectively. Circles, rhombs and triangles stand for

250, 500, and 1,000 simulees, respectively.

Data were simulated using R version 3.2.5. (R Development
Core Team, 2011) and fitted in Stan version 2.9.0–3 (Stan
Development Team, 2016). We used four Markov chains of 2,000
samples each one, the first 1,000 samples constitute a start-up
period and are discarded, and estimation is based on the 4,000
samples of parameters obtained from merging the second half
of the chains. These figures are the default values for the Stan
program.

Deviance measures, DIC, WAIC, and LOO were computed
using the loo R package (Vehtari et al., 2016). Moreover, a
sample of predicted responses was generated for each sample of
simulated parameters to compute the posterior predictive value
of the SGDDM. For each condition, potential scale reduction
factor, indicated by

√
R, was computed to evaluate convergence

of the chains (Brooks and Gelman, 1998). The true parameters
for the simulation appear in Table 2; true values of θ were
generated from a standard normal distribution and dimensions
are uncorrelated.

The analysis of simulation results includes the means of the
model evaluation statistics, the empirical proportion of rejections
(EPR) of the estimated model, the empirical proportion of
selection (EPS) and the root mean square errors (RMSE) of
estimated parameters. The EPR applies to the SGDDM only. The
SGDDM can be used to test the null hypothesis that a model
fits using ppost as the p-value of the test. The null hypothesis is
rejected when ppost ≤ 0.05. The proportion of simulated samples
in which the model is rejected is the EPS. When the model in the
null hypothesis (that is, the model used to compute the SGDDM)
is the same as the model used to simulate the samples, the EPR
is an estimate of the Type I error rate of the SGDDM. When the
model in the null hypothesis does not coincide with the model
used to simulate the data, the SGDDM is an estimate of the
statistical power of the test.

The EPS applies to the model discrepancy statistics, DIC,
WAIC, and LOO. In contrast to the SGDDM, the discrepancy
statistics are not used to test a hypothesis but to select the best
model from a number of competing models. Recall that three
models (with one, two, and three dimensions) are estimated from
each simulated sample. The discrepancy statistic evaluates the
distance between the model and the data, and the model that
minimizes the discrepancy statistic is selected. The EPS of a
model is the proportion of times that a model is selected in the
50 simulated samples.

The RMSE measures the difference between the true and the
estimated parameters to evaluate parameter recovery (Natesan
et al., 2016). Although themain purpose of the present simulation
is the recovery of the number of dimensions instead of the
recovery of parameters, the RMSE will be used to compare the
estimation provided by the informative and uniform priors.

Results and Discussion
Table 3 contains the results of model evaluation when the
generating model is one-dimensional, and models with one, two,
and three dimensions are estimated and with informative priors.
The results differ from one statistic to another. The SGDDM
never rejects the one-dimension model (a model is retained
when ppost > 0.05); models with two and three dimensions are
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TABLE 6 | Model evaluation statistics for the simulation study.

SGDDM DIC WAIC LOO

N Est. M-Obs. M-Sim. M-ppost EPR Mean EPS Mean EPS Mean EPS

250 1D 0.091 0.071 0.01 10.00 2,478.4 10.00 2,279.5 0.00 2,301.4 0.00

2D 0.069 0.068 0.43 0.00 3,624.4 0.00 2,150.1 0.00 2,230.8 0.02

3D 0.069 0.067 0.40 0.00 6,187.2 0.00 2,053.4 10.00 2,204.0 0.98

500 1D 0.077 0.058 0.00 0.98 5,004.4 10.00 4,588.4 0.00 4,619.1 0.00

2D 0.057 0.055 0.40 0.00 9,812.9 0.00 4,372.8 0.00 4,499.0 0.02

3D 0.056 0.054 0.37 0.00 19,616.7 0.00 4,204.0 10.00 4,446.6 0.98

1,000 1D 0.081 0.050 0.00 10.00 9,888.4 10.00 9,079.6 0.00 9,128.1 0.00

2D 0.056 0.045 0.32 0.00 26,458.3 0.00 8,542.0 0.02 8,820.6 0.06

3D 0.047 0.045 0.31 0.00 65,564.5 0.00 8,142.4 0.98 8,674.7 0.94

Generating model D = 2 and uniform priors

Est. is the estimated model. M-Obs. is the mean of the observed SGDDM . M-Sim. is the mean of the simulated SGDDM. M-ppost is the mean of the ppost. EPR is the empirical proportion

of rejection multiplied by 100, where a model is rejected when ppost ≤ 0.05. EPS is the empirical proportion of selection.

TABLE 7 | Average of the RMSE for the estimated parameters.

Informative priors Uniform priors

N Est. Params-c Params-a Params-σ Params-c Params-a Params-σ

250 1D 0.489 0.377 0.499 0.514 0.406 0.748

2D 0.590 0.559 0.416 0.715 0.738 0.642

3D 0.614 0.559 0.428 1.001 1.007 0.573

500 1D 0.419 0.311 0.489 0.430 0.325 0.761

2D 0.475 0.377 0.462 0.574 0.546 0.675

3D 0.511 0.455 0.456 0.840 0.924 0.595

1,000 1D 0.363 0.294 0.409 0.387 0.511 0.653

2D 0.445 0.407 0.354 0.607 0.746 0.535

3D 0.458 0.437 0.423 0.770 0.924 0.562

RMSE is the root mean square error. The number of dimensions in the simulating model

is the same as in the estimated model.

also retained by the SGDDM, as they are generalizations of the
one-dimension model. The DIC consistently supports the one-
dimension model; however, WAIC and LOO showed a tendency
to over-factor and supported the model with three dimensions.

The results for the conditions with a two-dimensional
generating model and informative priors appear in Table 4.
In these conditions, it would be desirable to reject the one-
and three-dimensional models. SGDDM in general rejects
the one-dimension model and retains models with two and
three dimensions. Discrepancy measures were used for model
selection; for each simulated sample, the model that minimizes
the discrepancy measure is the one selected. The discrepancy
measures exhibit disparate results; DIC consistently supports the
one-dimension model, WAIC had a preference for the three-
dimension model, whereas LOO discards the one-dimension
model and distributes preferences between the two- and the
three-dimension model.

Table 5 contains the results for the generating model with
three dimensions and informative priors. The SGDDM clearly

TABLE 8 | Reduced version of the Kolb’s Learning Style Inventory.

ITEM 1. I learn best when...

- I rely on my feelings to guide me

- I observe the situation

- I set priorities

- I try out different ways of doing it

ITEM 2. I learn...

- feeling

- watching

- thinking

- doing

ITEM 3. When I learn...

- I like to deal with my feelings

- I like to watch and listen

- I like to think about ideas

- I like to be doing things

ITEM 4. I learn best from...

- personal relationships

- observation

- rational theories

- a chance to try out and practice

rejects the one-dimension model, and the two-dimension model
is rejected or not depending on sample size. The DIC always
supports the one-dimension model, the WAIC always selects the
three-dimension model and the LOO shows a preference for the
three-dimension model but it is a little bit more conservative
than the WAIC, and the two-dimension model has a nonzero
proportion of selection.

Figure 1 contains the scatter plot of the realized and posterior
predictive values of the SGDDM for each condition. The interest
of this figure is to appreciate how simulated and realized values
overlap when the estimated model has the same or a larger
number of dimensions than the simulating model. When the
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TABLE 9 | Model evaluation statistics: posterior predictive checks and

discrepancy measures.

Number of dimensions

1 2 3 4

No. of parameters 11(12)448[1] 21(12)896[2] 30(12)1,344[3] 38(12)1,792[4]

SGDDM(X;ω) 0.071 0.057 0.057 0.057

SGDDM(Xpred;ω) 0.055 0.058 0.058 0.057

ppost 0.005 0.560 0.559 0.567

DIC 4,291.0 5,612.7 8,669.7 13,097.4

WAIC 3,791.8 3,504.1 3,423.4 3,250.2

elpdwaic −1895.9 −1752.1 −1711.7 −1625.1

pwaic 301.8 499.0 581.9 638.6

LOO 3,867.0 3,669.6 3,654.1 3,591.1

elpdloo −1933.5 −1834.8 −1827.0 −1797.1

ploo 339.4 581.8 697.2 810.6

The number of estimated parameters has the format: number of a (number of d) number

of θ  [number of σj ]. pwaic and ploo are estimations of the effective number of parameters.

elpdloo is the expected log predictive density.

estimated model is under-dimensions, the realized SGDDM is
higher than the posterior predictive one and the points aremoved
to the right of the figure.

The results were almost the same when using uniform priors.
For example, Table 6 contains the results for the generating
model with two dimensions and uniform priors. The comparison
of this table with Table 4 shows that the only difference is that
DIC has a stronger tendency of over-fitting when using uniform
priors. The results for the other conditions with uniform priors
will not be repeated here for brevity.

The results about recovery of parameters are summarized in
Table 7, which contains the averages of the root mean squared
error (RMSE) between true and estimated parameters. Recall
that one important motivation for moving the inference to the
Bayesian context is the complex parameterization of the model
and the uncertainty associated with parameter estimates. The
conditions with uniform prior essentially provide a maximum-
likelihood estimate bounded within the limits of the support
of the prior distribution. As expected, the imprecision of the
estimates with uniform priors increases with the number of
dimensions because more dimensions imply more estimated
parameters. The informative prior rendered smaller RMSEs than
the uniform prior, and this effect is more prominent as the
number of dimensions increases. The standard deviation of the
dimension is the parameter that is less affected by the choice of
prior distributions. Regarding slopes and intercept, the results
show that informative priors stabilize estimates when the sample
is not large and the model contains two or more dimensions.

In conclusion, the SGDDM has proven to be a reliable statistic
to evaluate dimensionality in the conditions of this simulation.
This statistic had a low tendency to reject the two-dimension
model when the generating model has three dimensions and
the sample is not large. In practice, the conservative behavior of
the SGDDM can be seen as a desirable property, as it provides
protection against the extraction of dimensions that are not well

represented in the data. More investigation would be needed to
take the SGDDM as a general measure to evaluate dimensionality
of nominal responsemodels in the Bayesian context.With respect
to the discrepancy statistics, their real advantage is that they
avoid resampling of posterior predictive data matrices and can
be computed much more quickly and easily than the SGDDM.
However, these results, preliminary as they are, indicate that these
statistics should not be used to evaluate model dimensionality.

REAL DATA ANALYSIS

This section describes an exploratory nominal factor analysis in
the Bayesian framework using a data sample in the context of
learning styles. The purpose is to illustrate the proposed methods
in the context of an investigation with real data.

Instrument
The data set was adopted from a reduced version of the
Kolb’s (1985) Learning Styles Inventory, LSI, which has been
widely used in educational and working contexts. Kolb (1984)
claims that people naturally prefer a certain type of learning
style. Learning style itself results from the combination of two
bipolar dimensions: (1) concrete experience (feeling) vs. abstract
conceptualization (thinking), and (2) active experimentation
(doing) vs. reflective observation (watching). Four learning
styles result from the combination of these two variables:
(1) accommodating (feeling and doing), (2) diverging (feeling
and watching), (3) converging (thinking and doing), and (4)
assimilating (thinking and watching).

The original version of the LSI consists of 12 self-report items
with 4 response categories that should be rank ordered by the
subjects according to their preferences. Each of the categories
is designed to load on one of the poles of the bipolar variables:
feeling, watching, thinking, and doing. However, the present
study is based on a reduced version of the LSI to facilitate the task
to the individuals. The reduced version contains four items and
is shown in Table 8. Each item contains an incomplete sentence
that must be completed with one of the four response categories.
The items have a multiple-choice format; the task of the subject
consists of selecting the category that better represents his/her
preferences.

Sample
Subjects were 448 students of the Universidad Católica del Norte
(Chile). All the subjects were first-year graduate students: 38%
of Psychology, 37% of Engineering, 13% of Architecture, 8%
of Journalism, and 4% of Economics. Males and females were
equally represented, and ages ranged from 17 to 37 years (mean
19.13 and standard deviation 1.75). These data were collected as
part of a larger study of learning preferences involving several
questionnaires; thus, it was important to reduce the number
of items administered to each individual and to facilitate the
task involved by each item. With four items and four categories
each one, the number of different response patterns that can be
observed is 44 = 256, and there is less than twice the number
of individuals than response patterns. The Bayesian framework
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FIGURE 2 | Scatterplot of the realized and posterior predictive values of the SGDDM for the models with one to four dimensions.

is appealing with samples of moderate size like this to stabilize
estimates.

Procedure
The classic parameterization of the MNRM in Equation (2)
was selected for the analysis of the LSI because the important
information that we want to recover is the relation between the
categories and the dimensions. Models were estimated using the
prior distributions in Equation (19).

Results
The results of the study are organized according to the three steps
explained in Section Estimation of the Model.

Selection of the Number of Dimensions

Step 1 consists of estimating several models with an increasing
number of dimensions and parameterized with simple
constraints. Models between one and four dimensions were
estimated and the simplest model that fits the data was selected.
Table 9 shows the result of the model evaluation statistics.

Results of the DIC and the SGDDM concur on supporting the
model with two dimensions. The model with five dimensions
was not estimated because the model with four dimensions
was already rejected in favor of simple models based on these
results. The model evaluation statistics based on cross-validation
showed a tendency to support models with a high number
of dimensions. Both the WAIC and LOO give support to the
model with four dimensions. However, we have selected the
model with two dimensions for interpretation based on the
results by the SGDDM and because our simulation studies show
that the WAIC and LOO have a tendency to over-factoring.
The values of the convergence statistic, R, for the selected
model ranged from 1.00 to 1.01, which is indicative of good
convergence.

The visual inspection of the dispersion plot of SGDDM(X;ω)
and SGDDM(Xpred;ω) for the models with one and two
dimensions clearly shows that two dimensions are necessary
to represent these data. The dispersion plots can be seen in
Figure 2. The horizontal axis represents SGDDM(X;ω) and
SGDDM(Xpred;ω) is in the vertical axes. The ppost associated to
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SGDDM in Table 9 is the proportion of points in the figure that
fall above the bisection line.

Estimated parameters under simple constraints appear in
Table 10. The table shows the pattern of zeros and ones that
have to be fixed in the slopes to fix dimension orientation and
avoid rotational indeterminacy during estimation, as described
in Section Rotation of Slopes. The parameters of category 4 have
been set to zero to implement simple constraints.

Transformation of Parameterization

Simple constraints are not useful for interpreting the LSI
questionnaire because category 4 is not a reference category
but a substantive one. The information about the relation
between category 4 and the dimensions is lost if their
parameters are set to zero to resolve the mathematical
indeterminacies of the probabilistic model. Simple constraints
were transformed to deviation constraints to obtain a more
meaningful parameterization in which all categories can have
nonzero parameters. The result is on the left part of Table 11.
The interpretation of simple constraints has to take into account
that the sign of the slopes must change across categories for
the sum of the slopes to be zero. Thus, some categories have
a positive relation with the dimensions whereas this relation is
negative for other categories, which typically results in a bipolar
interpretation for the dimensions. Table 11 shows that the slopes
in the second dimension have a larger magnitude than in the
first one.

Rotation of Slopes

A visual inspection of parameters under simple constraints
reveals that the interpretation could be benefited from a rotation.
Rotation was not performed by algorithm procedures such as
varimax, oblimin, etc. The reason is that in a simple example
like this, with few slopes to rotate, a visual inspection of slopes
and the judgment of the data analysis may provide a more
meaningful interpretation that these algorithms that are blind
to item content. Rotation was performed by a graphical method
(Lawley and Maxwell, 1971), by plotting slopes and finding
the best rotation angle on a subjective basis. In particular,
we performed a clockwise graphical orthogonal rotation by an
angle of 72◦. The value of the angle is used to compute the
transformation matrix, M, in Equation (12) using the formula
in Lawley and Maxwell (1971, p. 70). The parameters under
deviation constraints and the rotated parameters appear in the
right part of Table 11.

Figures 3, 4 illustrate the rotation process. Figure 3 contains
the unrotated slopes under deviation constraints and Figure 4

contains the rotated ones. The right part of Table 11 contains the
rotated slopes.

The items contain four response categories (feeling, watching,
thinking, and doing) that represent the four extremes in the
learning model by Kolb (1984). Two bipolar dimensions result
from the combination of these extremes. According to Kolb
(1981, p. 236):

“The first dimension represents the concrete experiencing of
events, at one end, and abstract conceptualization at the other.

TABLE 10 | Parameter estimates for the two-dimension model under simple

constraints.

Item Category Intercept Dimension 1 Dimension 2

1 1 3.41 (0.49) 1 0

2 2.38 (0.50) 0.82 (0.09) 1

3 1.51 (0.49) 0.35 (0.11) 0.52 (0.31)

4 0 0 0

2 1 5.24 (1.00) 1.77 (0.05) −1.55 (1.07)

2 1.77 (0.96) 0.89 (0.37) 0.88 (0.83)

3 −0.70 (1.31) 0.53 (0.35) 3.89 (1.26)

4 0 0 0

3 1 2.91 (0.54) 1.57 (0.44) −1.63 (1.10)

2 2.42 (1.50) 0.96 (0.27) 0.80 (0.76)

3 0.61 (0.70) 0.34 (0.24) 3.27 (1.10)

4 0 0 0

4 1 1.22 (0.43) 0.75 (0.24) −0.11 (0.71)

2 0.24 (0.57) 1.05 (0.54) 4.19 (1.32)

3 0.57 (0.41) 0.55 (0.23) 2.67 (0.90)

4 0 0 0

Parameters in boldface are fixed by design. Standard errors appear in brackets. The

estimated standard deviation of dimensions are σ1 = 2.65 (1.80) and σ2 = 0.76 (0.51).

The slope for the categories 1 and 2 of item 1 has been set to 1 to fix the orientation of

the dimension.

The other dimension has active experimentation at one extreme
and reflective observation at the other.”

In our questionnaire, categories 1 and 3 (feeling and thinking)
were designed to represent the two extremes of the first bipolar
dimension, whereas categories 2 and 4 (watching and doing) are
the two extreme of the second dimension.

The rotated slopes found in the data analysis are
in concordance with the theoretical foundation of the
questionnaire. The first category of the four items has a
positive slope in Dimension 1, and the slope is negative for the
third category. Therefore, the probability of category 1 is high
when the location of the individual in Dimension 1 is high,
and those individuals who are low in Dimension 1 will have a
high probability of selecting category 3. Based on these results,
Dimension 1 can be interpreted as a bipolar dimension with two
extremes: feeling and thinking respectively, which is recognized
as the first bipolar dimension in the theoretical model by Kolb.

Similarly, the second category of the four items has a positive
rotated slope in Dimension 2 whereas category four has a
negative rotated slope. Because the slope indicates the relation
of the probability of the category with the dimension, the
probability of category two increases with the dimension and
the probability of category four increases when the dimension
decreases. Thus, the second dimension found in our data is
recognized as the second bipolar dimension by Kolb. However,
the slopes in the second dimension have a smaller magnitude
than those in the first dimension and thus the questionnaire
provides less precise measurements in the second dimension.
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TABLE 11 | Transformed slopes for the two-dimension model.

Deviation constraints Rotated slopes

Item Category Dimension 1 Dimension 2 Dimension 1 Dimension 2

1 1 0.46 −0.38 0.50 0.32

2 0.27 0.62 −0.50 0.45

3 −0.19 0.14 −0.20 −0.14

4 −0.54 −0.38 0.20 −0.63

2 1 0.98 −2.36 2.54 0.20

2 0.10 0.07 −0.04 0.11

3 −0.27 3.09 −3.02 0.69

4 −0.80 −0.81 0.52 −1.01

3 1 0.85 −2.24 2.40 0.11

2 0.24 0.19 −0.11 0.29

3 −0.38 2.66 −2.65 0.46

4 −0.72 −0.61 0.36 −0.87

4 1 0.16 −1.80 1.76 −0.40

2 0.46 2.50 −2.24 1.21

3 −0.04 0.98 −0.95 0.27

4 −0.59 −1.69 1.43 −1.08

The parameters labeled Deviation constraints are a transformation of the estimates in

Table 4 for the sum of the slopes of each item to be zero. Rotated slopes are obtained

from Deviation constraints parameters by an orthogonal rotation.

FIGURE 3 | Slopes under deviation constraints. The points are labeled with

the number of item and category. For example, the point 4,2 refers to item 4

category 2.

In conclusion, the two theoretical dimensions postulated by
Kolb emerged in our data, which constitutes support for this
theoretical model. However, Dimension 1 seemsmore prominent
according to the magnitude of the slopes, and an enlarged version

FIGURE 4 | Rotated slopes by an angle of 72◦.

of the questionnaire should be considered to obtain precise
estimates in the two dimensions.

FINAL REMARKS

This article described Bayesian methods for evaluating the
latent dimensionality of the MNRM, a simulation study,
and an example with real data. The initial motivation for
moving the inference for the MNRM to the Bayesian context
was to alleviate the estimation problems originated by the
complex parameterization. However, the drawback of leaving the
frequentist framework is the loss of the chi-square and other
measures of model fit. For these reasons, it was necessary to
define an evaluate Bayesian measures of model adequacy.

The main focus of the article is on dimensionality assessment
for the MNRM in the Bayesian context, in particular on the
use of the SGDDM for the evaluation of dimensionality. An
extension of the SGDDM to the nominal model is introduced and
evaluated in a simulation study. Results reveal that the SGDDM
is a useful statistic to evaluate dimensionality of the MNRM.
This statistic was perhaps a little conservative in small samples,
as it showed some tendency to under-factoring. However, this
is not necessarily a drawback of the SGDDM because estimates
tend to be unstable in small samples. The Bayesian methods
implicitly take into account the imprecision of the estimates, and
tend to avoid the extraction of those dimension that have a weak
empirical support.

The SGDDM was compared in the simulations to three
discrepancy measures (DIC, WAIC, and LOO). The discrepancy
measures have computational advantages, as they do not
require resampling. However, in the conditions of the present
investigation they have little utility. The DIC has a strong
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tendency to under-factoring. The WAIC and LOO were more
useful; WAIC was more liberal than LOO and exhibited a
preference for models with more dimension, falling on the
side of over-factoring in some cases. Thus, the LOO seems the
most promising discrepancy measure but its performance is
still far from those of SGDDM. All in all, resampling data and
computing the SGDDM seems to be the most reliable method for
dimensionality assessment in the Bayesian context.

The present investigation can be expanded in several ways.
Regarding the discrepancy statistics the most important open
problem is the identification of those conditions where these
statistics provide valuable information in conjunction with
the MRNM. That would be a valuable contribution because
discrepancy statistics avoid resampling and are much more
computationally cheaper than SGDDM. Vehtari et al. (2016)
pointed out that discrepancy statistics can fail with weak
priors and sparse data, which is unfortunate because item
response models are typically applied to sparse data. Based on
this observation, the search of appropriate conditions could
start with large sample sizes and/or highly informative prior
distributions.

Although the SGDDM is a promising approach to evaluate
model dimensionality, it has been tested in a limited number
of conditions in the simulation study. The generalization of
the present results to other conditions and instruments needs
to be further investigated. Levy et al. (2015) have pointed
out that the latent structure of the set of items could have
an impact on the sensitiveness of the SGDDM. For example
when the items are organized in testlets there are testlet-specific
dimensions that have zero loadings on the items of the other
testlets. Dimensions that affect only to a small number of
items could have a small effect on the dimensionality of the
complete test and may be hard to detect. One second case in
which the performance of the SGDDM shall be investigated
is in the presence of weak dimensions that have an effect on
all the items but with small slopes (Ximénez, 2006, 2015).
In our simulations all the dimensions had high slopes on all
the items, which may explain the sensitiveness of the SGDD
in detecting statistical association between items. However,
additional simulations are needed to investigate if the SGDDM
is able to detect dimensions with milder effect in the context of
the MNRM.

The simulation study confirmed that prior distributions may
help to avoid the problem of high standard errors associated
with item parameters. Our analysis revealed that a normal

prior is appropriate for the purposes of stabilizing estimates.
However, the prior distribution has to be chosen carefully. A
too concentrated prior may introduce a bias in the estimated
parameters and, on the other hand, a vague prior may lead to
problems of convergence and high standard errors (Sheng, 2010).
Recently Natesan et al. (2016) investigated the effect of three types

of priors (matched, standard vague and hierarchical priors) in
Bayesian estimation of dichotomous item response models and
recommended the use of hierarchical priors. One line of future
research is the investigation of the biases that could be introduced
in the MNRM by the use of fixed hyper-parameters and the
advantages of hierarchical priors.

One second line of future research is the determination of the
minimum number of simulated samples for a simulation study
like this is. MCMC simulation is a computationally intensive
method and estimation is typically much slower than maximum-
likelihood. For these reasons simulation studies tend to use a
limited amount of samples. However, a systematic investigation
on the minimum number of samples, following the indications
by Koehler et al. (2009), would constitute valuable guidelines for
researches in the Bayesian item response modeling area.

AUTHOR CONTRIBUTIONS

The contribution of JR consists of defining the Bayesian
estimation and model evaluation procedures for the
multidimensional nominal response using Bayesian procedures.
JR is also responsible of writing the computer codes in the R and
Stan languages and running the simulation study included in the
last section of the article. The contribution of CX has focused
on the real data analysis section of the article, which describes
an application of the exploratory nominal factor analysis in
the context of learning styles. This includes the data collection
and the analyses of the results. Both authors, JR and CX, have
collaborated in writing the paper.

ACKNOWLEDGMENTS

This research was partially supported by grants PSI2012-31958
and PSI2015-66366-P from the Ministerio de Economía y
Competitividad (Spain). Computations have been run with
the support of the Center for Scientific Computing at the
Autonoma University of Madrid (CCC-UAM). We thank
Carlos Calderon for collecting the data of the empirical
application.

REFERENCES

Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves

using Gibbs sampling. J. Educ. Stat. 17, 251–269. doi: 10.2307/1165149

Albert, J. H., and Chib, S. (1993). Bayesian analysis of binary and

polychotomous response data. J. Am. Stat. Assoc. 88, 669–679.

doi: 10.1080/01621459.1993.10476321

Baker, F. B., and Kim, S.,(2004). Item Response Theory. Parameter Estimation

Techniques, 2nd Edn. New York, NY: Taylor and Francis.

Bartholomew, D. (1980). Factor analysis for categorical data. J. R. Stat. Soc. B 42,

293–321.

Béguin, A. A., and Glas, C. A. W. (2001). MCMC estimation and some model-

fit analysis of multidimensional IRT models. Psychometrika 66, 541–561

doi: 10.1007/BF02296195

Bock, R. D. (1972). Estimating item parameters and latent ability when responses

are scored in two or more nominal categories. Psychometrika 37, 29–51.

doi: 10.1007/BF02291411

Brooks, S., and Gelman, A. (1998). General methods for monitoring

convergence of iterative simulation. J. Comput. Graph. Stat. 7, 434–455.

doi: 10.1080/10618600.1998.10474787

Brown, T. A. (2006). Confirmatory Factor Analysis for Applied Research. New York,

NY: Guilford.

Frontiers in Psychology | www.frontiersin.org 15 June 2017 | Volume 8 | Article 961

https://doi.org/10.2307/1165149
https://doi.org/10.1080/01621459.1993.10476321
https://doi.org/10.1007/BF02296195
https://doi.org/10.1007/BF02291411
https://doi.org/10.1080/10618600.1998.10474787
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Revuelta and Ximénez Bayesian Multidimensional Nominal Response Model

Chen, J. (2016). Advancing the Bayesian approach for multidimensional

polytomous and nominal IRT models. Model formulations and fit measures.

Appl. Psychol. Measur. 41, 3–16. doi: 10.1177/0146621616669096

Christoffersson, A. (1975). Factor analysis of dichotomized variables.

Psychometrika 40, 5–32. doi: 10.1007/BF02291477

Edwards, M. C. (2010). A Markov chain Monte Carlo approach

to confirmatory item factor analysis. Psychometrika 75, 474–497.

doi: 10.1007/s11336-010-9161-9

Falk, C. F., and Cai, L. (2016). A flexible full-information approach to the modeling

of response styles. Psychol. Methods 21, 328–347. doi: 10.1037/met0000059

Fox, J. P. (2010). Bayesian Item Response Modeling. Theory and Applications. New

York, NY: Springer.

Fraser, C., and McDonald, R. P. (1988). NOHARM: least squares

item factor analysis. Multivariate Behav. Res. 23, 267–269.

doi: 10.1207/s15327906mbr2302_9

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B.

(2014a). Bayesian Data Analysis, 3rd Edn. Boca Raton, FL: Taylor and Francis.

Gelman, A., Hwang, J., and Vehtari, A. (2014b). Understanding predictive

information criteria for Bayesian models. Stat. Comput. 24, 997–1016.

doi: 10.1007/s11222-013-9416-2

Gelman, A., Lee, D., and Guo, J. (2015). Stan. A probabilistic programming

language for Bayesian inference and optimization. J. Educ. Behav. Stat. 40,

530–543. doi: 10.3102/1076998615606113

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (1996). Markov Chain Monte

Carlo in Practice. Boca Raton, FL: Chapman and Hall/CRC.

Hoskens, H., and de Boeck, P. (2001). Multidimensional componential item

response theory models for polytomous items. Appl. Psychol. Meas. 25, 19–37.

doi: 10.1177/01466216010251002

Johnson, T. R., and Bolt, D. M. (2010). On the use of factor-analytic multinomial

logit item response models to account for individual differences in response

style. J. Educ. Behav. Stat. 35, 92–114. doi: 10.3102/1076998609340529

Kieftenbeld, V., and Natesan, P. (2012). Recovery of graded response

model parameters: a comparison of marginal maximum likelihood and

Markov chain Monte Carlo estimation. Appl. Psychol. Meas. 36, 399–419.

doi: 10.1177/0146621612446170

Koehler, E., Brown, E., and Haneuse, S. J.-P. A. (2009). On the assessment ofMonte

Carlo error in simulation-based statistical analyses. Am. Stat. 63, 155–162.

doi: 10.1198/tast.2009.0030

Kolb, D. A. (1981). “Learning styles and disciplinary differences,” in The Modern

American College, ed A. Chickering (San Francisco, CA: Jossey-Bass Inc.),

232–255.

Kolb, D. A. (1984). Experiential Learning: Experience As the Source of Learning and

Development. Englewood Cliffs, NJ: Prentice-Hall.

Kolb, D. A. (1985). The Learning Style Inventory: Technical Manual. Boston, MA:

McBer.

Lawley, D. N., and Maxwell, A. E. (1971). Factor Analysis a As a Statistical Method,

2nd Edn. London: Butterworth and Co.

Levy, R., Mislevy, R. J., and Sinharay, S. (2009). Posterior predictive model

checking for multidimensionality in item response theory. Appl. Psychol. Meas.

33, 519–537. doi: 10.1177/0146621608329504

Levy, R., and Svetina, D. (2011). A generalized dimensionality discrepancymeasure

for dimensionality assessment in multidimensional item response theory. Br. J.

Math. Stat. Psychol. 64, 208–232. doi: 10.1348/000711010X500483

Levy, R., Xu, Y., Yel, N., and Svetina, D. (2015). A standardized generalized

dimensionality measure and a standardized model-based covariance for

dimensionality assessment for multidimensional models. J. Educ. Measur. 52,

144–158. doi: 10.1111/jedm.12070

Martín-Fernández, M., and Revuelta, J. (2017). Bayesian estimation of

multidimensional item response models. A comparison of analytic and

simulation algorithms. Psicológica 38, 25–55.

McFadden, D. (1974). “Conditional logit analysis of qualitative choice behavior,”

in Frontiers of Econometrics, ed P. Zarembka (New York, NY: Academic Press),

105–142.

Mislevy, R. J. (1986). Recent developments in the factor analysis of categorical

variables. J. Educ. Stat. 11, 3–31. doi: 10.2307/1164846

Natesan, P., Nandakumar, R., Minka, T., and Rubright, J. D. (2016). Bayesian prior

choice in IRT estimation using MCMC and variational Bayes. Front. Psychol.

7:1422. doi: 10.3389/fpsyg.2016.01422

Patz, R. J., and Junker, B. W. (1999a). A straightforward approach to Markov

chain Monte Carlo methods for item response models. J. Educ. Behav. Stat. 24,

146–178.

Patz, R. J., and Junker, B. W. (1999b). Applications and extensions of MCMC in

IRT:multiple item types, missing data, and rated responses. J. Educ. Behav. Stati.

24, 342–366.

R Development Core Team (2011). R: A Language and Environment for Statistical

Computing. Vienna: R Foundation for Statistical Computing. Available online

at: http://www.R-project.org/

Reckase, M. D. (2009). Multidimensional Item Response Theory. New York, NY:

Springer.

Revuelta, J. (2014). Multidimensional item response model for nominal variables.

Appl. Psychol. Meas. 38, 549–562. doi: 10.1177/0146621614536272

Sheng, Y. (2010). A sensitivity analysis of Gibbs sampling for 3PNO IRTmodels:

effects of prior specifications on parameter estimates. Behaviormetrika 37,

87–110. doi: 10.2333/bhmk.37.87

Sinharay, S., Johnson, M. S., and Stern, H. S. (2006). Posterior predictive

assessment of item response theory models. Appl. Psychol. Meas. 30, 298–321.

doi: 10.1177/0146621605285517

Spiegelhalter, D., Best, N. G., Carlin, B. P., and van der Linde, A. (2002). Bayesian

measures of model complexity and fit (with discussion). J. R. Stat. Soc. B, 64,

583–639. doi: 10.1111/1467-9868.00353

Stan Development Team (2016). Stan Modeling Language Users Guide and

Reference Manual, Version 2.9.0. Available online at: http://mc-stan.org/

Takane, Y., and de Leeuw, J. (1987). On the relationship between item response

theory and factor analysis of discretized variables. Psychometrika 52, 393–408.

doi: 10.1007/BF02294363

Thissen, D., and Cai, L. (2017). “Nominal categories models,” in Handbook of

Modern Item Response Theory, 2nd Edn., eds W. J. van der Linden and R. K.

Hambleton (New York, NY: Chapman and Hall), 49–73.

Thissen, D., Cai, L., and Bock, R. D. (2010). “The nominal categories item

response model,” in Handbook of Polytomous Item Response Theory Models:

Developments and Applications, eds M. Nering and R. Ostini (New York, NY:

Taylor and Francis), 43–75.

Vehtari, A., Gelman, A., and Gabry, J. (2016). loo: Efficient Leave-One-Out Cross-

Validation and WAIC for Bayesian Models. R Package Version 0.1.6. Available

online at: https://github.com/jgabry/loo/

Vermunt, J. K., and Magidson, J. (2016). Technical Guide for Latent GOLD 5.1:

Basic, Advanced and Syntax. Belmont, MA: Statistical Innovations Inc.

Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely

applicable information criterion in singular learning theory. J. Mach. Learn. Res.

11, 3571–3594.

Watanabe, S. (2013). A widely applicable Bayesian information criterion. J. Mach.

Learn. Res. 14, 867–897.

Ximénez, C. (2006). A Monte Carlo study of recovery of weak factor

loadings in confirmatory factor analysis. Struct. Eq. Model. 13, 587–614

doi: 10.1207/s15328007sem1304_5

Ximénez, C. (2015). Recovery of weak factor loadings when adding the mean

structure in confirmatory factor analysis: a Simulation Study. Front. Psychol.

6:1943. doi: 10.3389/fpsyg.2015.01943

Yel, N., Xu, Y., and Levy, R. (2013). “Dimensionality assessment for

multidimensional item response models accommodating polytomous and

missing data,” in Paper Presented at the Annual Meeting of the National Council

on Measurement in Education (San Francisco, CA).

Zimowski, M. F., Muraki, E., Mislevy, R. J., and Bock, R. D. (1996). BILOG-MG:

Multiple-Group IRT Analysis and Test Maintenance for Binary Items [Computer

Software]. Chicago: Scientific Software International.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Revuelta and Ximénez. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 16 June 2017 | Volume 8 | Article 961

https://doi.org/10.1177/0146621616669096
https://doi.org/10.1007/BF02291477
https://doi.org/10.1007/s11336-010-9161-9
https://doi.org/10.1037/met0000059
https://doi.org/10.1207/s15327906mbr2302_9
https://doi.org/10.1007/s11222-013-9416-2
https://doi.org/10.3102/1076998615606113
https://doi.org/10.1177/01466216010251002
https://doi.org/10.3102/1076998609340529
https://doi.org/10.1177/0146621612446170
https://doi.org/10.1198/tast.2009.0030
https://doi.org/10.1177/0146621608329504
https://doi.org/10.1348/000711010X500483
https://doi.org/10.1111/jedm.12070
https://doi.org/10.2307/1164846
https://doi.org/10.3389/fpsyg.2016.01422
http://www.R-project.org/
https://doi.org/10.1177/0146621614536272
https://doi.org/10.2333/bhmk.37.87
https://doi.org/10.1177/0146621605285517
https://doi.org/10.1111/1467-9868.00353
http://mc-stan.org/
https://doi.org/10.1007/BF02294363
https://github.com/jgabry/loo/
https://doi.org/10.1207/s15328007sem1304_5
https://doi.org/10.3389/fpsyg.2015.01943
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

	Bayesian Dimensionality Assessment for the Multidimensional Nominal Response Model
	Multidimensional Nominal Response Model
	The Multidimensional Nominal Response Model
	Rotation of Slopes
	Estimation of the Model

	Bayesian Parameter Estimation
	Bayesian Model Evaluation
	Model Evaluation via Posterior Predictive Checks
	Model Selection Using Discrepancy Statistics

	Simulation Study
	Simulation Conditions and Analysis
	Results and Discussion

	Real Data Analysis
	Instrument
	Sample
	Procedure
	Results
	Selection of the Number of Dimensions
	Transformation of Parameterization
	Rotation of Slopes


	Final Remarks
	Author Contributions
	Acknowledgments
	References


