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Psychophysical data from dual-presentation tasks are often collected with the

two-alternative forced-choice (2AFC) response format, asking observers to guess when

uncertain. For an analytical description of performance, psychometric functions are

then fitted to data aggregated across the two orders/positions in which stimuli were

presented. Yet, order effects make aggregated data uninterpretable, and the bias with

which observers guess when uncertain precludes separating sensory from decisional

components of performance. A ternary response format in which observers are also

allowed to report indecision should fix these problems, but a comparative analysis with

the 2AFC format has never been conducted. In addition, fitting ternary data separated by

presentation order poses serious challenges. To address these issues, we extended the

indecision model of psychophysical performance to accommodate the ternary, 2AFC,

and same–different response formats in detection and discrimination tasks. Relevant

issues for parameter estimation are also discussed along with simulation results that

document the superiority of the ternary format. These advantages are demonstrated

by fitting the indecision model to published detection and discrimination data collected

with the ternary, 2AFC, or same–different formats, which had been analyzed differently

in the sources. These examples also show that 2AFC data are unsuitable for testing

certain types of hypotheses. MATLAB and R routines written for our purposes are available

as Supplementary Material, which should help spread the use of the ternary format for

dependable collection and interpretation of psychophysical data.

Keywords: indecision model, response format, psychometric function, psychophysical function, parameter

estimation, goodness of fit

Psychophysical data are widely collected with dual-presentation (2P) tasks whose trials display two
stimuli of selected magnitudes. These tasks are often administered with the two-alternative forced-
choice (2AFC) response format in which observers report the stimulus perceived to have some
characteristic. Thus, in 2P detection tasks, one stimulus (the standard) has null magnitude on all
trials whereas the other (the test) has a non-null magnitude that varies across trials and observers
report which presentation displayed the non-null stimulus. In 2P discrimination tasks, the standard
has a fixed non-null magnitude whereas the test varies in magnitude across trials and observers
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report which presentation displayed a stimulus of, say, higher
magnitude. Presentations can occur in consecutive temporal
intervals or in adjacent spatial positions, rendering temporal or
spatial 2P tasks. Because the temporal or spatial aspect is formally
inconsequential (though perceptually relevant; see García-Pérez
et al., 2005), presentations will here be denoted “first” and
“second” to indicate either temporal order or positional order
(location).

Across trials, standard and test are displayed about equally
often in each presentation order except under the reminder
paradigm (Macmillan and Creelman, 2005, p. 180–182) in which
the standard is presented first on all trials, but this paradigm
will not be considered here. Responses are aggregated across
presentation orders and binned by test magnitude (henceforth,
level) to compute the proportion of trials in which observers
were correct in detection tasks or in which they reported the
test to be subjectively higher in discrimination tasks (i.e., they
chose the first presentation when the test was first or the second
presentation when it was second). A plot of these proportions as
a function of test level delineates a curve to which a psychometric
function is fitted for an analytical description of performance.

Two aspects of this widespread practice are questionable.
One of them is the aggregation of responses across presentation
orders, which is justifiable only if performance is invariant with
presentation order. Overwhelming evidence to the contrary has
been reported in a number of sensory modalities and stimulus
dimensions (see, e.g., Jamieson and Petrusic, 1975; Allan, 1977;
Jamieson, 1977; Masin and Agostini, 1991a,b; Hellström, 2003;
Hellström and Rammsayer, 2004, 2015; Alcalá-Quintana and
García-Pérez, 2011; García-Pérez and Alcalá-Quintana, 2011a;
Dyjas et al., 2012; Dyjas and Ulrich, 2014; van den Berg et al.,
2017). This evidence led Ulrich and Vorberg (2009; see also
García-Pérez and Alcalá-Quintana, 2011b) to stress that separate
psychometric functions should be fitted for each presentation
order under suitable constraints and to develop software that
accomplishes this goal, although only for discrimination tasks
(Bausenhart et al., 2012).

The second questionable aspect is the assumption that
observers can always make an informed decision about which
stimulus has the target characteristic. The assumption seems
grounded on the feasibility of a decision based on the perceived
difference relative to a fixed cut point (typically placed at 0),
as posited by the signal-detection-theoretic difference model for
2AFC responding (see Figure 7.2 in Macmillan and Creelman,
2005). However, such decision model is in contradiction with
the difference model for same–different responding, a response
format for 2P tasks in which observers report instead whether
or not the two stimuli are subjectively equal. The decision
model here posits that observers cannot tell which stimulus
has a higher magnitude (and, hence, respond “same”) if the
perceived difference is within some vicinity of 0 (see Figure
9.5 in Macmillan and Creelman, 2005). In other words, the
decision rule presumed to underlie performance under 2AFC
responding (referred to as the comparative task; Schneider,
2006; Dyjas and Ulrich, 2014) implies that observers will never
report equality under same–different responding (referred to
as the equality task), whereas the decision rule presumed

to underlie performance in the equality task implies that
observers must guess in a comparative task when both stimuli
are subjectively equal. This contradiction may be explained
away with the ad-hoc argument that observers are capable
of perceiving subjective equality only under same–different
responding. However, researchers acknowledge that observers
may also perceive equality under 2AFC responding and explicitly
instruct them to guess in such cases (e.g., Allan, 1977; Tolhurst
and Barfield, 1978; Jenkins, 1985; Schneider, 2006; Norman
et al., 2011; Brown et al., 2015). It would certainly make more
sense to ask observers to report their indecision instead. Indeed,
guessing alters psychometric functions according to the bias with
which observers respond “first” or “second” when uncertain (see,
e.g., Figure 1 in Pastore and Farrington, 1996) and introduces
a contamination that precludes separating the sensory and
decisional components of performance.

Removing this contamination requires administering the 2P
task with a ternary response format in which observers are still
given the classical response options (i.e., choose one stimulus or
the other) but they are also allowed to report that both stimuli
were subjectively equal. The ternary format was widely used by
Fechner (1860/1966) and by most of the early psychophysicists
(see the first few chapters in Link, 1992), but it fell in disuse
when signal detection theory was introduced. A recent attempt
to reinstate the ternary format (Rammsayer and Ulrich, 2001)
did not meet immediate recognition perhaps because analyzing
ternary data is not straightforward, less so when order effects
have to be taken into account. In addition, it has never been
established that the ternary format pays off: A comparison with
binary response formats has never been conducted.

This paper has two goals. Firstly, to document the advantages
of the ternary format relative to the 2AFC or same–different
formats, in terms of the accuracy with which model parameters
and performance measures can be estimated. Secondly, to
discuss aspects of the fitting of psychometric functions to
ternary detection and discrimination data, showing along the
way that 2AFC data are unsuitable to test certain types of
hypotheses. The indecision model (García-Pérez and Alcalá-
Quintana, 2010a) is amended and extended for these purposes
so that it also accommodates the 2AFC and same–different
formats. A description of the amended model is first given,
followed by a description of its application to binary response
formats. Simulation results are then presented that document
the higher accuracy of parameter estimates from ternary data.
Aspects of parameter estimation and hypothesis testing are finally
illustrated via analysis of published detection and discrimination
data collected with the ternary, 2AFC, or same–different formats,
which had been analyzed differently in the sources. Routines
(in MATLAB and R) to fit the indecision model were written
for our purposes and are available as Supplementary Material,
which should help to spread the use of the ternary format.
In empirical practice, use of the ternary response format only
requires that observers be given a third response key to express
indecision whenever needed, with no change in any other aspect
of the psychophysical paradigm. Data analysis is subsequently
adapted to the characteristics of ternary data but the routines just
mentioned carry out that task.
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THE TERNARY INDECISION MODEL OF
PSYCHOPHYSICAL JUDGMENTS

The original form of the indecision model has been presented
elsewhere (García-Pérez and Alcalá-Quintana, 2010a,b, 2011a,
2013; García-Pérez, 2014a; Sridharan et al., 2014; see also García-
Pérez and Peli, 2014, 2015; Pritchett and Murray, 2015; Self et al.,
2015). The following description expands the model in some
respects and highlights important features that are relevant to
parameter estimation.

The indecision model is analogous to the signal-detection
model for a rating task with three response categories. Thus,
the decision variable D = S2 – S1 is the difference between
the sensory effect S2 of the stimulus presented second and the
sensory effect S1 of the stimulus presented first, and the decision
space is partitioned into three regions each associated with
one of the judgments (Figure 1A). Sensory effects are assumed
to be normally distributed with unit variance and a mean
determined by stimulus level, but normality can be replaced with
distributional forms that are more appropriate in some cases
(see, e.g., García-Pérez and Peli, 2014). The sensory effect S of
a stimulus with level x is thus a random variable with density

f (s; x) =
1

√
2π

exp

[

−
(

s− µ (x)
)2

2

]

, (1)

where µ is the psychophysical function relating mean sensory
effect to stimulus level.

The form of µ has been under scrutiny for decades and it
is still unclear whether a unique form exists (Kornbrot, 2016).
Nevertheless, some aspects of the mathematical form of µ are
immaterial in 2P tasks, where the values µ(x1) and µ(x2) at the
stimulus levels x1 and x2 displayed first and second are not crucial
and only their difference matters. We use the form

µ(x) = log(1+ 2e(x−α)/β), (2)

an increasing function (Figure 1B) with a lower asymptote at
y = 0 and an oblique asymptote at y = log(2) + (x − α)/β.
Thus, mean sensory effects are null at low (imperceptible) levels,
subsequently grow slowly and non-linearly, and finally grow
linearly with a slope of 1/β in the suprathreshold range. This
choice accommodates stimulus dimensions in any range and
scale, but two considerations should be made.

In discrimination tasks, the standard may differ from the
test along dimensions other than that of comparison (e.g., the
dimension of comparison is line length but standard and test
lines differ in orientation). When the extra dimension affects
perceived magnitude, separate functions µs and µt hold for
standard and test, and both must be considered. When test
and standard differ only along the dimension of comparison or
when the extra dimension in which they differ does not have
perceptual effects, µs = µt. This is also the case in detection
tasks. The model is described here with µs 6= µt because µs =
µt results in straightforward simplifications. It should be stressed
that, in some discrimination studies, whether or not µs = µt is a
hypothesis that the data should allow testing.

The second consideration relates to the identifiability of the
parameters of µ. In detection tasks, where the null standard at xs
sets an anchor at µs(xs) = 0 along the subjective axis, test levels
probe the initial non-linear range ofµt. Hence, parameters αt and
βt are identifiable. In a suprathreshold discrimination task, where
only the linear range of µt is involved, the anchor µs(xs) 6= 0 set
by the standard is unknown and, given that µt(x) − µs(xs) =
(x − αt − βt(xs − αs)/βs)/βt within the linear range, parameter
αt is not identifiable. Figure 1C illustrates the unidentifiability of
αt when µs = µt, which simplifies the preceding expression to
µt(x)−µs(xs) = (x−xs)/βt andmakes evenmore explicit that αt
is not identifiable. This unidentifiability is an inherent feature of
difference models and it has been shown to arise for many forms
of µ (e.g., García-Pérez and Alcalá-Quintana, 2013; García-
Pérez, 2014a), but it is inconsequential when the non-identifiable
parameters are replaced with identifiable combinations or when

FIGURE 1 | Components of the indecision model. (A) Decision space with boundaries at δ1 and δ2, not necessarily placed symmetrically about the null value of the

decision variable D defined as the difference between the sensory effect S2 of the stimulus presented second and the sensory effect S1 of the stimulus presented first.

The observer chooses the first presentation if D < δ1, chooses the second presentation if D > δ2, and is undecided if δ1 < D < δ2. (B) Psychophysical function µ in

Equation (2) (solid curve) and its oblique asymptote (dotted line). (C) Illustration of the unidentifiability of parameter α in discrimination tasks at suprathreshold stimulus

levels within the linear range of µ. Consider the five test levels indicated along the horizontal axis, with the standard stimulus at the central level. Whether mapped onto

the subjective axis via the black curve or via the red curve (which differ only as to parameter α), the relative distance between the sensory effects of all pairs of stimuli

are identical and only their locations along the vertical axis (which is immaterial) varies with α.

Frontiers in Psychology | www.frontiersin.org 3 July 2017 | Volume 8 | Article 1142

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


García-Pérez and Alcalá-Quintana Binary vs. Ternary Psychophysical Data

one or more of them are fixed to arbitrary but reasonable anchor
values.

The decision variable D is normally distributed with variance
2 and mean µs(xs) − µt(x) if the test is presented first or µt(x)
− µs(xs) if the test is presented second. Given a decision space
with boundaries at δ1 and δ2 (Figure 1A), the probabilities pF,m,
pU,m, and pS,m of a “first” (F), “undecided” (U), or “second” (S)
judgment when the test at level x is presented in interval m ∈ {1,
2} are

pF,1(x) = 8

(

δ1−µs(xs)+ µt(x)√
2

)

(3a)

pU,1(x) = 8

(

δ2−µs(xs)+ µt(x)√
2

)

− 8

(

δ1 −µs(xs)+ µt(x)√
2

)

(3b)

pS,1(x) = 1− 8

(

δ2−µs(xs)+ µt(x)√
2

)

(3c)

pF,2(x) = 8

(

δ1−µt(x)+ µs(xs)√
2

)

(3d)

pU,2(x) = 8

(

δ2−µt(x)+ µs(xs)√
2

)

− 8

(

δ1 −µt(x)+ µs(xs)√
2

)

(3e)

pS,2(x) = 1− 8

(

δ2−µt(x)+ µs(xs)√
2

)

, (3f)

where 8 is the unit-normal cumulative distribution. Figure 2
illustrates the model for a discrimination task in three scenarios:
µs = µt with δ1 = −δ2 (Figure 2A), µs 6= µt with δ1 = −δ2
(Figure 2B), and µs 6= µt with δ1 6= −δ2 (Figure 2C). If δ1 and
δ2 are not placed symmetrically about D = 0 (i.e., δ1 6= −δ2),
decisional bias occurs and the psychometric functions for each
presentation order are displaced in opposite directions relative
to the common location that they would have without such bias
(compare the bottom panels in Figures 2B,C). With or without
decisional bias, µs 6= µt shifts the vertical axis of symmetry away
from x = xs (compare the bottom panels in Figures 2A,B).

The point of subjective equality (PSE) is the test level at
which the (average) perceived magnitudes of test and standard
are equal. Under 2AFC responding, the PSE is extracted as the
abscissa at which the psychometric function for “test higher”
responses evaluates to 0.5, but this method is inappropriate under
the ternary format. By definition, the PSE is the level xPSE at
whichµt(xPSE) = µs(xs) and, thus, xPSE = µ−1

t (µs(xs)). The PSE
is then extracted from the estimated psychophysical functions
and, naturally, xPSE = xs when µt = µs.

The difference limen (DL) can also be determined from
discrimination data collected with the ternary format. Under
2AFC responding, the DL is extracted as the distance between
the PSE and the level xDL at which the psychometric function for
“test higher” responses evaluates to, say, 0.75, but this approach
is again inappropriate under the ternary format. By definition,
xDL is the level at which the probability is 0.75 that the sensory
effect St of the test exceeds the sensory effect Ss of the standard,

that is, the solution of Prob(St − Ss > 0) = .75. With normally-
distributed sensory effects, xDL = µ−1

t (µs(xs) + z0.75
√
2), where

z0.75 is the 75th quantile of the unit-normal distribution.
Similar considerations hold for detection tasks in which

PSEs and DLs are undefined. Instead, the detection threshold
is defined under 2AFC responding as the level at which the
psychometric function for correct responses evaluates to, say,
0.84. This method is inappropriate under the ternary format. The
detection threshold is the level θ at which the probability is 0.84
that the sensory effect of the test exceeds that of the null standard,
that is, the solution of Prob(St − Ss > 0) = .84. With normally-
distributed sensory effects, θ = µ−1

t (z0.84
√
2). For a thorough

discussion of detection and discrimination thresholds and their
relation to the psychophysical function, see García-Pérez and
Alcalá-Quintana (2007).

Equation 3 supply the probability of judgments as a function
of test level for each presentation order and they were regarded as
the observable psychometric functions in the original model. But
this is not necessarily true and an amendment is needed because
judgments are not always reliably reported due to key-press
errors or for other reasons. This amendment is analogous to the
addition of lapse-rate parameters to conventional psychometric
functions. Let ǫF,m, ǫU,m, and ǫS,m be the probabilities that an
observer misreports F, U, and S judgments, respectively, when
the test is presented in interval m ∈ {1, 2}. Misreporting a given
judgment can take two forms. Let κX−Y,m be the bias toward
misreporting an X judgment as a Y response when the test
is presented in interval m so that κX−Z,m = 1 − κX−Y,m is
the bias toward misreporting an X judgment as a Z response.
Then, only three bias parameters are free for each presentation
order, say, κF−U,m, κU−F,m, and κS−F,m. Figure 3A illustrates the
mapping of judgments onto responses when misreports occur.
The observable psychometric functions for F, U, and S responses
under each presentation order are then

9F,m(x) = (1− εF,m)pF,m(x)+ εU,m κU−F,m pU,m(x)

+ εS,m κS−F,m pS,m(x) (4a)

9U,m(x) = εF,m κF−U,m pF,m(x)+ (1− εU,m)pU,m(x)

+εS,m κS−U,m pS,m(x) (4b)

9S,m(x) = εF,m κF−S,m pF,m(x)+ εU,m κU−S,m pU,m(x)

+(1− εS,m)pS,m(x), (4c)

where the p’s come from Equations (3). Note that Equations (4)
revert to Equations (3) when all ε’s are zero (i.e., when judgments
are never misreported, as was assumed in the original model).

Errors rarely occur in all forms under both presentation
orders. Figure 3B shows that there are eight error models per
presentation order according to how many and which of the ε’s
are included and, hence, 64 combinations across presentation
orders. Model (0, 0) is the original model and involves the
least number of free parameters: only two or three from the
psychophysical functions (see below) plus δ1 and δ2; at the other
end, model (1, 1) assumes that errors occur in all possible forms
and adds six error/bias parameters per presentation order. In the
analysis of empirical data, fittingmodel (1, 1) routinelymay result
in null estimates of some of the ε’s, indicating that those ε’s and
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FIGURE 2 | Illustration of the model under three scenarios (columns) in a visual contrast discrimination task: (A) µt = µs and δ1 = −δ2; (B) µt 6= µs and δ1 = −δ2;

(A) µt 6= µs and δ1 6= −δ2. First row: Assumed psychophysical functions for standard and test stimuli, given by Equation (2) with αs = αt = −1.05 and βs = βt = 0.08

in (A) or αs = −1.05, αt = −1.25, βs = 0.08, and βt = 0.14 in (B) and (C). The standard level (xs = −0.7) and its mapping onto subjective space via either

psychophysical function are indicated by the vertical–horizontal thin line segments. Second row: Decision space and distribution of the decision variable D when a test

stimulus at x = xs is presented first. The shaded areas give the probability of each possible judgment, determined by decision boundaries at δ1 = −1.5 and δ2 = 1.5

in (A) and (B) or at δ1 = −2 and δ2 = 1 in (C). Third row: Analogous to the second row, but the distribution of D is shown when the test is presented second. Fourth

row: Psychometric functions for each possible response under each presentation order, with color codes as in the second and third rows. The dashed vertical line

indicates the standard level; the solid vertical line, which occludes the dashed vertical line in (A), indicates the PSE.

their associated κ’s should not have been included. Unnecessary
parameters do not affect the quality of the fit but they have
consequences for goodness-of-fit assessments. Consideration of
all error models allows choosing a model without unnecessary
error parameters.

The number of parameters coming from the psychophysical
functions deserves commentary. When µt = µs, only one set of
α and β is involved (top panel in Figure 2A), potentially resulting
in two free parameters. With detection data both parameters
are identifiable, but α is not identifiable with suprathreshold
discrimination data, as discussed above. When µt 6= µs instead,
two sets of α and β seem necessary but the use of a single
standard level precludes estimating the parameters of µs because

only µs(xs) manifests by setting an anchor. In this case, the
free parameters are µs(xs), αt, and βt, although αt will not be
identifiable with suprathreshold discrimination data.

ACCOMMODATING THE CLASSICAL 2AFC
AND SAME–DIFFERENT RESPONSE
FORMATS

The indecision model assumes that judgments precede responses
and are unaffected by how the response format asks observers
to report them. Under the ternary format, judgments lead to
responses as discussed in the preceding section. Under the
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FIGURE 3 | (A) Tree diagram describing the mapping of judgments (which

occur with probabilities given by the p’s at the far left, given the applicable test

and standard levels) onto responses (rightmost column) when response errors

may occur. The subscript denoting the interval in which the test is presented

has been dropped, but judgment probabilities (p’s) as well as error (ε’s) and

bias (κ’s) parameters may vary across presentation orders. Recall that only one

of the two κ’s at each branching point is a free parameter, as they add up to

unity. (B) Labels for error models according to whether or not they include

each of the error parameters. Inclusion of an error parameter implies that its

value as well as that of its associated κ must be estimated from the data for the

corresponding presentation order; exclusion implies that the error parameter is

assumed to be zero and, hence, that the applicable branches are removed

from the tree diagram, which removes along the way the associated κ’s.

2AFC format, observers give F or S responses at random
upon U judgments; analogously, under the same–different
format, observers respond “same” upon U judgments and
“different” upon F or S judgments. This allows expressing
responses under these binary formats in terms of the indecision
model.

Under 2AFC responding, observers behave with εU,m = 1
but not necessarily with κU−F,m = 0.5. Also, F (S) judgments
can only be misreported as S (F) responses, making κF−S,m =
κS−F,m = 1. This renders the simplified diagram in Figure 4A

and turns Equations (4) into

9F,m(x) = (1− εF,m)pF,m(x)+ κU−F,m pU,m(x)+ εS,m pS,m(x)

(5a)

9U,m(x) = 0 (5b)

9S,m(x) = εF,m pF,m(x)+ κU−S,m pU,m(x)+ (1− εS,m)pS,m(x),

(5c)

with a reduction in the number of free parameters (i.e., only two
ε’s and a single κ per presentation order). Thus, accommodating
2AFC responding is straightforward without changing the
notation.

A change of notation seems necessary to accommodate the
same–different format, though only to refer to “same” and
“different” responses instead. Mapping F, U, and S judgments
onto “same” or “different” responses on consideration that errors
can occur turns Equations (4) into

9same,m(x) = εF,m pF,m(x)+ (1− εU,m)pU,m(x)+ εS,m pS,m(x)

(6a)

9diff,m(x) = (1− εF,m)pF,m(x)+ εU,m pU,m(x)

+ (1− εS,m)pS,m(x). (6b)

To avoid notational changes, same–different responding can
be expressed as shown in Figure 4B. Specifically, F judgments
are regarded as “misreported” always (i.e., εF,m = 1), either
as S responses (to render the aggregated “different” response
category) or as “same” responses due to errors; U judgments are
reported as “same” responses with probability 1 − εU,m or, due
to errors, misreported as “different” responses with probability
εU,m; finally, S judgments are reported as “different” responses
with probability 1− εS,m ormisreported as “same” responses with
probability εS,m. The number of free parameters is also reduced
here and Equations (4) become

9F,m(x) = 0 (7a)

9U,m(x) = κF−U,m pF,m(x)+ (1− εU,m)pU,m(x)+ εS,m pS,m(x)

(7b)

9S,m(x) = κF−S,m pF,m(x)+ εU,m pU,m(x)+ (1− εS,m)pS,m(x).

(7c)

Except for notation, Equations (7) are identical to Equations (6):
κF−U in Equation (7b) plays the role of εF in Equation (6a) and
κF−S = 1 − κF−U in Equation (7c) plays the role of 1 − εF in
Equation (6b).

Yet, a price is paid when forcing observers to misreport U
judgments as F or S responses (under 2AFC responding) or to
collapse F and S judgments into “different” responses (under
same–different responding). Parameter estimates are likely to
be less accurate because data that would have been informative
separately are nowmixed together. This is particularly true under
2AFC responding, where data reflect an inextricable mixture
of guesses and authentic F or S responses. An unfortunate
byproduct of this mix-up is that decisional and bias parameters
are confounded: Observed data can be nearly identically
accounted for on the assumptions that observers were never
undecided (i.e., δ1 = δ2, which renders the difference model with
bias; see Figure 3 in García-Pérez and Alcalá-Quintana, 2011a)
or that they were undecided to some extent (i.e., δ1 6= δ2) and
gave F responses with a bias captured by parameters κU−F,m. Note
that δ1 = δ2 makes pU = 0 in the diagram of Figure 4A (see
Equations 3b,e), eliminating κU−F,m along the way. The classical
decision rule for 2AFC responding (i.e., U judgments do not
occur) can thus be accommodated by the indecision model via
enforcing the assumption that δ1 = δ2, which eliminates three
free parameters (δ2, κU−F,1, and κU−F,2). None of this applies
under same–different responding because the mere presence of
“same” responses implies δ1 6= δ2.

It must be noted that 2AFC or same–different data should be
adequately fitted by the ternary model without the modifications
just discussed. The absence of U responses (in 2AFC data) or the
absence of F responses (in our characterization of same–different
data) should return 0’s or 1’s for the applicable error and bias
parameters in the diagrams of Figure 4. We will show that this
is the case with the examples given later in this paper, but the fact
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FIGURE 4 | Characterization of binary response formats in terms of the ternary model. Compared to the tree diagram for the ternary format in Figure 3A, in the 2AFC

format (A) observers behave with εU,m = 1, κF−S,m = 1, and κS−F,m = 1; in the same–different format (B) observers behave with εF,m = 1, κU−S,m = 1, and κS−U,m

= 1. These simplifications reduce the number of free parameters in the corresponding model.

that those parameters valued at 0 or 1 are fixed and not free must
be considered on assessing goodness of fit.

COMPARISON OF PARAMETER
ESTIMATES FROM TERNARY VS. BINARY
DATA

Model presentation in the preceding sections suggests that
ternary data should provide more accurate estimates of sensory
and decisional parameters than binary data. The surmise gains
support from the results of an analogous comparison for single-
presentation tasks (where a single stimulus is presented in
each trial for observers to report a judgment; see García-Pérez
and Alcalá-Quintana, 2012). Evidence on the superiority of the
ternary format in 2P tasks is lacking and this section reports
simulation results that demonstrate it.

It is important to stress first the scope of these simulations.
If data are scarce, collected at uninformative test levels, or
corrupted by inappropriate experimental control, parameter
estimates will be inaccurate, biased, or non-sensical. Issues
such as optimal strategies to maximize the informative value
of the data (e.g., adaptive data collection) or optimal sample
sizes (i.e., number of test levels and number of trials per
level) are not addressed in these simulations, as they do
not bear on a comparison of response formats (for some
results regarding those issues, see, e.g., Dai, 1995; Lam
et al., 1996, 1999; García-Pérez and Alcalá-Quintana, 2005;
Chaudhuri and Merfeld, 2013; García-Pérez, 2014b; Karmali
et al., 2016). The goal of these simulations is instead to
assess parameter recovery when sufficient data are collected
at informative test levels. The simulations assess the ability
to estimate relevant parameters when αt is not identifiable
and, more generally, the relative precision of parameters

estimated from ternary data vs. 2AFC or same–different
data.

To make results comparable across conditions, the same true
parameters (which varied across 2,000 replicates) were used in
seven scenarios resulting from a combination of tasks (detection
or discrimination) and response formats (ternary, 2AFC, or
same–different): ternary detection, 2AFC detection, ternary
discrimination with µs = µt, 2AFC discrimination with µs =
µt, ternary discrimination with µs 6= µt, 2AFC discrimination
with µs 6= µt, and same–different discrimination with µs = µt.
The context of reference is visual contrast perception but the
results do not depend on context. True parameters were drawn
from uniform distributions on [−3, −2] for αt, on [0.05, 0.10]
for βt, on [−4, −2] for δ1, and on [2, 4] for δ2. In scenarios
involving discrimination with µs 6= µt, the anchor µs(xs) was
drawn from a uniform distribution on [µt(xs) − 1, µt(xs) + 1].
Simulations were run under errormodel (1, 1) with error and bias
parameters drawn from uniform distributions on [0, 0.02] and [0,
1], respectively, and also under error model (0, 0) with all error
parameters set to 0. In scenarios involving binary formats, the
applicable error and bias parameters were set to the fixed values
that hold in each case (Figure 4).

In all scenarios, responses were simulated to 40 trials at
each of the same 11 test levels for each presentation order. For
detection, the central test level was the true αt in the current
replicate rounded to the nearest multiple of 0.1 whereas, for
discrimination, the central test level was the standard level
xs =−1 (a suprathreshold level given the ranges of αt and βt); in
either case, the remaining levels moved out in steps of 0.1 units in
each direction. Note that the constant spacing of test levels is not
adjusted to the steepness of µt (i.e., the true value of βt) in each
replicate.

Maximum-likelihood parameter estimates were obtained for
each replicate with the method described in the next section,
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using multiple starting points to minimize the chances of
missing the global optimum (further details are given in
the Supplementary Material). Detection thresholds or PSEs
(as applicable) were subsequently obtained from parameter
estimates using the expressions given earlier and compared with
the values identically obtained from true parameters.

Figure 5 shows the results in the form of scatter plots of
parameter estimates against true values in each scenario (rows)
for data without response errors. Consider Figure 5A first, for
ternary detection data. The tight packing of symbols along the
identity line reveals that all parameters were reasonably well-
estimated, also resulting in accurate estimates of the detection

FIGURE 5 | Scatter plots of estimates against true parameters in each scenario (rows) for each relevant model parameter (columns; see labels at the top), including

performance measures (detection threshold, PSE, and DL; center columns). The dashed diagonal is the identity line; grayed panels denote conditions involving the

ternary format. To avoid clutter, symbols are plotted for a random subset of 200 replicates. (A) Ternary detection. (B) 2AFC detection. (C) Ternary discrimination with

µs = µt. (D) 2AFC discrimination with µs = µt. (E) Ternary discrimination with µs 6= µt. (F) 2AFC discrimination with µs 6= µt. (G) Same–different discrimination with

µs = µt.
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threshold (center panel in the row). In comparison, 2AFC data
collected under identical conditions (Figure 5B) rendered less
accurate estimates, attesting to the inferiority of a response
format in which informative F and S responses are mixed up
with uninformative guesses. Note that δ1 and δ2 are also very
poorly estimated in this case, owing to the confound with the
bias for misreporting U judgments: Multiple sets of estimates of
δ1, δ2, κU−F,1, and κU−F,2 (with δ1 = δ2 or δ1 6= δ2) produce
curves that fit the data equally well. A detailed illustration of this
characteristic is given below.

A comparison of the outcomes for ternary vs. 2AFC data
in suprathreshold discrimination with µs = µt (Figures 5C,D)
or with µs 6= µt (Figures 5E,F) offers the same picture: All
else equal, estimates from 2AFC data are less accurate than
estimates from ternary data. Note that in the four cases under
discussion, estimates of αt are very poor compared to those
obtained from detection tasks (Figures 5A,B). This evidences
the unidentifiability of αt, which does not play any role in
suprathreshold discrimination and, hence, cannot be estimated.
Interestingly, the unidentifiability of αt does not affect estimation
accuracy for the remaining parameters, which varies only with
the response format used to collect data. Also, a comparison
of the panel for βt in Figure 5A (ternary detection) with those
in Figures 5C,D (ternary discrimination) reveals that βt is
more accurately estimated with discrimination tasks. This is
understandable because detection tasks probe the non-linear
range of µt, which is less informative of βt than the linear range
probed in suprathreshold discrimination tasks.

Finally, results for same–different data (Figure 5G) fall
between those for ternary (Figure 5C) and 2AFC (Figure 5D)
data in analogous conditions. This is because aggregating F and
S responses into the “different” category is less detrimental than
corrupting F and S responses by distributing U judgments at
random between them. Poor estimation of αt here is also due
to the fact that it does not play any role in suprathreshold
discrimination. Finally, note that βt is estimated here with about
the same precision provided by ternary data, and the same holds
for estimates of δ1 and δ2 because the same–different format does
not confound decisional and bias parameters.

Results for data simulated under error model (1, 1) displayed
the same trends, although the presence of response errors
deteriorated estimation accuracy proportionately in all scenarios.
These results are presented in the Supplementary Material.

In sum, model parameters can be estimated more accurately
from ternary data than from 2AFC or same–different data.
Because the numbers of stimulus levels and trials per level were
identical with all formats, empirical cost and burden do not vary
with response format and, hence, these results identify the ternary
format as the most efficient strategy to collect psychophysical
data.

FITTING THE TERNARY INDECISION
MODEL

Harvesting the benefits of the ternary response format
requires custom software to estimate model parameters.
The Supplementary Material includes MATLAB (http://www.
mathworks.com) and R (http://cran.r-project.org) routines that
accomplish this goal, usage documentation, and scripts to run
the examples in the next section. It should be noted that this
software fits the indecision model (extended to incorporate
the error model of choice) with the constraints that hold for
detection or discrimination data, with the constraints that hold
according to the response format, and under the user-selected
assumption about (in)equality of µt and µs. The software also
fits 2AFC data under the alternative assumptions that δ1 = δ2 or
δ1 6= δ2. This flexibility permits direct tests of certain hypotheses,
although the next section will demonstrate that 2AFC data are
unsuitable for these purposes. For an overview of these features,
we will briefly describe the MATLAB script in Exhibit 1 and its
outcomes, which also serves to introduce the examples to come
in the next section.

Data come from one of the observers in one of the conditions
in García-Pérez and Peli (2015), which involved suprathreshold
discrimination with standard and test stimuli for which µt 6= µs.
The data (first assignment in the script) are arranged in an array
with as many columns as levels had the test stimulus and with

EXHIBIT 1 | MATLAB script to fit the indecision model.
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seven rows containing the set of test levels that were used (first
row) and the counts of F, U, and S responses at each level when
the test was presented first (rows 2–4) and second (rows 5–7).
The next line defines the standard level, implicitly indicating that
the data come from a discrimination task.

The next line bounds the search space for parameters αt,
βt, and δ1 and also for the width δ2 – δ1. Bounds for the ε’s
and κ’s are well-defined as 0 and 1 without user intervention.
Bounds are required by the optimization algorithm and issues
involving their choice are addressed in the usage documentation.
Maximum-likelihood estimates are sought with the MATLAB

built-in function fmincon or the R built-in function optim

(for further details, see footnote 2 in Alcalá-Quintana andGarcía-
Pérez, 2013). These functions also require starting values for
each parameter and they are not guaranteed to return the global
optimum; then, the script defines several starting values for some
parameters, which are factorially combined to obtain a solution
for each multidimensional starting point thus defined so as to
return the optimal solution across the board. Starting values are
defined in the next two lines in the script: a single value for αt,
two for βt, three for δ1, and one for the width δ2 – δ1, for the ε’s,
and for the κ’s. The next line sets additional arguments so that
the routine returns the best-fitting error model according to the
log-likelihood of the data, fits the data under the assumption that
psychophysical functions differ for standard and test, displays
progress information during its operation, and plots results upon
completion; the last assignment states that data were collected
with the ternary response format, which anticipates that the
same routine fits data collected with the 2AFC or the same–
different formats. (For a thorough description of each of these
arguments and their functionality, see the usage documentation
in the Supplementary Material.) The function is called with these
arguments in the last line. The output returned in o is a structure
(in MATLAB) or a list (in R) including parameter estimates and
complete information about the results. This script produces the
plots in Figures 6, 7 and the structure in Figure 8.

The output (Figure 8) includes a label for the problem (field 1)
and diagnostic information from fmincon (output flag, number
of iterations, and number of function evaluations, in a row vector;
field 2),1 the data, the response format, and the standard level
(fields 3–5), the user-selected error model and the model for
which parameters are returned (fields 6 and 7), the criterion
selected to search for the best-fitting model, if applicable (field
8), the type of fit regarding psychophysical functions for test and
standard (field 9), the number of free parameters in the fitted
model (field 10), the total number of cells for goodness-of-fit
tests, the number of cells in which expected frequencies were
smaller than 5 and the number of those cells in which observed
frequencies were non-null (fields 11–13), the number of cells in
which expected frequencies were smaller than 1 and the number

1The meaning of the output flag in field 2 varies across versions of MATLAB due to
the different algorithms implied. Users are referred to the help documentation for
fmincon in their installation. This is also the only field that differs in the MATLAB

and R versions of the routine. The R version gives instead output diagnostic
information from optim, namely, the convergence code and the number of
function evaluations, also arranged in vector form.

FIGURE 6 | Graphical output. Color codes for data points and functions are

indicated at the top. The horizontal axis spans the range of test levels. If data

come from a discrimination task, as in this case, a vertical dashed line

indicates the level of the standard stimulus and a solid vertical line indicates

the location of the PSE.

of those cells in which observed frequencies were non-null
(fields 14 and 15), the degrees of freedom, values, and p-values
of Pearson’s chi-square (X2) and the likelihood-ratio (G2)
goodness-of-fit statistics (fields 16–20), the Bayesian information
criterion (BIC) of the fitted model (field 21), the −2LogL of
the data under the fitted model (field 22), the user-defined
content of AlphaBounds, BetaBounds, Delta1Bounds,
and WidthBounds (fields 23–26), a statement indicating which
boundaries were reached, if any (field 27), estimates for αt and βt
(fields 28 and 29), the estimated anchor µs(xs) and the ordinate
of µt at x = xs (fields 30 and 31), estimates of δ1 and δ2 (fields
32 and 33), estimates of the ε and κ parameters when the test
was presented first (fields 34–42) and second (fields 43–51), and
performance measures (PSE, DL, and detection threshold) as
applicable (fields 52–54). Comments regarding these fields are
given in the usage documentation, including specificities that
apply to 2AFC or same–different data.

ANNOTATED EXAMPLES USING
PUBLISHED DATA

The following examples illustrate and discuss the fitting
of the indecision model to data from detection tasks,
from discrimination tasks in which the same or different
psychophysical functions hold for standard and test, with diverse
ranges and scales for test levels, and for data collected with
the ternary, 2AFC, or same–different formats. These examples
illustrate and discuss the various theoretical options described
above to fit ternary, 2AFC, and same–different data, also proving
the impossibility to test certain types of hypotheses with 2AFC
data. Parameter estimates were obtained with the routine
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FIGURE 7 | Additional graphical output. The left panel plots the estimated psychophysical function µt for the test, with parameters given in the panel. The horizontal

axis spans the range of test levels. If data come from a discrimination task, as in this case, a blue dot at coordinates (xs, µs(xs)) indicates the estimated subjective

level of the standard. The blue dot will generally not lie on µt if the latter was assumed to differ from µs. The central panel depicts the estimated boundaries in decision

space, plotting also for reference the distribution of the decision variable at the test level x such that µt(x) = µs(xs) (i.e., a Gaussian with mean 0 and variance 2). The

right panel depicts the (latent) psychometric functions that would have been observed in the absence of response errors, that is, the probabilities of judgments

according to Equations (3).

described in the preceding section. All examples use published
data that had been analyzed differently in the original sources
and each example starts describing relevant aspects of data
collection and analysis in each study.

As seen in the accompanying scripts, BetaBounds,
Delta1Bounds, WidthBounds, BetaStart,
Delta1Start, WidthStart, EpsStart, and
KappaStart were set as in Exhibit 1 and they will not be
mentioned again (except for WidthBounds and WidthStart
in example 4bis to fit 2AFC data enforcing δ1 = δ2). Criteria used
to set these arguments are discussed in the usage documentation.
AlphaBounds was set differently in each example using a
simple criterion that will be discussed here. AlphaStart
was always set to a scalar at the midpoint of AlphaBounds.
Standard, Format, and Type were set as needed in each
example, as they embody theoretical and empirical options to
fit the model. Finally, because model selection is not an issue
here, Model = 1 was used. All the examples show output of the
MATLAB routine; comments regarding the output produced by
the R version are given in the usage documentation.

Example 1. Visual Detection of Contrast;
Ternary Responses
Data for this example come from a study on contrast detection of
Gabor patches (García-Pérez et al., 2011). In different conditions,
the target was or was not flanked by suprathreshold patches.
Ternary data were collected with a temporal 2P task but U
responses were immediately treated as suggested by Fechner
(1860/1966), namely, counting them as half correct and half
incorrect to render binary data. In some analyses, logistic
psychometric functions were fitted to data aggregated across
presentation orders (see Figure 4A in García-Pérez et al., 2011).
This example fits instead the indecision model to the original
ternary data from observers M1, M2, and M3 in the non-flanked

condition. Test levels (log contrast) varied across observers due
to the adaptive collection of data, but they ranged from −2.45 to
−1.55 across the board. The overall number of trials ranged from
884 to 915 across observers and were distributed unevenly across
test levels and presentation orders due to the adaptive collection
of data.

The script set Standard = −Inf to indicate detection
data (see the usage documentation). As for AlphaBounds, the
general rule for detection data was used, which consists of setting
the lower bound at 3x1 − 2xN and the upper bound at xN , using
for each observer the lowest (x1) and highest (xN) test level in the
first row of Data.

Graphical results are shown in Figure 9 in a compact form
different from that which the function produced (Figures 6, 7
above). The detection threshold θ is shown in the bottom panels
and marked by a vertical line in the upper panels. The upper
panels thus show where θ lies relative to the rising portions of
the psychometric functions for correct responses (blue and cyan
curves) and the lower panels show that αt is always slightly below
θ. Indeed, θ = µ−1

t (z0.84
√
2) = µ−1

t (1.406) whereas αt =
µ−1
t (log(3)) = µ−1

t (1.099) (see Figure 1B). Then, a mere look at
detection data informs of suitable bounds for αt. Recall also that
αt is identifiable in detection tasks, which probe the non-linear
range of µt (as is evident in the bottom panels of Figure 9).

Note that incorrect responses (red and pink data points and
curves in Figure 9) are rarely given under the ternary format, the
natural consequence of allowing observers to report indecision
instead of forcing them to guess (which makes them haphazardly
and uninformatively correct or incorrect). Understandably, U
responses (black and gray data points and curves) prevail at low
test levels and they progressively give way to correct responses
(blue and cyan data points and curves) as test level increases.
Also, psychometric functions for test-first presentations (dark
data points and curves) and test-second presentations (pale
data points and curves) are displaced from one another in one
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FIGURE 8 | Output structure from the MATLAB function. The output list from

the R function is analogous.

direction for the first observer (left column), displaced in the
opposite direction for the second observer (center column), and
superimposed for the third observer (right column). These are
the signatures of decisional bias (or lack thereof) illustrated in
Figure 2 above.

Example 2. Visual Discrimination of
Contrast; Ternary Responses
Suprathreshold discrimination data for this example come from
the same study, observers, and condition, but for the highest
standard used with each observer (namely, −0.65, −0.75, and
−0.60; see Table 1 in García-Pérez et al., 2011). Data had been
originally analyzed as described in the preceding example. Test
levels varied across observers for the same reason, but they
ranged from −1.275 to −0.15 across the board. The overall
number of trials ranged between 324 and 341 across observers,
for reasons described in the preceding example.

The script set Standard to the appropriate level for
each observer. Because standard and test were identical except
for contrast, the script set Type = ‘same’ (see the usage
documentation). The true αt is well below the lowest test level
used in a suprathreshold discrimination task, but this parameter
is unidentifiable (Figure 1C). AlthoughAlphaBounds could be
set as in example 1, a more appropriate rule for suprathreshold
discrimination data sets the lower bound still at 3x1 − 2xN but
the upper bound at 2x1 − xN instead (i.e., as far below x1 as
xN is above x1). Note that AlphaBounds in Exhibit 1 was set
with this rule. Use of this rule ensures that µt is linear over the
range of test levels, thus preventing the optimization algorithm
from getting trapped around a potential local optimum at an
inadequately large αt.

Results are shown in Figure 10 in compact form. The blue
circle depicting the standard in the bottom panels lies on µt and
the PSE is not reported because Type = ‘same’ implies xPSE
= xs. Recall that αt is unidentifiable and does not contribute
to the fit. Then, arbitrary estimates of αt (bottom panels in
Figure 10) do not match the dependable estimates obtained
from detection data for the same observers (Figure 9). There
are also discrepancies with the estimates of βt from detection
data for the same observers (Figure 9), surely reflecting the
differences that the simulation results in Figure 5 revealed
for estimates of βt from detection tasks (which are not very
informative about βt) and from informative discrimination
tasks.

Decisional bias is also seen to vary across observers in these
results, both in direction and in magnitude. In addition, the
different height and breadth of the patterns of U responses (black
and gray data points and curves) reflects the extent to which
observers were undecided at test levels in the vicinity of the
standard, an extent captured by the distance between estimated δ1
and δ2. (These distances cannot be appreciated in the simplified
plots of Figure 10 but they are displayed in the original form of
the plots created by the software, as seen in Figure 7; in general,
the larger the distance between δ1 and δ2, the taller and broader
the psychometric function for U responses.)
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FIGURE 9 | Rearranged graphical output for example 1, involving detection data collected from three observers (columns) with a ternary response format.

Goodness-of-fit statistics did not reject the fitted model for any observer.

FIGURE 10 | Rearranged graphical output for example 2, involving discrimination data collected from three observers (columns) with a ternary response format.

Standard and test stimuli were identical except along the dimension of comparison and, hence, a common psychophysical function holds. Goodness-of-fit statistics

did not reject the fitted model for any observer.
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Example 3. Visual Discrimination of Line
Length; Ternary Responses
Data for this example come from a study on the perceived
length of vertical and horizontal lines (García-Pérez and Alcalá-
Quintana, 2011b). Data from two observers in the spatial
discrimination task were presented in Table 2 of that paper,
separated by the location in which the vertical (test) line
was presented. Overall, 100 trials were administered with each
presentation order at each test level. The original analyses kept
presentation order separate but U responses were also treated
with Fechner’s method to render binary data before fitting logistic
psychometric functions that satisfy theoretical constraints on
slopes and locations (see Figure 4 in García-Pérez and Alcalá-
Quintana, 2011b). A re-analysis (see Figure 5 in García-Pérez and
Alcalá-Quintana, 2013) fitted the indecisionmodel to the original
ternary data using what we call error model (0, 0) here.

The script that fits error model (1, 1) instead set Standard
= 104 (i.e., the length of the standard horizontal line, in pixels)
andType= ‘diff’ because the psychophysical function relating
perceived length to physical length varies with line orientation
(Armstrong andMarks, 1997). The detection threshold for length
lies at the spatial resolution limit of the visual system and, thus,
in the current units (pixels) the true αt is surely below unity,
although its value is impossible to estimate from suprathreshold
discrimination data. The script set AlphaBounds = [−5 5],
although the general rule for discrimination data discussed in
example 2 could also have been used. Results are shown in
Figure 11. Because αt is unidentifiable, the fact that its estimate
hits the upper bound in the right column of Figure 11 should
not be regarded as a problem that calls for a rerun with broader
bounds.

Interpretation of the results in terms of decisional bias and
extent of indecision is as in the preceding example. On another
front, it is clear beforehand that these data must be accounted
for with µt 6= µs, as this is an established fact for perceived line
length. Yet, it may not be immediately obvious in other cases
whether µt 6= µs holds. A comparison of the results returned
by otherwise identical scripts that set Type = ‘diff’ and Type
= ‘same’ should be informative on this issue. Re-running the
script for this example with the latter option understandably
results in an awful fit, whether judged by eye or via goodness-of-
fit statistics. It should be stressed that the ternary format must be
used for testing the alternative hypotheses thatµt =µs orµt 6=µs

when the perceptual relevance of the extra dimension on which
test and standard differ in a discrimination task is unclear. The
reason is that U responses establish that δ1 6= δ2 (whose values
must be estimated still), thus eliminating the confound present
in 2AFC discrimination data. We will come back to this issue in
the discussion of example 6 below.

Example 4. Visual Detection of Contrast;
2AFC Responses (U Not Allowed)
Data for this example come from a study on contrast detection
with the 2AFC format in a temporal 2P task (García-Pérez, 2000).
The target was a Gabor patch and 350 trials were administered
at each test level. Presentation order was randomized and,

FIGURE 11 | Rearranged graphical output for example 3, involving

discrimination data collected from two observers (columns) with a ternary

response format. Besides the dimension of comparison (i.e., length), standard

and test stimuli differed in orientation and, hence, data were fitted under the

assumption that different psychophysical functions hold for test and standard.

Goodness-of-fit statistics did not reject the fitted model for any observer.

hence, the numbers of trials with each presentation order were
not identical at each test level. The original analysis fitted
a Weibull psychometric function to data aggregated across
presentation orders (see Figure 8 in García-Pérez, 2000). To fit
the indecision model here, the script set Standard=−Inf (to
indicate detection data) and Format = ‘2AFC’ (see the usage
documentation). AlphaBounds was set for each observer with
the general rule discussed in example 1 for detection data.

Results are shown in Figure 12. Only data and psychometric
functions for correct responses (i.e., F responses when the
test was first and S responses when it was second) are
plotted, as U data and functions are trivially zero under 2AFC
responding whereas data and functions for incorrect responses
are redundant.

We mentioned above that the intact indecision model
should fit 2AFC data identically. Readers can confirm this by
re-running the script after setting Format = ‘ternary’.
The resultant plots differ by showing data and psychometric
functions for all three response categories, but fitted curves
for F (or S) responses when the test was first (or second) are
identical to those in Figure 12. Yet, since 2AFC data confound
decisional and bias parameters, parameter estimates from 2AFC
and ternary fits differed slightly. Differences were large only
for the second observer due to uninformative data from test-
second presentations (cyan curve and data points in the center
column of Figure 12), which describe an essentially flat pattern
compatible with multiple parametric solutions. Recall also that
the reported counts of free parameters and degrees of freedom
and the reported p-values are incorrect when the ternary model
is fitted to binary data such as these.

When data are collected with the 2AFC response format,
information is lacking as to whether observers were ever
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FIGURE 12 | Rearranged graphical output for example 4, involving detection data collected from three observers (columns) with the classical binary response format

in which observers are asked to guess when uncertain. Goodness-of-fit statistics rejected the fitted model for the first observer, despite the close correspondence

between the path of the data and the fitted curves.

undecided. Results in Figure 12 account for the data on the
assumption that they were, via suitable estimates of δ1, δ2,
κU−F,1 and κU−F,2. Accounting for 2AFC data in this way
often results in different estimates of δ1 and δ2. Due to the
confound of decisional and bias parameters, 2AFC data might
also be accounted for on the assumption that δ1 = δ2 instead
(i.e., observers were never undecided), which eliminates three
parameters (δ2, κU−F,1, and κU−F,2 are not free parameters in
this case, as discussed earlier). This assumption is enforced by
setting WidthBounds= [0 0] and, naturally, WidthStart
= 0 (see the usage documentation). The corresponding script
is included as example 4bis and produces the output shown in
Figure 13.

Compared to Figure 12, curves follow the path of the data
from each observer nearly identically but with different estimates
of αt and βt (besides δ1 and δ2) and, hence, yielding different
estimates of θ. Output field 27 (BoundariesReached; see
Figure 8) reported that the upper bound for width was hit for all
observers, indicating that the optimization algorithm expected to
find a better fit if δ2 > δ1 were allowed. Ignoring this indication,
one could use the BIC to identify whether the fit with δ1 = δ2 or
that with δ1 6= δ2 accounts better for the data from each observer,
but this approach has inescapable problems and is inconclusive

(see García-Pérez, 2017). Use of the ternary format in place of
the 2AFC format is surely the way around this ambiguity, as U
responses directly inform about indecision and its prevalence as
a function of test level (as shown in example 1).

Example 5. Visual Discrimination of
Contrast; 2AFC Responses (U Not Allowed)
Data for this example come from a study about order effects
in contrast discrimination (Alcalá-Quintana and García-Pérez,
2011). Test and standard stimuli differed only in contrast, with
xs = −1 for all observers (a level that was above the detection
threshold). One of the conditions used the 2AFC format. A
total of 240 trials were deployed per presentation order using
adaptive methods, which unevenly distributed trials across test
levels and called for different test levels with each presentation
order. Across observers, test levels ranged between −1.35 and
−0.65. The original analyses fitted logistic functions separately to
data from each presentation order and to data aggregated across
presentation orders (see Figure 6 in Alcalá-Quintana and García-
Pérez, 2011). To fit the indecision model to these data, the script
set Standard=−1 (i.e., the contrast of the standard stimulus),
Format = ‘2AFC’, and Type = ‘same’. AlphaBounds was
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FIGURE 13 | Rearranged graphical output for example 4bis, which fits the data in Figure 12 under the assumption that δ1 = δ2. As in Figure 12, goodness-of-fit

statistics rejected the fitted model for the first observer despite the close agreement between data and fitted curves.

set with the general rule for suprathreshold discrimination data
described in example 2.

Results are shown in Figure 14, and recall that αt (whose
estimate hit the lower bound for the fourth observer) is
unidentifiable in these conditions. A re-run setting Format =
‘ternary’ rendered identical plots (plus data points and curves
pertaining to the other response categories) and nearly identical
parameter estimates. This reveals again that the ternary model
fits 2AFC data equally well, although the returned counts of free
parameters and degrees of freedom and the p-values are incorrect
for truly binary data.

As in the preceding example, enforcing the assumption that
δ1 = δ2 (results not shown; script available as example 5bis in
the Supplementary Material) produced nearly identical curves
with different estimates of βt (recall that the estimated αt is
arbitrary here), further attesting to the inescapable confound of
decisional and bias parameters in 2AFC data and to the suitability
of the ternary format to resolve this empirical issue. Also in this
alternative fit, goodness-of-fit statistics did not reject the fitted
model for any observer but output field 27 reported that the
upper bound for width was hit, indicating that the data would
be better fitted if δ2 > δ1 were allowed.

It is obvious that µt = µs when test and standard differ only
along the dimension of comparison, as in this case: Test and
standard are only experimental designations, but their sensory

processing must be identical and reflect the characteristics of
the (single) underlying psychophysical function. Then, whether
or not µt = µs is not an experimental hypothesis in these
conditions. Estimating parameters under the assumption that
µt 6= µs instead (by setting Type = ‘diff’) only allows some
extra flexibility that nevertheless does not produce meaningfully
different estimates. Readers can confirm this by re-running the
scripts for examples 5 and 5bis after setting Type= ‘diff’.

Example 6. Visual Discrimination of Line
Length; 2AFC Responses (U Not Allowed)
Data for this example come also from the study that provided
data for example 3. Data from the same observers in an identical
discrimination task that used instead the 2AFC format were
presented in Table 1 of that paper. Overall, 100 trials were
administered at each test level with each presentation order. The
analysis fitted logistic functions to data from each presentation
order satisfying theoretical constraints on their slopes and
locations (see Figure 3 in García-Pérez and Alcalá-Quintana,
2011b). To fit the indecision model to these data, the script set
Format = ‘2AFC’, Standard = 104, Type = ‘diff’ and, as
in example 3, AlphaBounds= [−5 5].

The results are shown in Figure 15 in compact form, and
recall that αt is unidentifiable from these data. A re-run setting
Format = ‘ternary’ reveals again that the unconstrained
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FIGURE 14 | Rearranged graphical output for example 5, involving detection data collected from four observers (columns) with the classical binary response format in

which observers are asked to guess when uncertain. Standard and test stimuli were identical except along the dimension of comparison and, hence, a common

psychophysical function holds. Goodness-of-fit statistics did not reject the fitted model for any observer.

FIGURE 15 | Rearranged graphical output for example 6, involving

discrimination data collected from two observers (columns) with the classical

binary response format in which observers are asked to guess when uncertain.

Standard and test stimuli differed in orientation and, hence, data were fitted

under the assumption that different psychophysical functions hold for test and

standard. Goodness-of-fit statistics did not reject the fitted model for any

observer.

ternarymodel fits the data equally well, althoughmiscounting the
number of free parameters and with slightly different parameter
estimates.

The data can also be nearly identically accounted for on the
assumption that δ1 = δ2 (results not shown; script available as
example 6bis in the Supplementary Material) but with different
estimates of βt and the anchor µs(xs). This renders different
estimates of the PSE also. Estimating parameters under this
assumption did not reject the model for any observer but, again,
output field 27 reported that the upper bound for width was hit
so that the data would be better fitted if δ2 > δ1 were allowed.

One would expect that an attempt to fit these data with µt =
µs will fail, given that length discrimination with lines of different
orientation is well-known to involve µt 6= µs (Armstrong and
Marks, 1997). But this is not the case: Confound of decisional
and bias parameters permits accounting for 2AFC discrimination
data nearly identically with µt = µs and with µt 6= µs. Readers
can confirm this by re-running the script for example 6 after
setting Type = ‘same’. In contrast, re-running the script for
example 6bis (which additionally enforces the assumption that
δ1 = δ2) after setting Type = ‘same’ does fail to fit the data.
Facing analogous results in a study aimed at determining whether
or not µt = µs (i.e., in cases in which it is unclear whether or
not the extra dimension on which test and standard differ has
some perceptual effect), an experimenter will be unable to answer
the question: µt = µs is tenable if one assumes δ1 6= δ2 but it
is untenable if one assumes δ1 = δ2. As discussed in example 3
above, ternary data solve this indeterminacy: U responses inform
of δ1 and δ2, allowing an unambiguous test of µt = µs against
µt 6= µs.
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FIGURE 16 | Rearranged graphical output for example 7, involving discrimination data collected from three observers (columns) with the same–different response

format in which observers report whether the two stimuli are subjectively equal or different. Standard and test stimuli were identical except along the dimension of

comparison and, hence, a common psychophysical function holds. Goodness-of-fit statistics did not reject the fitted model for any observer.

Example 7. Auditory Discrimination of
Frequency Modulation Rate;
Same–Different Responses
Data for this example come from a study that used the same–
different format to assess auditory discrimination of frequency
modulation rate (Umbach and Wickelmaier, 2014). Modulation
rates ranged from 5.9 to 9.1Hz in steps of 0.4Hz, and data from
three observers were collected for all pairs of modulations in
both presentation orders. The study investigated the principle of
regularminimality (Dzhafarov, 2002) and data had been analyzed
as needed for that purpose (see Umbach andWickelmaier, 2015).
We selected for this example the subset of data involving the
modulation rate at the center of the range (i.e., 7.5Hz), which
is the standard level in this analysis. The number of trials
administered at each test level differed by design and ranged
from 60 (at the test level furthest from the standard) to 150
(when test and standard had the same level) per presentation
order.

The script set Format = ‘equality’ (see the usage
documentation), Standard = 7.5 (i.e., the modulation rate
of the standard tone), and, because test and standard only
differed as to modulation rate, Type = ‘same’. The data were
clearly collected at suprathreshold levels but it is not clear where
the detection threshold for modulation rate may lie; hence,
AlphaBoundswas set with the general rules for suprathreshold
discrimination (i.e., as in examples 2 and 5), yielding here the
range between−0.5 and 2.7.

Results are shown in Figure 16, and note that only data
and psychometric functions for “same” responses are plotted.
Again, αt is unidentifiable with these data. A re-run with
Format = ‘ternary’ reveals that the unconstrained ternary
model fits these data identically and with virtually identical
parameter estimates (because decisional and bias parameters
are not confounded here), but miscounting the number of free
parameters.

Obviously, same–different data cannot be accounted for with
δ1 = δ2, as this implies that “same” responses are never given
(except, perhaps, as misreports). Then, same–different data also
eliminate the ambiguity of 2AFC data in studies aimed at testing
whether µt = µs. In the current example, test and standard
that do not differ except along the dimension of comparison
imply µt = µs and, thus, re-running the script after setting
Type = ‘diff’ is only expected to produce minimally different
parameter estimates due to the extra flexibility but with the
estimated PSE virtually at the standard level (i.e., xPSE ≈ xs).
This turns out to be true for the first and second observers
and, depending on the MATLAB version that was used, also for
the third. The latter outcome is understandable given the poor
informative value of the data, collected at test levels that turned
out to sample inadequately the psychometric functions for this
observer. MATLAB versions rendering the unexpected xPSE 6= xs
fitted the data for this observer with −2logL = 2248.39 whereas
those rendering the expected xPSE ≈ xs resulted in −2logL
=2248.36 instead, a (negligibly) smaller value indeed. Nearly
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identical −2logL indicates different solutions that fit the data
equally well, a common outcome for poorly-informative data.
Arguably, ternary data would have been useful in a case like this:
Separate F and S responses (aggregated instead into “different”
responses here) might have provided the extra information
needed to constrain the fit with µt 6= µs so that the optimal
solution under this assumption involves parameter estimates
analogous to those obtained in the fit under the assumption that
µt = µs.

CONCLUSION

This paper has demonstrated that psychophysical data collected
with a ternary response format in 2P tasks provide more accurate
estimates of model parameters and performance measures than
data collected instead with the binary 2AFC format or with the
also binary same–different format. The ternary response format
is also more natural than the 2AFC format with instructions to
guess when uncertain, an admonition that only corrupts the data
by mixing up authentic judgments and guesses. This mix-up is
the main reason that 2AFC parameter estimates are less accurate,
but it is also the reason that 2AFC data are uninformative when
it comes to testing certain types of experimental hypotheses (as
discussed in example 6). All things considered, use of the 2AFC
format in psychophysical research is unadvisable.

Replacing the 2AFC response format with a ternary format
for data collection is simple, but fitting psychometric functions
to ternary data further separated by presentation order poses
some challenges. This must also be done somewhat differently
according to whether the data come from detection or

discrimination tasks and, in the latter case, also according to
whether the psychophysical functions for test and standard are
assumed to be equal or different. The MATLAB and R routines
(available as Supplementary Material) that were developed for
our purposes in this paper fit psychometric functions from the
indecision model implementing all of these options in a user-
friendly way and, thus, they should help spread the use of the
ternary format for dependable collection and interpretation of
psychophysical data. An accompanying document also in the
Supplementary Material provides complete usage information
and discusses caveats and limitations.

AUTHOR CONTRIBUTIONS

Both authors contributed equally to this work except that the
matlab code was written by MAGP whereas the R code was
written by RAQ.

ACKNOWLEDGMENTS

This research was supported by grant PSI2015-67162-P from
Ministerio de Economía y Competitividad (Spain). We thank
Nora Umbach and Florian Wickelmaier for permission to use
their data in our example 7.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fpsyg.
2017.01142/full#supplementary-material

REFERENCES

Alcalá-Quintana, R., and García-Pérez, M. A. (2011). A model for the time-
order error in contrast discrimination. Q. J. Exp. Psychol. 64, 1221–1248.
doi: 10.1080/17470218.2010.540018

Alcalá-Quintana, R., and García-Pérez, M. A. (2013). Fitting model-based
psychometric functions to simultaneity and temporal-order judgment
data: MATLAB and R routines. Behav. Res. Methods 45, 972–998.
doi: 10.3758/s13428-013-0325-2

Allan, L. G. (1977). The time-order error in judgments of duration. Can. J. Psychol.
31, 24–31. doi: 10.1037/h0081647

Armstrong, L., and Marks, L. E. (1997). Differential effects of stimulus context
on perceived length: implications for the horizontal–vertical illusion. Percept.
Psychophys. 59, 1200–1213. doi: 10.3758/BF03214208

Bausenhart, K. M., Dyjas, O., Vorberg, D., and Ulrich, R. (2012). Estimating
discrimination performance in two-alternative forced choice tasks:
routines for MATLAB and R. Behav. Res. Methods 44, 1157–1174.
doi: 10.3758/s13428-012-0207-z

Brown, A. D., Beemer, B. T., Greene, N. T., Argo, T., Meegan, G. D., and
Tollin, D. J. (2015). Effects of active and passive hearing protection devices on
sound source localization, speech recognition, and tone detection. PLoS ONE

10:e0136568. doi: 10.1371/journal.pone.0136568
Chaudhuri, S. E., andMerfeld, D. M. (2013). Signal detection theory and vestibular

perception: III. Estimating unbiased fit parameters for psychometric functions.
Exp. Brain Res. 225, 133–146. doi: 10.1007/s00221-012-3354-7

Dai, H. (1995). On measuring psychometric functions: a comparison of the
constant-stimulus and adaptive up-down methods. J. Acoust. Soc. Am. 98,
3135–3139. doi: 10.1121/1.413802

Dyjas, O., and Ulrich, R. (2014). Effects of stimulus order on discrimination
processes in comparative and equality judgements: data and models.
Q. J. Exp. Psychol. 67, 1121–1150. doi: 10.1080/17470218.2013.8
47968

Dyjas, O., Bausenhart, K. M., and Ulrich, R. (2012). Trial-by-trial updating
of an internal reference in discrimination tasks: evidence from effects of
stimulus order and trial sequence. Attent. Percept. Psychophys. 74, 1819–1841.
doi: 10.3758/s13414-012-0362-4

Dzhafarov, E. N. (2002). Multidimensional Fechnerian scaling: pairwise
comparisons, regular minimality, and nonconstant self-similarity. J. Math.

Psychol. 46, 583–608. doi: 10.1006/jmps.2002.1415
Fechner, G. T. (1860/1966). Elements of Psychophysics. New York, NY: Holt.
García-Pérez, M. A. (2000). Optimal setups for forced-choice staircases

with fixed step sizes. Spat. Vis. 13, 431–448. doi: 10.1163/1568568007
41306

García-Pérez, M. A. (2014a). Does time ever fly or slow down? The difficult
interpretation of psychophysical data on time perception. Front. Hum.

Neurosci. 8:415. doi: 10.3389/fnhum.2914.00415
García-Pérez, M. A. (2014b). Adaptive psychophysical methods for nonmonotonic

psychometric functions. Attent. Percept. Psychophys. 76, 621–641.
doi: 10.3758/s13414-013-0574-2

García-Pérez, M. A. (2017). Thou shalt not bear false witness
against null hypothesis significance testing. Educ. Psychol. Meas.

doi: 10.1177/0013164416668232. [Epub ahead of print].
García-Pérez, M. A., Alcalá-Quintana, R., Woods, R. L., and Peli, E.

(2011). Psychometric functions for detection and discrimination
with and without flankers. Attent. Percept. Psychophys. 73, 829–853.
doi: 10.3758/s13414-010-0080-8

Frontiers in Psychology | www.frontiersin.org 19 July 2017 | Volume 8 | Article 1142

http://journal.frontiersin.org/article/10.3389/fpsyg.2017.01142/full#supplementary-material
https://doi.org/10.1080/17470218.2010.540018
https://doi.org/10.3758/s13428-013-0325-2
https://doi.org/10.1037/h0081647
https://doi.org/10.3758/BF03214208
https://doi.org/10.3758/s13428-012-0207-z
https://doi.org/10.1371/journal.pone.0136568
https://doi.org/10.1007/s00221-012-3354-7
https://doi.org/10.1121/1.413802
https://doi.org/10.1080/17470218.2013.847968
https://doi.org/10.3758/s13414-012-0362-4
https://doi.org/10.1006/jmps.2002.1415
https://doi.org/10.1163/156856800741306
https://doi.org/10.3389/fnhum.2914.00415
https://doi.org/10.3758/s13414-013-0574-2
https://doi.org/10.1177/0013164416668232
https://doi.org/10.3758/s13414-010-0080-8
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


García-Pérez and Alcalá-Quintana Binary vs. Ternary Psychophysical Data

García-Pérez, M. A., and Alcalá-Quintana, R. (2005). Sampling plans
for fitting the psychometric function. Spanish J. Psychol. 8, 256–289.
doi: 10.1017/S113874160000514X

García-Pérez, M. A., and Alcalá-Quintana, R. (2007). The transducer model for
contrast detection and discrimination: formal relations, implications, and an
empirical test. Spat. Vis. 20, 5–43. doi: 10.1163/156856807779369724

García-Pérez, M. A., and Alcalá-Quintana, R. (2010a). The difference model
with guessing explains interval bias in two-alternative forced-choice detection
procedures. J. Sens. Stud. 25, 876–898. doi: 10.1111/j.1745-459X.2010.00310.x

García-Pérez, M. A., and Alcalá-Quintana, R. (2010b). Reminder and 2AFC tasks
provide similar estimates of the difference limen: a reanalysis of data from
Lapid, Ulrich, and Rammsayer (2008) and a discussion of Ulrich and Vorberg
(2009). Attent. Percept. Psychophys. 72, 1155–1178. doi: 10.3758/APP.72.4.1155

García-Pérez, M. A., and Alcalá-Quintana, R. (2011a). Interval bias in 2AFC
detection tasks: sorting out the artifacts. Attent. Percept. Psychophys. 73,
2332–2352. doi: 10.3758/s13414-011-0167-x

García-Pérez, M. A., and Alcalá-Quintana, R. (2011b). Improving the estimation
of psychometric functions in 2AFC discrimination tasks. Front. Psychol. 2:96.
doi: 10.3389/fpsyg.2011.00096

García-Pérez, M. A., and Alcalá-Quintana, R. (2012). On the discrepant results in
synchrony judgment and temporal-order judgment tasks: a quantitative model.
Psychon. Bull. Rev. 19, 820–846. doi: 10.3758/s13423-012-0278-y

García-Pérez, M. A., and Alcalá-Quintana, R. (2013). Shifts of the psychometric
function: distinguishing bias from perceptual effects. Q. J. Exp. Psychol. 66,
319–337. doi: 10.1080/17470218.2012.708761

García-Pérez, M. A., and Peli, E. (2014). The bisection point across
variants of the task. Attent. Percept. Psychophys. 76, 1671–1697.
doi: 10.3758/s13414-014-0672-9

García-Pérez, M. A., and Peli, E. (2015). Aniseikonia tests: The role of viewing
mode, response bias, and size–color illusions. Transl. Vis. Sci. Technol. 4, 1–22.
doi: 10.1167/tvst.4.3.9

García-Pérez, M. A., Giorgi, R. G., Woods, R. L., and Peli, E. (2005).
Thresholds vary between spatial and temporal forced-choice paradigms:
the case of lateral interactions in peripheral vision. Spat. Vis. 18, 99–127.
doi: 10.1163/1568568052801591

Hellström, Å. (2003). Comparison is not just subtraction: effects of time-
and space-order on subjective stimulus difference. Percept. Psychophys. 65,
1161–1177. doi: 10.3758/BF03194842

Hellström, Å., and Rammsayer, T. H. (2004). Effects of time-order, interstimulus
interval, and feedback in duration discrimination of noise bursts in the 50- and
1000-ms ranges. Acta Psychol. 116, 1–20. doi: 10.1016/j.actpsy.2003.11.003

Hellström, Å., and Rammsayer, T. H. (2015). Time-order errors and standard-
position effects in duration discrimination: an experimental study and an
analysis by the sensation-weighting model. Attent. Percept. Psychophys. 77,
2409–2423. doi: 10.3758/s13414-015-0946-x

Jamieson, D. G. (1977). Two presentation order effects. Can. J. Psychol. 31,
184–194. doi: 10.1037/h0081661

Jamieson, D. G., and Petrusic, W. M. (1975). Presentation order effects in duration
discrimination. Percept. Psychophys. 17, 197–202. doi: 10.3758/BF03203886

Jenkins, B. (1985). Orientational anisotropy in the human visual system. Percept.
Psychophys. 37, 125–134. doi: 10.3758/BF03202846

Karmali, F., Chaudhuri, S. E., Yi, Y., and Merfeld, D. M. (2016). Determining
thresholds using adaptive procedures and psychometric fits: evaluating
efficiency using theory, simulations, and human experiments. Exp. Brain Res.

234, 773–789. doi: 10.1007/s00221-015-4501-8
Kornbrot, D. E. (2016). Human psychophysical functions, an update:

methods for identifying their form; estimating their parameters; and
evaluating the effects of important predictors. Psychometrika 81, 201–216.
doi: 10.1007/s11336-014-9418-9

Lam, C. F., Dubno, J. R., and Mills, J. H. (1999). Determination of optimal data
placement for psychometric function estimation: a computer simulation. J.
Acoust. Soc. Am. 106, 1969–1976. doi: 10.1121/1.427944

Lam, C. F., Mills, J. H., and Dubno, J. R. (1996). Placement of observations for
the efficient estimation of a psychometric function. J. Acoust. Soc. Am. 99,
3689–3693. doi: 10.1121/1.414966

Link, S. W. (1992). The Wave Theory of Difference and Similarity. Hillsdale, NJ:
Erlbaum.

Macmillan, N. A., and Creelman, C. D. (2005). Detection Theory: A User’s Guide,

2nd Edn. Mahwah, NJ: Erlbaum.
Masin, S. C., and Agostini, A. (1991a). Handedness and space errors. Bull. Psychon.

Soc. 29, 301–303. doi: 10.3758/BF03333925
Masin, S. C., and Agostini, A. (1991b). Attentional scanning and space errors.

Percept. Psychophys. 50, 285–289. doi: 10.3758/BF03206751
Norman, L. J., Heywood, C. A., and Kentridge, R. W. (2011). Contrasting

the processes of texture segmentation and discrimination with static and
phase-reversing stimuli. Vision Res. 51, 2039–2047. doi: 10.1016/j.visres.2011.
07.021

Pastore, R. E., and Farrington, S. M. (1996). Measuring the difference limen
for identification of order of onset for complex auditory stimuli. Percept.
Psychophys. 58, 510–526. doi: 10.3758/BF03213087

Pritchett, L. M., and Murray, R. F. (2015). Classification images reveal decision
variables and strategies in forced choice tasks. Proc. Natl. Acad. Sci. U.S.A. 112,
7321–7326. doi: 10.1073/pnas.1422169112

Rammsayer, T., and Ulrich, R. (2001). Counting models of temporal
discrimination. Psychon. Bull. Rev. 8, 270–277. doi: 10.3758/BF03196161

Schneider, K. A. (2006). Does attention alter appearance? Percept. Psychophys. 68,
800–814. doi: 10.3758/BF03193703

Self, M. W., Mookhoek, A., Tjalma, N., and Roelfsema, P. R. (2015). Contextual
effects on perceived contrast: figure–ground assignment and orientation
contrast. J. Vision 15, 1–21. doi: 10.1167/15.2.2

Sridharan, D., Steinmetz, N. A., Moore, T., and Knudsen, E. I. (2014).
Distinguishing bias from sensitivity effects in multialternative detection tasks.
J. Vision 14, 1–32. doi: 10.1167/14.9.16

Tolhurst, D. J., and Barfield, L. P. (1978). Interactions between spatial
frequency channels. Vision Res. 18, 951–958. doi: 10.1016/0042-6989(78)
90023-8

Ulrich, R., and Vorberg, D. (2009). Estimating the difference limen in 2AFC tasks:
pitfalls and improved estimators. Attent. Percept. Psychophys. 71, 1219–1227.
doi: 10.3758/APP.71.6.1219

Umbach, N., and Wickelmaier, F. (2014). “Violations of regular minimality in
discrimination judgments of frequency-modulated tones,” in Poster Presented

at the 45th European Mathematical Psychology Group Meeting (Tuebingen).
Umbach, N., andWickelmaier, F. (2015). qdm: Fitting a Quadrilateral Dissimilarity

Model to Same–Different Judgments. R Package Version 0.1-0. Available online
at: https://CRAN.R-project.org/package=qdm

van den Berg, R., Lindskog, M., Poom, L., and Winman, A. (2017). Recent
is more: a negative time-order effect in nonsymbolic numerical judgment.
J. Exp. Psychol. Hum. Percept. Perform. 43, 1084–1097. doi: 10.1037/xhp00
00387

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The reviewer EP and handling Editor declared their shared affiliation, and
the handling Editor states that the process nevertheless met the standards of a fair
and objective review.

Copyright © 2017 García-Pérez and Alcalá-Quintana. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 20 July 2017 | Volume 8 | Article 1142

https://doi.org/10.1017/S113874160000514X
https://doi.org/10.1163/156856807779369724
https://doi.org/10.1111/j.1745-459X.2010.00310.x
https://doi.org/10.3758/APP.72.4.1155
https://doi.org/10.3758/s13414-011-0167-x
https://doi.org/10.3389/fpsyg.2011.00096
https://doi.org/10.3758/s13423-012-0278-y
https://doi.org/10.1080/17470218.2012.708761
https://doi.org/10.3758/s13414-014-0672-9
https://doi.org/10.1167/tvst.4.3.9
https://doi.org/10.1163/1568568052801591
https://doi.org/10.3758/BF03194842
https://doi.org/10.1016/j.actpsy.2003.11.003
https://doi.org/10.3758/s13414-015-0946-x
https://doi.org/10.1037/h0081661
https://doi.org/10.3758/BF03203886
https://doi.org/10.3758/BF03202846
https://doi.org/10.1007/s00221-015-4501-8
https://doi.org/10.1007/s11336-014-9418-9
https://doi.org/10.1121/1.427944
https://doi.org/10.1121/1.414966
https://doi.org/10.3758/BF03333925
https://doi.org/10.3758/BF03206751
https://doi.org/10.1016/j.visres.2011.07.021
https://doi.org/10.3758/BF03213087
https://doi.org/10.1073/pnas.1422169112
https://doi.org/10.3758/BF03196161
https://doi.org/10.3758/BF03193703
https://doi.org/10.1167/15.2.2
https://doi.org/10.1167/14.9.16
https://doi.org/10.1016/0042-6989(78)90023-8
https://doi.org/10.3758/APP.71.6.1219
https://CRAN.R-project.org/package=qdm
https://doi.org/10.1037/xhp0000387
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

	The Indecision Model of Psychophysical Performance in Dual-Presentation Tasks: Parameter Estimation and Comparative Analysis of Response Formats
	The Ternary Indecision Model of Psychophysical Judgments
	Accommodating the Classical 2AFC and Same–Different Response Formats
	Comparison of Parameter Estimates from Ternary vs. Binary Data
	Fitting the Ternary Indecision Model
	Annotated Examples using Published Data
	Example 1. Visual Detection of Contrast; Ternary Responses
	Example 2. Visual Discrimination of Contrast; Ternary Responses
	Example 3. Visual Discrimination of Line Length; Ternary Responses
	Example 4. Visual Detection of Contrast; 2AFC Responses (U Not Allowed)
	Example 5. Visual Discrimination of Contrast; 2AFC Responses (U Not Allowed)
	Example 6. Visual Discrimination of Line Length; 2AFC Responses (U Not Allowed)
	Example 7. Auditory Discrimination of Frequency Modulation Rate; Same–Different Responses

	Conclusion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


