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Preterm children are at increased risk for poor academic achievement, especially in
math. In the present study, we examined whether preterm children differ from term-
born children in their intuitive sense of number that relies on an unlearned, approximate
number system (ANS) and whether there is a link between preterm children’s ANS acuity
and their math abilities. To this end, 6.5-year-old extremely preterm (i.e., <27 weeks
gestation, n = 82) and term-born children (n = 89) completed a non-symbolic number
comparison (ANS acuity) task and a standardized math test. We found that extremely
preterm children had significantly lower ANS acuity than term-born children and that
these differences could not be fully explained by differences in verbal |1Q, perceptual
reasoning skills, working memory, or attention. Differences in ANS acuity persisted
even when demands on visuo-spatial skills and attention were reduced in the ANS
task. Finally, we found that ANS acuity and math ability are linked in extremely preterm
children, similar to previous results from term-born children. These results suggest that
deficits in the ANS may be at least partly responsible for the deficits in math abilities
often observed in extremely preterm children.

Keywords: approximate number system, math ability, preterm children, extreme preterm birth, visuo-spatial skills,
attention

INTRODUCTION

Math is important. Math skills at school entry are the best predictor of later academic success
(Duncan et al., 2007), and adults’ math skills are critical for career success and mental and physical
health (Parsons and Bynner, 2005; Reyna and Brainerd, 2007). However, children and adults
differ dramatically in their academic achievement in general, and particularly in their math skills.
Preterm children are at heightened risk for low academic achievement (Wocadlo and Rieger, 2007;
Johnson et al., 2009, 2011) and especially low mathematical abilities (Pritchard et al., 2009; Taylor
et al., 2009; Simms et al., 2013a). A meta-analysis, for example, found very preterm children (i.e.,
in this particular analysis those children born before or at 33 weeks of gestation) to score 0.6 SD
below term-born peers in math and 0.48 SD below term-born peers in reading (Aarnoudse-Moens
et al,, 2009).

Math deficits in preterm children may be due to anomalous gray matter volume in parietal
cortex (Isaacs et al,, 2001), a part of the brain that is heavily implicated in solving math problems
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(Grabner et al., 2007; Ansari, 2008; Amalric and Dehaene, 2016).
If math deficits are due to volumetric reductions in parietal
cortex, then basic number processes that also rely on parietal
cortex, may be affected by preterm birth as well. A study
by Simms et al. (2013b) demonstrated the link between basic
number processes and general mathematical ability in extremely
preterm children. They showed that at 11 years of age children
born extremely preterm scored significantly lower than their
term-born peers on the Mathematics Estimation Test (MET). The
MET required them to verbally estimate line lengths, the location
of a number on a number line, the number of dots in an image,
and the distance between two locations on a map. Importantly,
these children’s performance on the MET was correlated with
their performance on a standardized assessment of mathematics
assessing a broad range of age-appropriate math concepts.

At an even more basic level, 6.5-year-old extremely preterm
children (i.e., those born at less than 27 weeks gestation; Fellman
et al., 2009) also perform significantly worse than their term-
born peers on a non-symbolic number comparison task in which
they had to compare two briefly flashed arrays of dots and
state which one was more numerous (Hellgren et al., 2013).
Because this non-symbolic number comparison task does not
permit children to count the dots, it relies on an intuitive sense
of number, also called the approximate number system (ANS;
Dehaene, 1997; Halberda et al., 2008). The ANS is thought to
be present from birth (Izard et al., 2009), functional in highly
educated and uneducated people (Pica et al., 2004; Nys et al,
2013), and non-human animals (Cantlon and Brannon, 2006;
Agrillo et al., 2008) and hence independent of language. Similar
to math, the ANS relies on regions of parietal cortex (Nieder
and Dehaene, 2009) and disruptions to the functioning of this
part of the brain interfere with performance on simple number
comparisons (Cappelletti et al., 2007; Dormal et al., 2008). Thus,
one possible explanation for preterm children’s low performance
in math and poorer acuity of the ANS may be that growth of the
parietal cortex is particularly vulnerable when children are born
prematurely (Padilla et al., 2015).

Some correlational studies found that term-born children with
greater ANS acuity tend to perform better on standardized math
tests (Halberda et al., 2008; Inglis et al., 2011; Libertus et al.,
2011; Mazzocco et al., 2011a; Mussolin et al., 2012; Anobile et al.,
2013; Bonny and Lourenco, 2013; Pinheiro-Chagas et al., 2014;
vanMarle et al.,, 2014; Keller and Libertus, 2015) and earlier
ANS acuity predicts later math abilities (Mazzocco et al., 2011b;
Libertus et al., 2013a,b; Starr et al., 2013), while others fail to find
such a link (Soltesz et al., 2010; Fuhs and McNeil, 2013; Gilmore
et al., 2013; Sasanguie et al., 2014). Possible explanations for
these mixed results are methodological issues assessing the ANS
including the possibility that these tasks may tap into perceptual
processing or inhibitory control rather than number processing
(De Smedt et al., 2013; Dietrich et al., 2015; Gebuis et al., 2016;
Leibovich and Ansari, 2016; Leibovich et al., 2016; Reynvoet and
Sasanguie, 2016), variations in age (Inglis et al., 2011), or which
aspects of math are assessed (Libertus et al., 2013b). However,
recent meta-analyses have shown a small, but significant link
between the ANS and math skills (Chen and Li, 2014; Fazio et al.,
2014; Schneider et al., 2016). Further support for a link between

the ANS and math comes from training studies. Improving ANS
acuity through targeted training procedures has been shown to
lead to subsequent improvements in math abilities (Park and
Brannon, 2013, 2014; Hyde et al., 2014; Park et al., 2016; Wang
et al., 2016). However, the validity of these studies has been
questioned and their conclusions should be considered carefully
(Lindskog and Winman, 2016; Merkley et al., 2017; but see Park
and Brannon, 2016; Wang et al., 2017, for responses). Regardless
of these debates in the literature, it is unclear whether there is a
link between the ANS and math skills in preterm children.

Simms et al. (2015) examined several basic number processes
in isolation and found no significant differences between preterm
and term-born children’s performance on non-symbolic or
symbolic (i.e., Arabic numeral) comparison tasks. They found
differences on counting skills and arithmetic strategies, but
preterm children’s deficits on these tasks could be explained
by general deficits in working memory and visuo-spatial skills.
Solving math problems relies heavily on working memory, e.g.,
when keeping intermediate results in mind while solving a math
problem in one’s head, and visuo-spatial skills, e.g., when properly
aligning thousands, hundreds, tens, and single units in a written
arithmetic problem. Thus, there is ample evidence that individual
differences in working memory and visuo-spatial skills correlate
with differences in math abilities even in term-born children and
adults (Espy et al., 2004; Gathercole et al., 2004).

Additionally, preterm birth is associated with deficits in a
host of general cognitive factors including attention, working
memory, inhibitory control, verbal IQ, and perceptual reasoning
skills (Johnson, 2007; Aarnoudse-Moens et al., 2009; Mulder
et al.,, 2009). For example, preterm birth increases the risk of
attention-deficit hyperactivity disorder (ADHD) with increasing
degree of prematurity leading to a greater likelihood of ADHD
(Lindstrom et al, 2011). In term-born children, attention,
working memory, and inhibitory control skills have been linked
to math skills and ANS acuity (Espy et al,, 2004; Blair and
Razza, 2007; Gilmore et al., 2013). For example, 6- to 8-year-old
children’s ability to suppress a prepotent response and flexibly
switch between different learned rules uniquely predict their
math skills (Bull and Scerif, 2001). Similarly, variability in the
need to inhibit irrelevant perceptual information during a non-
symbolic number comparison task is associated with variability in
ANS acuity (Szucs et al., 2013). In addition, term-born children’s
language abilities and perceptual reasoning skills have been
associated with their math skills (Blair and Razza, 2007; LeFevre
etal,, 2010). Thus, it is possible that preterm children’s deficits in
math and ANS acuity could be explained by underlying deficits
in attention, working memory, inhibitory control, verbal IQ, and
perceptual reasoning skills.

In sum, the goals of the present study were four-fold: First,
we sought to replicate the differences in ANS acuity in a larger
sample of extremely preterm and term-born children (Hellgren
et al., 2013). Second, we wanted to assess whether differences
in the demands on visuo-spatial skills - measured during
the ANS acuity task - could explain ANS acuity differences
between extremely preterm and term-born children. Third, we
wanted to assess whether differences in attentional demands and
inhibitory control - again measured during the ANS acuity task -
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could explain ANS acuity differences between extremely preterm
and term-born children. Finally, we sought to determine the
relation between extremely preterm children’s ANS acuity and
their math ability. To this end, 6.5-year-old extremely preterm
(i.e., <27 weeks gestation) and term-born children completed
a non-symbolic number comparison task (ANS acuity task)
comprised of trials with lesser or greater demands on visuo-
spatial skills (i.e., trials in which dots were spatially separated
or spatially intermixed) and trials in which inhibitory control
demands were lesser or greater (i.e., trials in which the cumulative
surface area of all dots was greater for the more numerous
array or trials in which surface area was equated between
both arrays). Children also completed a standardized math test.
Finally, to control for potential individual differences in general
cognitive skills, children completed standardized assessments
designed to measure working memory, verbal IQ and perceptual
reasoning skills and parents completed a questionnaire rating
their children’s attention skills.

MATERIALS AND METHODS

Participants

The participants in the current study represent the Stockholm
cohort of a national, population-based study of extremely
preterm born (EP) children in Sweden (Fellman et al.,, 2009).
The national study was initiated to investigate the mortality
and long-term morbidity of children born at gestational age
(GA) < 27 weeks. Neurodevelopmental and ophthalmologic
outcomes at 6.5 years have been presented elsewhere (Hellgren
et al., 2016; Serenius et al., 2016). ANS data from a subset of
the participants (N = 86, 43 extremely preterm born and 43
term-born children) in the current study have been presented
previously (Hellgren et al., 2013).

The EP group had been recruited at birth and, in the present
study, comprised all surviving infants born before GA 27 weeks
in the Stockholm area between January 1st, 2004 and March 31st,
2007. There were 120 eligible EP children who were invited to
the current study at 6.5 years of age together with a matched
comparison group of term-born (TB) children. The TB children
were matched for age (uncorrected to gestation at birth), sex
and home zip code to the EP children. Eighty-two EP children
(38 girls, i.e., 46%) and 89 TB children (36 females, i.e., 40%)
completed the tasks. An additional 38 EP children (9 females, i.e.,
24%) and 7 TB children (4 females, i.e., 57%) did not contribute
data because of a lack of availability to complete the current
testing wave (EP: n = 21; TB: n = 3) or an inability to complete
the assessments included in the current report (EP: n = 17;
TB: n = 4). Of those children who were unable to complete
the assessments included in the current report, there were three
EP children who were blind and twelve EP children who had
cognitive deficits. One TB child was visually impaired and
autistic. Finally, two EP and three TB children did not contribute
data because of technical difficulties during testing. The 38 EP
children who did not contribute data had significantly lower birth
weight (M = 772 g; SD = 161 g) and lower GA (M = 25.1 weeks;
SD = 1.1 weeks) at birth than the 82 participants who contributed

data [birth weight: M = 834 g; SD = 152 g, #(118) = —2.02;
p =0.045, Cohen’s d = 0.4; GA: M = 25.5 weeks; SD = 0.9 weeks,
1(61.24) = —2.09; p = 0.04, Cohen’s d = 0.4]. The mean birth
weight and GA of the 89 participating TB children were 3653 g
(SD = 432 g) and 39.9 weeks (SD = 1.2 weeks), respectively.

The regional ethics committee in Stockholm approved the
study and written informed consent was obtained from all
parents of the participating children before testing. Children
provided verbal assent prior to participating.

Materials and Procedure

Approximate Number System (ANS) Acuity Task

To measure children’s ANS acuity, they completed Panamath’,
a freely available, non-symbolic number comparison task that
has been widely used in previous studies to assess children’s and
adults’ ANS acuity (Halberda et al., 2008; Libertus et al., 2011,
2013a,b; Hellgren et al., 2013; Keller and Libertus, 2015). Children
sat at a table approximately 60 cm away from a 19" computer
screen and were shown two arrays of blue and yellow dots
simultaneously displayed on the screen for 2000 ms followed by
a blank screen until a response was made. Children were asked to
say which array was more numerous by naming the appropriate
color and the experimenter entered the response by pressing one
of two keys on the keyboard. While no formal comparison has
been made between RTs derived from verbal and button press
responses in ANS acuity tasks, pilot testing has shown that many
children struggle with learning to press a button corresponding to
their answer and find naming a color easier. In addition, previous
research has shown that extreme prematurity is associated with
deficits in motor skills at 6 years of age (Marlow et al., 2007).
Thus, to ensure that difficulties in learning the correct button
responses could not explain our findings and in keeping with
previously published papers (Libertus et al., 2011, 2013a,b; Keller
and Libertus, 2015; Braham and Libertus, 2016), we decided to
have the experimenter press a button for the child.

Children were first presented with practice trials until they
understood the task. Then they completed 48 test trials. For half
of the trials, there were more blue than yellow dots, and for the
other half of the trials, there were more yellow than blue dots.
Children were instructed to respond as quickly and as accurately
as possible and received no feedback about the correctness of
their response.

Each array contained between 5 and 16 dots, varying in
dot size (average dot size = 46 pixels, SD = 10 pixels). For
half of the trials, blue and yellow dots were presented spatially
separated on the left and the right side of the screen (Separated
condition; see Figure 1A), and for the other half of the test
trials, blue and yellow dots were presented intermixed at the
center of the screen (Intermixed condition). Orthogonal to the
Separate and Intermixed conditions, half of the trials contained
arrays of blue and yellow dots with the same average dot size,
i.e., the more numerous array had the larger cumulative surface
area (Congruent trials; see Figure 1B). The other half of the
trials contained arrays of blue and yellow dots that were equated
for cumulative surface area (Neutral trials). Thus, Neutral trials

'http://www.panamath.org
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A Variation of visuo-spatial demands during ANS acuity task
Separated condition Intermixed condition

B Variation of inhibitory control during ANS acuity task
Congruent condition Neutral condition

FIGURE 1 | Sample stimuli used in the ANS acuity task. (A) For half of the trials, blue and yellow dots were presented spatially separated on the left and the right
side of the screen (Separated condition), and for the other half of the test trials, blue and yellow dots were presented intermixed at the center of the screen
(Intermixed condition). (B) Orthogonally, half of the trials contained arrays of blue and yellow dots with the same average dot size, i.e., the more numerous array had
the larger cumulative surface area (Congruent condition). The other half of the trials contained arrays of blue and yellow dots that were equated for cumulative

surface area (Neutral condition).

eliminate cumulative surface area as a perceptual cue that is
often confounded with number. Importantly, while Panamath
and other non-symbolic number comparison tasks have often
been criticized for their failure to control for convex hull (Gebuis
and Reynvoet, 2012; Clayton et al., 2015; Gilmore et al., 2016), the
ratio between the numerosities in each dot array is a significant
predictor of children’s and adults’ performance on non-symbolic
number comparison tasks in which stimuli are generated using
the Panamath software even when controlling for the ratio
between the arrays’ convex hulls (Libertus et al., in preparation).

Trial difficulty was varied by using different ratios between
the two arrays of dots. Ratio was counterbalanced across the
Separated and Intermixed condition as well as the Congruent and
Neutral trials. For the first 88 participants (45 EP children and 43
TB children), there were three different ratios: 2.3 (e.g., 14 yellow
dots and 6 blue dots), 1.7 (e.g., 12 yellow dots and 7 blue dots),
and 1.3 (e.g., 13 yellow dots and 10 blue dots). For the remaining
89 participants (42 EP children and 47 TB children), we added
a fourth, more difficult ratio, i.e., 1.15 (e.g., 15 yellow dots and

13 blue dots) because many children in the TB group performed
close to ceiling when using only three ratios. The number of test
trials was identical in the two versions because we reduced the
number of trials per ratio when adding in the fourth ratio.

Verbal 1Q

Verbal IQ was measured with the Wechsler Intelligence Scale for
Children IV (WISC-1V; Wechsler, 2003). The Verbal IQ score
was based on the combined scaled scores on the Similarities,
Vocabulary, and Comprehension subtests.

Perceptual Reasoning Skills

Perceptual reasoning skills were measured with the Block Design
subtest of the WISC-IV (Wechsler, 2003). Scaled scores were used
as the dependent measure.

Working Memory

Working memory skills were measured with the Digit Span
subtest of the WISC-IV (Wechsler, 2003). Scaled scores were used
as the dependent measure.
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Attention

The Attention scale of the Brown Attention Deficit Disorder
Scales (BADDS; Brown, 2001) was used to measure attention.
For children between 3 and 7 years of age, the BADDS consists
of a 40-item parent and teacher report measure designed to
assess a wide range of executive functions. The Attention scale
is comprised of eight questions about the child’s ability to focus,
sustain and shift attention in relation to various tasks and the
rater selects the answer on a scale of zero to three, where
0 = Never and 3 = Almost Daily. In this study, the child’s parent
or guardian completed the BADDS. We used raw scores on the
BADDS Attention scale as the dependent measure for children’s
attention skills.

Math Ability

The Arithmetic subtest from the WISC-IV (Wechsler, 2003)
was used to measure general mathematical ability. This subtest
consists of a series of orally administered mathematical problems
that must be solved without pen and pencil. The problems are
similar to problems that would be encountered in an elementary
math class and often are presented in a story format. The
Arithmetic subtest was only added to the testing battery after
approximately the first half of the study; hence, only 54 EP and
51 TB children completed this assessment. We used raw scores
on the WISC-IV Arithmetic subtest as the dependent measure
for children’s math ability.

Data Analyses

Approximate Number System (ANS) Acuity Task

We calculated children’s accuracy as the percentage of correct
test trials, their average response time across all trials, and their
Weber fractions (w). To determine each individual childs w,
we fit each child’s responses over all 48 trials with a widely
used psychophysical model (1) (cf., Green and Swets, 1966; Pica
et al,, 2004; Halberda and Feigenson, 2008; Halberda et al., 2008).

ratio — 1 ) )
wy/ratio®> + 1

In this model, ratio is the ratio between the presented
numerosities (larger number/smaller number), w the Weber
fraction, and @ the standard cumulative distribution function
of a Gaussian distribution. The best-fitting w parameter
was found via non-linear least squares. The model assumes
that the underlying approximate number representations are
distributed along a continuum of Gaussian random variables.
An important implication of this model is that the two numbers
of dots presented on each trial will often yield similar and
overlapping representations. In other words, as the ratio of
two numerosities becomes increasingly close (i.e., approaches
1.0), their Gaussian representations will increasingly overlap and
children will have greater difficulty determining which array is
more numerous, resulting in decreased accuracy. A smaller w
indicates greater acuity in a child’s ANS representations. Data
from five EP children and one TB child could not be fit using
the model because the children performed at chance across all
ratios.

expected accuracy = © (

To assess preliminary group differences between EP and
TB children’s ANS acuity, we calculated a MANOVA with
Group (EP vs. TB) as a between-subject factor and accuracy,
RT, and w as dependent variables. As expected, we found
a significant effect of Group, F(3,167) = 11.00, p < 0.001,
nf, = 0.17. Univariate analyses of variance for each dependent
variable revealed significant effects of Group for all three
measures of ANS acuity [accuracy: F(1,169) = 16.99, p < 0.001,
nf, = 0.09; RT: F(1,169) = 14.29, p < 0.001, nf) = 0.08; w:
F(1,169) = 20.26, p < 0.001, nf, = 0.11]. Next, to determine
whether these group differences persist when controlling for the
two different versions of the ANS acuity task (3 vs. 4 different
ratios), we calculated a MANCOVA with Group as a between-
subject factor, accuracy, RT and w as dependent variables and
Task Version as a covariate. As before, we found a significant
effect of Group, F(3,166) = 11.00, p < 0.001, nj = 0.17. Task
Version was a significant covariate, F(3,166) = 37.84, p < 0.001,
n[z, = 0.41. Follow-up ANCOVAs for each dependent variable
revealed significant effects of Group for all three measures of
ANS acuity even when controlling for Task Version [accuracy:
F(1,168) = 21.99, p < 0.001, nf) = 0.12; RT: F(1,168) = 13.71,
p < 0.001, nf, = 0.08; w: F(1,168) = 20.89, p < 0.001, nf, =0.11].
For accuracy and RT, Task Version was a significant covariate
[accuracy: F(1,168) = 26.73, p < 0.001; RT: F(1,168) = 5.58,
p = 0.02]. Task Version was not a significant covariate for w,
F(1,168) = 1.66, p = 0.20.

In keeping with previously published work (Hellgren et al.,
2013) and to simplify our main analyses, we combined RT
and w into a single measure of ANS acuity by first computing
separate z-scores for RT and w based on the means and standard
deviations of the TB group and then averaging the z-scores
for RT and w for each child. A lower value on this combined
ANS acuity measure indicates greater ANS acuity. Combined
scores of accuracy-based and RT-based measures of ANS acuity
have been used in the past (Simon et al., 2008; Sasanguie et al.,
2012a,b; Bartelet et al, 2014) and it has been suggested that
they are particularly appropriate when comparing performance
in two groups of children where one is expected to make
more errors than the other (Bish et al., 2005; Simon et al.,
2008). However, instead of using the more common combined
measure of inverse efficiency (RT/proportion of correct trials),
we used the z-score based average described above. Recent
work has shown that calculating a combined score in the way
described here captures variance in the accuracy-based and RT-
based measure equally (Dietrich et al., 2016). Thus, it has been
proposed that this combined measure can be interchangeably
used with accuracy-based and RT-based measures (Dietrich et al.,
2016).

To determine whether the two different versions of the ANS
acuity task affected this combined measure of ANS acuity, we
calculated a one-way ANOVA with Task Version (3-ratio vs. 4-
ratio) as a between-subject factor. There was no significant main
effect of Task Version, F(1,169) = 2.04, p = 0.16, nf, = 0.01.
Hence, for all analyses including the combined ANS acuity
measure, we collapsed across the two different task versions of
the ANS acuity task.
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Statistical Analyses

First, we assessed whether preterm and term-born children
differed in ANS acuity and whether such differences could be
explained by differences in verbal IQ, perceptual reasoning skills
as measured via the Block Design subtest on the WISC-IV,
working memory as measured via the Digit Span subtest on the
WISC-1V, and attention skills as measured with the Attention
scale on the BADDS using analyses of variance (ANOVAs).
Second, to determine whether variations in visuo-spatial features
of the stimuli during the ANS task may explain differences
in ANS acuity, we compared children’s performance on the
Separated and Intermixed conditions of the ANS acuity task
using ANOVAs. Third, to determine whether attentional and
inhibitory control demands during the ANS task explained
differences in ANS acuity, we compared children’s performance
on the Congruent and Neutral trials of the ANS acuity task using
ANOVAs. Finally, we examined whether individual differences in
preterm children’s ANS acuity are related to their math ability on
a standardized math assessment and whether this relation could
be explained by individual differences in verbal IQ, perceptual
reasoning skills, working memory as well as attention using
regression analyses.

RESULTS

Descriptive results of all measures are presented in Table 1.

Differences in ANS Acuity between
Preterm and Term-Born Children

To determine whether preterm and term-born children differed
in ANS acuity, we calculated a univariate ANOVA with Group
(EP vs. TB) as a between-subject factor and the combined ANS
acuity measure as the dependent variable. We found a significant
main effect of Group, F(1,169) = 30.67, p < 0.001, né = 0.15,
which was due to a more precise ANS in the TB group than the EP
group. These results remained significant even when controlling
for Task Version (3-ratio vs. 4-ratio), F(1,168) = 29.66, p < 0.001,
nf, =0.15.

To assess whether the differences in ANS acuity between
preterm and term-born children can be explained by differences
in verbal IQ, perceptual reasoning skills, working memory,

TABLE 1 | Descriptive results of ANS acuity, verbal IQ, perceptual reasoning skills
(Block Design subtest on WISC-1V), working memory (Digit Span subtest on
WISC-IV), attention (BADDS Attention subscale), and math ability (Arithmetic
subtest on the WISC-IV) for extremely preterm (EP) and term-born (TB) children,
respectively.

EP group TB group
Mean ANS acuity (SD) 1.16 (1.83) 0.004 (0.72)
Mean verbal IQ (SD) 27.36 (8.03) 35.44 (5.13)
Mean perceptual reasoning (SD) 9.69 (2.73) 11.78 (2.47)
Mean working memory (SD) 6.40 (2.51) 8.29 (2.10)
Mean attention score (SD) 7.30 (6.91) 3.92 (3.49)
Mean arithmetic score (SD) 9.48 (3.97) 13.28 (2.82)

and/or attention, we calculated the same univariate ANOVA as
before but added the verbal 1Q, the Block Design and Digit Span
subtest scores from the WISC-IV and the attention score from the
BADDS as covariates to the model. Again, we found a significant
effect of Group, F(1,159) = 9.13, p < 0.01, nf, = 0.05, even when
controlling for verbal IQ, perceptual reasoning skills, working
memory, and attention. These results remained significant even
when additionally controlling for Task Version, F(1,158) = 4.01,
p < 0.05, nf, = 0.03. Finally, to check whether these group
differences in ANS acuity are carried primarily by RT or w,
we ran two separate univariate ANOVAs controlling for verbal
IQ, perceptual reasoning skills, working memory, attention, and
task version. For RT, we found a significant effect of Group,
F(1,163) = 5.59, p < 0.02, nf, = 0.03. For w, the main effect
of Group was marginally significant, F(1,158) = 3.14, p = 0.08,
nf, = 0.02, suggesting that RT contributes more heavily to the
observed differences between preterm and term-born children’s
ANS acuity, but that w shows a similar pattern.

Can Visuo-spatial Skills Explain ANS
Differences between Preterm and

Term-Born Children?

Even though the previous analyses showed that group differences
in ANS acuity persist when controlling for perceptual reasoning
skills, we conducted a complementary analysis to determine
whether visuo-spatial aspects of the ANS acuity task may
explain the observed differences between preterm and term-
born children. To this end, we compared children’s performance
on the Separated and Intermixed conditions of the ANS acuity
task, ie., trials in which blue and yellow dots were spatially
separated on the left and right side of the screen and trials
in which blue and yellow dots were spatially intermixed in
the center of the screen. Because there are only 24 trials in
each of the two conditions, we were unable to calculate w for
each condition separately. Instead, we used accuracy and RT
as measures of ANS acuity in each condition and added Task
Version (3-ratio vs. 4-ratio) as a covariate to our analyses to
control for differences between the two versions of the ANS acuity
task.

A mixed-design ANOVA on accuracy with Condition
(Separated vs. Intermixed) as a within-subject factor and Group
(EP vs. TB) and Task Version (3-ratio vs. 4-ratio) as between-
subject factors revealed a significant main effect of Group,
F(1,173) = 24.46, p < 0.001, nf) = 0.12, and a significant
main effect of Task Version, F(1,173) = 16.56, p < 0.001,
nlz) = 0.09, but no main effect of Condition, F(1,173) = 0.99,
p = 0.32, nf, = 0.006. There was also a significant interaction
between Condition and Task Version, F(1,173) = 5.69, p = 0.02,
nlz, = 0.03, but no interaction between Group and Task Version,
F(1,173) < 001, p = 094, ng < 0.001. Critically, there
was no significant interaction between Group and Condition,
F(1,173) = 0.90, p = 0.34, nf} = 0.005, or between Group,
Condition, and Task Version, F(1,173) = 1.30, p = 0.26,
n[z, = 0.007. These results suggest that visuo-spatial aspects of
the ANS task do not affect EP and TB children’s ANS accuracy
differentially.
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We calculated a parallel mixed-design ANOVA on RT and
found a significant main effect of Condition, F(1,173) = 3.95,
p < 0.05, nf, = 0.02, a significant main effect of Group,
F(1,173) = 16.75, p < 0.001, nf, = 0.09, and a significant main
effect of Task Version, F(1,173) = 5.61, p < 0.05, nﬁ = 0.03.
There was also a significant interaction between Group and Task
Version, F(1,173) = 4.45, p < 0.05, nf, = 0.03, but no interaction
between Condition and Task Version, F(1,173) = 0.04, p = 0.85,
nf, < 0.001. Most importantly, there were no significant
interactions between Group and Condition, F(1,173) = 0.07,
p = 0.80, nf) < 0.001, or between Group, Condition, and Task
Version, F(1,173) = 0.02, p = 0.88, nf) < 0.001. Similar to our
accuracy results, these results suggest that visuo-spatial aspects
of the ANS task do not affect EP and TB children’s ANS RT
differentially.

Can Attentional Demands Explain ANS
Differences between Preterm and

Term-Born Children?

Even though our initial analyses showed that group differences
in ANS acuity persist when controlling for attention skills as
measured by the Attention scale on the BADDS, we conducted
a complementary analysis to determine whether variations in the
need to attend to different stimulus dimensions during the ANS
acuity task may explain the observed differences between preterm
and term-born children. To this end, we compared children’s
performance on the Congruent and Neutral trials of the ANS
acuity task. For Congruent trials, the more numerous array also
had the larger cumulative surface area, while for Neutral trials,
both arrays had equal cumulative surface area. Thus, Congruent
trials provided children with multiple cues to determine the
correct answer and hence a lesser demand on their attention
(Fuhs and McNeil, 2013; Gilmore et al., 2013). Similar to our
analyses above and because there are only 24 trials in each of the
two trial types, we were unable to calculate w for each trial type
separately. Instead, we used accuracy and RT as measures of ANS
acuity and added Task Version (3-ratio vs. 4-ratio) as a covariate
to our analyses to control for differences between the two versions
of the ANS acuity task.

A mixed-design ANOVA on accuracy with Trial Type
(Congruent vs. Neutral) as a within-subject factor and Group
(EP vs. TB) and Task Version (3-ratio vs. 4-ratio) as between-
subject factors revealed significant main effects of Trial
Type, F(1,173) = 127.20, p < 0.001, nf) = 0.42, Group,
F(1,173) = 23.84, p < 0.001, 71}2) = 0.12, and Task Version,

F(1,173) = 17.51, p < 0.001, nf, = 0.09. There was also a
significant interaction between Trial Type and Task Version,
F(1,173) = 25.96, p < 0.001, nf, = 0.13, but no interaction
between Group and Task Version, F(1,173) = 0.03, p = 0.87,
nf, < 0.001. Critically, there was no significant interaction
between Group and Trial Type, F(1,173) = 1.68, p = 0.20,
n}% = 0.01, or between Group, Trial Type, and Task Version,
F(1,173) = 0.23, p = 0.63, n[z, = 0.001. These results suggest that
differences in attentional demands during the ANS task do not
affect EP and TB children’s ANS accuracy differentially.

We calculated a parallel mixed-design ANOVA on RT and
found significant main effects of Trial Type, F(1,173) = 16.48,
p < 0.001, 12 = 0.09, Group, F(1,173) = 17.99, p < 0.001,
np = 009, and Task Version, F(1,173) = 5.59, p < 0.05,
nlzJ = 0.03. There was also a significant interaction between Group

and Task Version, F(1,173) = 4.35, p < 0.05, nf) = 0.02, as
well as a significant interaction between Trial Type and Task
Version, F(1,173) = 5.84, p < 0.02, n% = 0.03. Most importantly,
there were no significant interactions between Group and Trial
Type, F(1,173) = 2.48, p = 0.12, nlz) = 0.01, or between Group,
Trial Type, and Task Version, F(1,173) = 0.44, p = 0.51,
nf, = 0.003. Similar to our accuracy results, these results suggest
that differences in attentional demands during the ANS task do
not affect EP and TB children’s ANS RT differentially.

Relation between ANS Acuity and Math
Ability in Preterm Children

Previous research suggests a link between ANS acuity and math
ability in typically developing children (Libertus et al., 2011,
2013a,b; Bonny and Lourenco, 2013; Starr et al., 2013). Here,
we examine whether individual differences in preterm children’s
ANS acuity are related to their math ability on a standardized
math assessment. Note that only 54 EP children completed the
standardized math assessment because it was only added to the
testing battery after approximately the first half of the study. We
found a significant correlation between the combined measure
of ANS acuity in preterm children and their performance on the
Arithmetic subtest of the WISC-IV, R = —0.40, p < 0.01°. In
line with previous results in typically developing children (Keller
and Libertus, 2015) (but see Fuhs and McNeil, 2013; Gilmore
et al., 2013, for opposing results), this relation also held when
considering ANS acuity separately as accuracy on Congruent,
R = 0.48, p < 0.001, and Neutral trials, R = 0.41, p = 0.001.
Similarly, we found significant correlations between math and
accuracy on the Separated condition of the ANS acuity task,
R = 0.51, p < 0.001, and the Intermixed condition, R = 0.41,
p=0.001.

Next, we examined whether this relation between ANS acuity
and math ability could be explained by individual differences
in verbal IQ, perceptual reasoning skills as measured via the
Block Design subtest on the WISC-IV, working memory as
measured via the Digit Span subtest on the WISC-IV, and/or
attention as measured by the BADDS. To this end, we conducted
a hierarchical linear regression analysis with preterm children’s
Arithmetic score as the dependent variable. In the first model
(Model 1), we entered children’s verbal IQ, Block Design and
Digit Span subtest scores on the WISC-IV as well as their
attention score from the BADDS as potential predictors of their
math ability. In the second model (Model 2), we added children’s
combined ANS acuity score to determine whether ANS acuity

2While not the main focus of these analyses, we also correlated TB children’s ANS
acuity and performance on the Arithmetic subtest of the WISC-IV and found no
significant correlation, R = —0.17, p = 0.25. However, the effect size of this relation
is similar to previously reported effect sizes (see Chen and Li, 2014, for a meta-
analysis) and may be non-significant due to our small sample size here (n = 48 TB
children after exclusion of three outliers).
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predicted additional variance in math ability above and beyond
verbal 1Q, perceptual reasoning skills, working memory, and
attention.

As can be seen in Table 2, Model 1 was highly significant and
explained 68% of the variance in preterm children’s math scores.
Verbal 1Q, perceptual reasoning skills, and working memory
were significant unique predictors, while attention scores did not
explain any additional variance. Adding ANS acuity scores in
Model 2 explained an additional 3% of variance in children’s math
scores. ANS acuity was a marginally (p = 0.05) significant unique
predictor above and beyond verbal IQ, perceptual reasoning
skills, working memory, and attention.

DISCUSSION

Our study resulted in four main findings: First, we extended the
findings by Hellgren et al. (2013) showing differences in ANS
acuity in a larger sample of extremely preterm and term-born
children. Second, we showed that differences in the demands
on visuo-spatial skills during the ANS acuity task cannot
fully explain ANS acuity differences between extremely preterm
and term-born children. Third, we showed that differences in
attentional demands and inhibitory control during the ANS
acuity task cannot fully explain ANS acuity differences between
extremely preterm and term-born children. Finally, we found
that ANS acuity and math ability are linked in extremely preterm
children.

Children born extremely preterm showed significantly lower
ANS acuity than their term-born peers even when controlling
for verbal IQ, perceptual reasoning skills, working memory, and
attention. When examining RT and w on the ANS acuity task
in isolation, RT showed significant group differences while the
results for w were only marginal. At first sight, these findings
might suggest that the observed differences in performance
on the ANS acuity task merely reflect deficits in general
information processing previously associated with prematurity
(Rose and Feldman, 1996). However, previous research has
shown that RT on an ANS acuity task was a unique predictor
of term-born children’s math ability even when controlling

TABLE 2 | Regression models predicting preterm children’s math scores.

Model 1 Model 2

B SEB B SEB
Verbal IQ 0.14* 0.06 0.14* 0.06
Perceptual reasoning skills 0.51** 0.15 0.45* 0.15
Working memory 0.54* 0.17 0.51* 0.17
Attention —0.03 0.07 -0.02 0.06
ANS acuity —0.36" 0.18
R? 0.68"* 0.70%*
F 25.93** 22.82%*
Change in R? 0.03
FChange 4,01t

B reflects the unstandardized coefficients for each variable.
t0.05, *p < 0.05, **p < 0.001.

for accuracy on the task and general information processing
speed as measured via RT on a computerized, non-numerical
task (Libertus et al., 2013a). Thus, RT on an ANS acuity task
taps into processes specific to the ANS and that are similarly
related to math abilities as accuracy-based measures. Therefore,
we believe that the performance differences between extremely
preterm and term-born children on the ANS acuity task in the
present study reflect — at least in part — important differences
in ANS acuity. Future studies should include measures of
information processing speed to examine the contribution
of domain-general processing speed for this deficit in ANS
acuity.

Even though preterm children often struggle with general
visuo-spatial skills and inhibitory control (Marlow et al,
2007; Aarnoudse-Moens et al., 2009; Mulder et al., 2009), the
differences in ANS acuity persisted regardless of the degree to
which visuo-spatial skills and inhibitory control were needed
during the non-symbolic number comparison tasks. Specifically,
our results showed that group differences in ANS acuity were
present regardless of the spatial arrangement of the dot arrays
(i.e., spatially separated vs. intermixed) or the demands on
inhibitory control and attention (i.e., total surface area of the
dots congruent with number or equated between the two arrays).
Thus, the differences in ANS acuity observed in our study
cannot be explained by deficits in a variety of cognitive functions
often impaired by prematurity. Instead our findings suggest that
extreme prematurity leads to deficits in approximate number
representations, which may result from impairments in parietal
cortex functioning.

Our findings contradict those by Simms et al. (2015) who
found no significant differences in ANS acuity between their
samples of preterm and term-born 8- to 10-year-old children.
Several differences between their sample and our sample may
explain these divergent findings. First, we compared children
at 6.5 years of age whereas Simms et al. (2015) tested children
at a mean age of 9 years. It is possible that preterm children
may be able to catch up over time and that by 9 years
of age, the ANS acuity gap becomes negligible. Second, our
sample of preterm children was born extremely prematurely
(<27 weeks of gestation) whereas the sample by Simms et al.
(2015) consisted of children born very preterm (<32 weeks
of gestation). It is possible that an additional few weeks in
utero can alter development significantly and lead to a lesser
impact on foundational numerical skills such as the ANS.
In fact, a recent study using functional magnetic resonance
imaging of the fetal brain showed that the parietal lobe
undergoes significant changes in functional connectivity to
other brain regions between weeks 27 and 28 of gestation
suggesting that extremely preterm children may be particularly
susceptible to deficits in parietal cortex functioning (Jakab
et al, 2014). Further evidence for this possible explanation
comes from findings of impairments in parietal cortex assessed
neonatally in the same cohort as in the present study (Padilla
et al, 2015). Future studies need to carefully control the
age at which preterm children are tested and the degree of
prematurity to disentangle their respective effects on ANS
acuity.
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Extremely preterm children showed a similar link between
ANS acuity and math ability as previously observed in term-
born children (Libertus et al., 2011, 2013a; Bonny and Lourenco,
2013), suggesting that the ANS provides a foundation for learning
math regardless of prematurity. However, the exact role of the
ANS for mathematical ability is still unclear. There are four,
not necessarily mutually exclusive possibilities. One possibility is
that the ANS aids in the acquisition of exact number knowledge
(Piazza, 2010; Wagner and Johnson, 2011; Gunderson et al,
2015). Children may use the ANS to learn the meaning of number
words and children who have more precise ANS representations
may be able to learn those meanings earlier and/or more easily.
Earlier or faster acquisition of number words may lead to earlier
or faster acquisition of subsequent math concepts resulting in
the observed link between ANS acuity and general math ability.
Support for this view comes from a correlational study showing
that children’s counting skills and understanding of cardinality
mediate the relation between the ANS and children’s math
abilities (vanMarle et al., 2014).

A second possibility is that the mapping between number
symbols (including number words as well as Arabic numerals)
and the ANS is linked to math abilities (De Smedt and Gilmore,
2011; De Smedt et al., 2013). This hypothesis posits that a strong
association between number symbols and their meaning (i.e.,
ANS representations) is associated with greater math abilities.
Support for this view comes from studies showing that children’s
number estimation performance (i.e., their ability to estimate
the number of objects in a stimulus) mediates the link between
ANS acuity and math abilities (Pinheiro-Chagas et al.,, 2014;
Libertus et al., 2016). In contrast to the first hypothesis, the ANS
would be linked to a variety of different number symbols, but the
mapping may occur at a later point in time than during the initial
acquisition of the number symbols.

A third possibility is that the ANS provides a sense of
ordinality and directionality for arithmetic operations (McCrink
et al.,, 2007; Knops et al., 2009; Lyons and Beilock, 2011). The
ANS may support an understanding of the serial positioning
of numbers along a mental number line and the notion that
addition is associated with an increase in quantity and movement
toward the right on the number line whereas subtraction is
associated with a decrease in quantity and a movement toward
the left. As such, the ANS could also be related to detecting
errors when solving math problems as it may provide a general
sense of the magnitude of the expected answer. Support for
this hypothesis comes from a study showing that adults’ ability
to detect numerically ordered sequences mediates the relation
between their ANS acuity and math ability (Lyons and Beilock,
2011).

Finally, a fourth possibility is that the ANS and math ability
are linked via a general attitude toward and ease with math
(Braham and Libertus, under review). For example, adults with
greater math anxiety perform worse on a symbolic number
comparison task suggesting that math anxiety does not only
affect performance on math assessments but also basic number
processing tasks (Maloney et al., 2011). Moreover, parents with
greater ANS acuity and greater math ability tend to talk more
about numbers with their children (Elliott et al., 2017).

Limitations and Future Directions
While we controlled for verbal IQ, perceptual reasoning skills,
working memory, and attention in our analyses, future studies
should increase the number of general cognitive abilities that
are controlled and improve the way in which they are assessed.
Because children already completed a large number of tests,
attention skills were assessed via a broad parent-report measure.
To assure construct validity, it would be useful to assess children’s
attention skills directly in future studies. Additionally, we did
not assess children’s inhibitory control directly. Since inhibitory
control has been linked to math ability (Espy et al., 2004; Blair and
Razza, 2007) and is affected by prematurity (Aarnoudse-Moens
etal., 2009), a direct assessment (e.g., via a Go/No-go task) would
be beneficial in the future. Also, working memory was tested via
a digit span task, which may conflate deficits in working memory
and math skills. Thus, future studies should use working memory
tasks that do not use numbers as stimuli to properly control for
working memory skills without tapping into processes related
to math. Finally, response times in our ANS acuity task were
recorded via a button response made by the experimenter as soon
as the child gave a verbal response. Pilot testing showed that many
children struggled with learning to press a button corresponding
to their answer and found naming a color easier. However, the
validity of these response times needs to be empirically tested.
Recent training studies showing that improvements in ANS
acuity may transfer to improvements in math ability, hold
promise for early interventions in preterm children. For example,
3- to 5-year-old typically developing, low-income children who
were trained on a non-symbolic approximate arithmetic tasks
daily for 2-3 weeks showed significantly greater math abilities
after training than a group of children completing memory
training (Park et al., 2016). Future studies could use a similar
intervention to test whether it is effective in closing or at least
decreasing the gaps in ANS acuity and math ability between
extremely preterm and term-born children.

CONCLUSION

In sum, our study showed that children born extremely
preterm have significantly less precise approximate number
representations and that these deficits cannot be fully explained
by cognitive deficits in areas such as verbal IQ, perceptual
reasoning skills, working memory, or attention. Moreover, we
found an association between preterm children’s ANS acuity and
their math abilities suggesting that deficits in the ANS may be
at least in part responsible for the deficits in math abilities often
observed in preterm children.
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