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Neural Correlates of Morphology
Acquisition through a Statistical
Learning Paradigm
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The neural basis of statistical learning as it occurs over time was explored with stimuli
drawn from a natural language (Russian nouns). The input reflected the “rules” for
marking categories of gendered nouns, without making participants explicitly aware
of the nature of what they were to learn. Participants were scanned while listening to
a series of gender-marked nouns during four sequential scans, and were tested for
their learning immediately after each scan. Although participants were not told the
nature of the learning task, they exhibited learning after their initial exposure to the
stimuli. Independent component analysis of the brain data revealed five task-related
sub-networks. Unlike prior statistical learning studies of word segmentation, this
morphological learning task robustly activated the inferior frontal gyrus during the
learning period. This region was represented in multiple independent components,
suggesting it functions as a network hub for this type of learning. Moreover, the results
suggest that subnetworks activated by statistical learning are driven by the nature of the
input, rather than reflecting a general statistical learning system.
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INTRODUCTION

The discovery that individuals can learn about the structure of a language by tracking distributional
information in the input fueled new inquiries into the nature of language acquisition in children
and in adults. Learning from distributional information in language input is typically considered a
type of statistical learning (see Karmiloff-Smith et al., 1998; Saffran, 2003; Erickson and Theissen,
2015 for overviews). Behavioral evidence supports a role for statistical learning in many aspects
of language acquisition including phonology (e.g., Maye et al., 2002), word learning (e.g., Saffran
et al., 1996; Saffran, 2001; Smith and Yu, 2008) and morpho-syntactic development (e.g., Gerken
et al., 2005; Thompson and Newport, 2007; Christensen et al., 2012).

Electrophysiological studies have confirmed that rapid statistical learning of word units is
accompanied by equally, if not more rapid physiologic changes in brain function. Cunillera et al.
(2009) showed physiologic evidence of implicit word segmentation from running speech within
a minute of exposure to non-word strings. Likewise, physiological evidence of learning occurs
after minutes of exposure to words containing morpheme-like features (De Diego Balaguer et al.,
2007; Mueller et al., 2009; Havas et al., 2017). Others (McLaughlin et al., 2004) have shown that
physiologic change can precede behavioral change, representing a neural precursor for learning.
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Functional imaging studies have begun to uncover spatially
defined networks associated with distributional learning. To date,
learning paradigms have been limited to discovery of words
forms (McNealy et al., 2006; Cunillera et al., 2009; McNealy
et al., 2010; McNealy et al., 2011; Karuza et al., 2013; Plante
et al., 2015). Specifically, these studies have identified networks
involved in segmenting word units from running speech, which
typically lacks clear acoustic cues to word boundaries. However,
neuroimaging inquiry into statistical learning has been slow to
move beyond word segmentation, which is thought to reflect the
earliest phase of natural language learning.

There have been several imaging studies involving artificial
syntactic rules (e.g., Forkstam et al., 2006; Newman-Norlund
et al., 2006; Bahlman et al., 2008; Hauser et al., 2012; Petersson
et al., 2012; Folia and Petersson, 2014). However, these largely
employed training outside the scanner, and scans were acquired
during a test phase rather than the learning phase. Therefore,
learning and testing effects cannot easily be dissociated, a concern
given test-specific effects have been documented elsewhere (e.g.,
Thiel et al., 2003; Petersson et al., 2004). One syntax-learning
study did scan participants during the learning phase, presenting
sentences to learners in printed format. In this study, participants
were exposed to both grammatical and ungrammatical word
combinations during the same scans, and these two conditions
were compared (Tettamanti et al., 2002). They reported an
inferior frontal-prefrontal-supramarginal/angular network for
grammatical learning. We note that the presence of both types
of word combinations can alter learning through interference
from incorrect exemplars (Gómez and Lakusta, 2004; Criss
et al., 2011), raising a question concerning how typical these
findings might be for learning of correct grammatical forms only.
Interestingly, however, activation increased in the inferior frontal
gyrus (pars opercularis) during learning of grammatical rules in
the Tettamanti et al. (2002) study, suggesting correspondence
to increased engagement in learning over time. Here we focus
on implicit learning only through exposure to correct syntactic
categories that are marked by morphological suffixes. We used
natural language stimuli that represent a subset of the Russian
gender marking system. Functional magnetic resonance imaging
(fMRI) was used to reveal the neural correlates of distributional
learning related to this level of linguistic representation.

Statistical Learning of
Morphologically-Defined Linguistic
Categories
Languages divide words into discrete classes referred to as
syntactic categories (e.g., nouns, verbs, and adjectives). Our
ability to combine words into novel sentences is dependent on the
acquisition of these categories. Without them, the combinatorial
rules of language would operate on a word-by-word basis, making
linguistic generativity impossible. The categories of noun and
verb are common across languages, but languages may also
include word subcategories. For example in many languages
(e.g., Russian, Norwegian, French, and Spanish, but not English),
finer distinctions are made between nouns of different gender
categories (e.g., feminine, masculine, and neutral). Subcategories,

as learners of foreign languages can attest, can be particularly
difficult to master. Grammatical gender subcategories, in
particular, are often replete with semantic inconsistencies (Bock,
1982). Although the gender subcategory of specific words is
arbitrary (e.g., book is masculine in Spanish – el libro but feminine
in Russian – kniga), gender marking within a language is often
signaled by one or more morphological or phonological markers.
For instance in Spanish, masculine nouns often carry one or more
markers such as el and –o, but they do not always refer to overtly
masculine concepts (e.g., book). For this reason it has been
suggested that distributional learning—tracking distributional
patterns such as morphological, phonological, and positional
regularities—may be instrumental in the acquisition of gender
classes (e.g., Karmiloff-Smith, 1979) as well as broader word
categories like nouns and verbs (Mintz, 2003).

Behavioral work on distribution-based category formation has
revealed that in order for learners to jump from tracking surface
associations (e.g., in Spanish: el gato; la fruta) to inferring word
categories (e.g., masculine, feminine). The neurophysiological
reality of this dual learning is reflected by different ERP
components that emerge in relation to word identity and
word morphology (De Diego Balaguer et al., 2007; Mueller
et al., 2009; Havas et al., 2017). To accomplish this, learners
require converging or overlapping distributional regularities
(Braine, 1987; Frigo and McDonald, 1998; Gerken et al.,
2005). When artificial languages are created to abide by these
cognitive constraints, infants and adults form categories quickly
and implicitly. Moreover, learners can use their knowledge of
category properties to generalize to new words (Mintz, 2002;
Gómez and Lakusta, 2004; Gerken et al., 2005; Richardson
et al., 2006; Eidsvåg et al., 2015). These redundant, overlapping
regularities are present in natural languages and have been
shown to facilitate the acquisition of language categories by
non-native speakers (Richardson et al., 2006; Eidsvåg et al.,
2015). Like distributional-based word segmentation (Saffran
et al., 1996), the distributional learning of word classes occurs
quickly, without feedback, and the underlying mechanism
operates in both infancy and adulthood (Mintz, 2002; Gómez
and Lakusta, 2004; Gerken et al., 2005; Richardson et al.,
2006).

Russian provides a natural language context in which
overlapping and redundant cues are available to different degrees
for gender subcategories (see Table 1). In Russian, nouns can
take one or the other of two suffixes that mark the noun’s
gender (e.g., masculine nouns can end in –ya or –yem; feminine
nouns can end in –oj or −u). Therefore, the distribution
of these pairs of endings provides converging evidence for a
noun’s subcategory as either masculine or feminine. In addition,

TABLE 1 | Example words from the Russian stimulus set.

Double-marked Single-marked

Masculine (+tel, +ya/yem) vodi + tel + ya fonar + −ya

vodi + tel + yem fonar + −yem

Feminine (+k, +oj/u) blondin + k + oj zabav + −oj

blondin + k +u zabav + u
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some nouns may be double marked for gender by additional
gendered suffixes (e.g., −tel ++yem may mark a masculine
noun and −k +oj a feminine noun). Double-marked nouns
offer a higher degree of overlapping and redundant cues to
gender subcategory membership than do the single-marked
nouns.

When exposed to a set of Russian nouns both English-
speaking adult and English-learning infants discriminated
between grammatical and ungrammatical examples of the
Russian gender system (Gerken et al., 2005; Richardson et al.,
2006; Eidsvåg et al., 2015). A portion of the noun-inflection
combinations were withheld from training and included at
test to measure generalization to novel words. Participants
generalized suggesting that discrimination was not solely due to
the learner’s familiarity with the words. Instead, generalization
indicated the formation of a subcategory. Although the
Russian gender marking system can be more difficult to learn
relative to other gender systems (e.g., Norwegian; Rodina and
Westergaard, 2017), Gerken et al. (2005) described the presence
of redundant “double-marked” words as especially facilitative
of learning and generalization. Gerken et al. (2005) found
no such generalization in conditions in which infants were
provided with only single marked nouns during the learning
phase. In addition several studies of adult learners have shown
better performance for double marked vs. single marked words
(Gerken et al., 2005; Richardson et al., 2006; Eidsvåg et al.,
2015).

The word category paradigms involve tracking co-
occurrence associations within words (e.g., noun+suffix
and noun+suffix+suffix), but they also require tracking the
similarity of these associations across words (e.g., words and
suffixes that take –ya can also take –yem, see Table 1 for
examples). Therefore, this task requires tracking of adjacent
contingencies, but in addition requires tracking of relations
among elements (e.g., −ya and –yem are both associated with
the word fonar, but not zabav; both –u and –oj can follow –k,
when it appears, but not –tel). Given that this type of tracking
is conceptually different than that required for discovering the
syllable co-occurrences that define words, it is an open question
whether the brain would recruit the same network for both types
of distributional processes.

Neuroimaging Studies of Statistical
Learning
Neuroimaging studies (fMRI) of statistical learning have
primarily examined word segmentation (McNealy et al., 2006,
2010; Cunillera et al., 2009; Karuza et al., 2013; López-
Barroso et al., 2015; Plante et al., 2015). In these studies,
the stimuli are created to facilitate learning via transitional
probabilities. Regardless of whether natural or artificial language
stimuli are used, we see consistent activation in the superior
temporal gyrus during learning (McNealy et al., 2006, 2010;
Cunillera et al., 2009; Karuza et al., 2013; López-Barroso
et al., 2015; Plante et al., 2015). The activation appears to
be linked to distributional learning and not just general
auditory processing. Indeed, activation in this region is stronger

both when compared to non-linguistic auditory input and
when comparing conditions in which contain syllable-level
dependencies are present or absent (Cunillera et al., 2009; Plante
et al., 2015).

The left inferior frontal gyrus, including Broca’s area, has
also been argued to be important for learning via transitional
probabilities when stimuli are auditory-linguistic (Karuza et al.,
2013) or visual (Turk-Browne et al., 2009). However, activation
in this area and others (e.g., frontal regions, and areas in the
temporo-parietal-occipital junction) is not consistently evident
across or within word segmentation studies (Plante et al., 2015).
For example, two studies (McNealy et al., 2006; Karuza et al.,
2013) reported activation in this area not during exposure, but
in relation to performance on a post-scan test. Plante et al.
(2015) reported inferior frontal activation, which was weaker
and less consistently present than temporal lobe activation.
They suggested inferior frontal activation could be related to
periodic violations of expectancies that occur as patterns are
acquired (cf. Petersson et al., 2004). This explanation would also
potentially explain the Karuza et al. (2013) findings as well as lack
of frontal findings in other word segmentation studies. However,
activation in Broca’s area is frequently reported in artificial syntax
studies, including the one study to examine morphosyntactic
learning during scanning (Tettamanti et al., 2002). These
paradoxical findings raise the issue of whether activation of this
region is specific to certain types of distributional information in
the input.

We hypothesize stronger contributions of inferior frontal
activation for learning bound morphemes than was seen
previously for word segmentation learning paradigms. Previous
fMRI studies have argued that the left inferior frontal cortex
(i.e., the pars opercularis and the pars triangularis) is critical for
the morphological parsing (e.g., Tyler et al., 2004; Joanisse and
Seidenberg, 2005; Slioussar et al., 2014). Patients with left inferior
frontal cortex damage show impairment on tasks involving verb
tense morphology [see Faroqi-Shah (2007) meta-analysis] as well
as for case and gender errors (Bates et al., 1987). This indicates
a central role for Broca’s area in the processing of morphological
units in general. This region may also be central during learning
of an inflectional morpheme system for gender categories. It is
important to note that Broca’s area also implicated in processing
or use of irregular verbs (Joanisse and Seidenberg, 2005; Faroqi-
Shah, 2007). From a statistical learning perspective, these verbs
may be learned as associations between the root verb and it’s
irregular pair. If this is the case, the inferior frontal gyrus may
serve multiple aspects of language through a common statistical
learning function.

The Present Study
In the present study we use functional magnetic resonance
imaging (MRI) during learning of a gender system, to uncover the
neural correlates of word class acquisition via statistical learning.
To prevent learners from using their pre-existing language
knowledge, this study examines adults as they learn the gender
system of an unfamiliar language (Russian) and an unfamiliar
word class distinction (gender, a distinction English does not
employ). We examine adults rather than children to dissociate
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acquisition processes from maturational ones. We predict that
activation in the superior temporal gyrus, documented for all
auditory statistical learning studies to date will also characterize
learning of gender subcategories. However, we expect to
find novel patterns of activation associated with learning an
inflectional morphology system. Given the particular role of
morphological endings for identifying subcategory membership,
we predict that the brain will recruit areas of the left inferior
frontal cortex, particularly pars opercularis (Tettamanti et al.,
2002; Goucha and Friederici, 2015).

MATERIALS AND METHODS

Participants
Eighteen subjects participated in the present study
(Mage = 24 years; range = 18–38 years). Thirteen participants
were female and five were male. Three participants were
left-handed (two females and one male). Two of these had left
lateralized language on the experimental task and one had largely
symmetrical language representation. However, all three were
retained in the study so that the subject sample would resemble
the full population of interest (adults, regardless of handedness).
Participants were screened for abnormal hearing, a history of
language difficulties, head injury, psychiatric medications and
MR safety concerns before being permitted to participate. We
excluded one potential participant who had movement in all
four scans, averaging greater than 1 mm (1.6–9 mm), who
was replaced in the final dataset. The research is approved by
the University of Arizona Institutional Review Board and all
participants provided informed consent.

Materials
Tone Stimuli
Complex tones were used as an auditory control condition for
Russian words. Tones reflected the range of durations of the
word stimuli M = 655 ms, range 500–880 ms). Each tone was
developed by starting with pairs of pure tones of equal duration.
One pure tone of the pair fell in the range of 500–800 Hz and
the other from 1000 to 3000 Hz to reflect frequencies in the
speech range. Tones were edited to provide approximately equal
loudness, despite their frequency differences. Each pure tone was
then frequency and amplitude modulated and the paired tones
were blended. Twenty complex tones were presented within a
tone block, with interstimulus intervals designed to mimic that
used in the word blocks (described below).

Learning Stimuli
One hundred and sixty multi-syllable Russian words were
recoded by one female and one male native Russian talker.
These words were divided equally between masculine and
feminine nouns and words taking single and double markings.
Table 2 presents examples of these stimuli. Sound files were
computer-edited to minimize background noise in the recordings
and to produce approximately equal loudness across word tokens.
Twenty unique words were heard per stimulus block. Each root
word was heard with its two alternate gender suffixes (i.e., single

TABLE 2 | Examples of the training and test words.

Stimulus type Masculine Feminine

In-Scanner Exposure phase

Ending 1: Double marked dushitelya karmelkoj

Single marked konya gazetaoj

Ending 2: Double marked dushitelyem karmelku

Single marked konyem gazetau

Pre-Test Familiarization

Familiarization pokupatelya devushkoj

urovenyem voronu

Prescan and Post-Scan Test stimuli

Correct pokupatelyem devushku

urovenya voronoj

Incorrect pokupatelu devushkyem

urovenoj voronya

marked: -u, -oj, -ya –yem; double marked: -ku, -koj, -telya,
-telyem) and spoken by the same talker (i.e., male or female)
within the same stimulus block. Inter-stimulus intervals were
jittered so that 20 spoken words of different durations fit within
an 18 s block.

Stimuli heard during scanning consisted of eight blocks of
tones interleaved with eight blocks of spoken Russian. Tone
stimuli preceded word stimuli so that participants had an
opportunity to settle into the scan prior to the onset of learning.
Each block consisted of a 4 s period of silence followed by a
brief instructional cue, 18 s tone input, another 4 s of silence
and instructional cue, and 18 s of Russian word input. The
instructional cue for the tone block was “Just relax” and the
instructional cue for the word blocks was “Listen to these words.”
Participants received a total of 2.4 min of exposure to Russian
words during each scan.

Post-scan Familiarization Stimuli
A second female talker recorded 24 Russian root+gendered
suffix pairs. These words were not included in the Exposure
stimulus set. Root words were recorded with only one of
their correct gendered suffixes, with half the words reflecting
masculine/feminine and single/double marked forms. Words
were computer edited to approximate equal loudness and to
reduce background noise. Words were arranged into an audio file
with each word heard twice, but never consecutively. See Table 2
for examples.

Test Stimuli
Twenty-four stimuli consisted of the root words presented
during post-scan familiarization but with alternate suffixes. These
were recorded by the same female talker who recorded the
post-scan familiarization stimuli, and stimuli were computer
edited as described previously. Half of the root words were
recorded both with their correct gender markings (e.g., masculine
word + masculine suffix). For these, the gender markings
used were the alternate marking for that provided in the
post-scan familiarization stimuli (e.g., post-scan familiarization:
korenya; test: korenyem). Half of the words were incorrect in

Frontiers in Psychology | www.frontiersin.org 4 July 2017 | Volume 8 | Article 1234

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-01234 July 25, 2017 Time: 14:58 # 5

Sandoval et al. Statistical Learning Network

that root word was paired with correct number of suffixes
(i.e., single-marked, double-marked), but the suffix heard was
the incorrect gender (masculine vs. feminine). These words
and their gendered markings were never heard as part of the
learning stimuli, and only the root words with one of the two
possible gender markings were heard during as part of the
post-scan familiarization stimuli. Thus, the test words prompted
generalization of the patterns encountered during the scans,
rather than memory for specific words heard previously. These
stimuli were used in both a pretest and for post-scan testing. See
Table 2 for examples.

Training Stimuli
The female native Russian talker who recorded the post-scan
exposure and test items also recorded a series of verbs and
adjectives used during prescan training. This voice was not
heard during learning. The prescan stimuli provided input
during training that was phonetically similar to the training
phase, but did not provide the gender information targeted for
learning. These were used to familiarize each participant with the
experimental procedures prior to scanning.

Behavioral Procedures
The experiment consisted of five phases: (1) A prescan training
phase was used to acquaint participants with the experimental
procedures, (2) A pretest of the Russian gender system to provide
baseline response rates prior to scanning, (3) A learning phase
during which participants were exposed to a set of Russian
words and simultaneously scanned, (4) a post-scan exposure to
additional Russian root words, and (5) The test phase used to
assess the degree of learning after the exposure scan. Phases 3–5
were repeated four times during the experimental session.

Prescan Training
The experimental procedures were explained to the participants,
including that they would be tested on what they learned. They
were not provided any further information concerning the nature
of the words they would be hearing, what they should attend to
in the stimuli, or what aspect of the stimuli they would be tested
on. Participants then listened to the training stimuli so that they
were familiar with the format of the experiment.

Pretest
A pretest was administered to establish the base rate of
response (the guessing rate) to the test items used after each
scan. Participants listened to the 24 test stimuli presented in
computer-randomized order. Participants indicated, via key press
on a computer keyboard, whether the test item was correct of
incorrect. Responses were recorded using DirectRT (Jarvis, 2012).
No feedback was provided.

Learning Phase
Participants heard tone and Russian stimuli during a scan
designed to assess learning networks. The onset of each scan
was triggered by a scanner signal to provide precise timing
control. Before the scan, participants were again instructed to
listen during scanning and that no response was required during

this part of the study, buy they would be tested on what they had
learned after each scan. Scans were repeated four times during the
experimental session.

Post-scan familiarization
Immediately after each scan, and while still in the scanner,
participants listened to the post-scan familiarization audio-file.
They were told to listen to these words and that these were the
words they would be tested on. No scan data was acquired during
this time.

Post-scan Testing
Testing occurred immediately after the post-scan familiarization
phase and while the participant was still in the scanner. No scan
data was acquired during this time. Participants were given the
same two-alternative forced choice test that was given in the
pretest phase (see above).

Imaging Procedures
Participants were scanned on a 3 tesla Siemens Skyra using a
32-channel head coil and running on software version syngo
MR D13. Participants heard the stimuli via noise attenuating
MR compatible Sensimetrics S14 Insert Earphones for fMRI
Research. Each of the four fMRI scans lasted 6 min and 4 s. The
total time for the experiment was about 1 h, with time for a break
in the middle if the participant was uncomfortable.

Image Acquisition Parameters
Four fMRI scans were collected in axial orientation using an
interleaved inferior to superior echo-planar free induction decay
sequence and GRAPPA2 (TR 2000, TE 30, Flip angle 90, FOV
241.92 × 201.6, Matrix 72 mm × 60 mm × 36 mm, voxel
size 3.36 × 3.36 × 4). Each scan was 182 volumes (including
6 pre-stimulus volumes). To aid in boundary-based registration
(Greve and Fischl, 2009) of both fMRI and DWI sequences,
we collected a fieldmap with one phase and two magnitude
images (TR 434, TE 4.92 [first magnitude image], 7.38 [second
magnitude image and phase image], Flip angle 60, FOV 224,
Matrix 68× 68× 41). A high resolution MPRAGE was collected
left to right in the sagittal plane using GRAPPA2 (TR 2300, TE
2.95, Flip angle 9, FOV 176× 240, Matrix 176× 240× 256). This
was critical for registration into standard space.

fMRI Preprocessing
We preprocessed fMRI data in AFNI (Version AFNI_16.0.00,
Cox, 2012) by first trimming the first six volumes from the
scan, which were included to ensure initial patient and scanner
stability prior to the onset of data collection. Realignment of the
volumes in the scan was accomplished with SLOMOCO (Beall
and Lowe, 2014). SLOMOCO combines within-volume slicewise
correction with 3D volume registration. Because realignment
can only correct for small movements and rotations (Cox and
Jesmanowicz, 1999), we modified the SLOMOCO algorithm by
optimizing the reference volume. Using information from AFNI,
we selected a highly stable and representative scan volume to
be used for this purpose in SLOMOCO. This slice selection step
halved the amount of movement required for realignment of each
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target volume. After realignment we applied despiking in AFNI.
We then used boundary based registration in FSL (Jenkinson
et al., 2012) to register each participant’s scans to their MPRAGE
and then into standard space. Boundary based registration uses
the gray–white matter boundaries for registration as these tend to
be more reliable than the external gray matter boundaries (Greve
and Fischl, 2009). Finally we smoothed the standard space image
to 6 mm.

fMRI Analysis
Independent component analysis (ICA) separates the raw BOLD
signal obtained across the full scan time period into a set of
statistically independent periodic signal sources. Beta weights
are then calculated between the ICA models representing
independent signal sources and signal from the actual data.
ICA is model free in that the it does not rely on an a priori
model of the BOLD signal, but derives signal time courses
and magnitude from the data. We used GIFT (Version 4.0a;
The Gift Documentation Team, 2015), to run the Entropy
Rate-Based Minimization (ERBM) ICA algorithm because it
performs Joint Blind Source Separation. JBSS improves the back
reconstruction of data as compared to Infomax (Li and Adali,
2010) enabling calculation of subject-by-subject ICA data via
back reconstruction. We were especially interested in the back
reconstruction because we anticipated activation differences from
scan to scan as participants learned. We ran ERBM with 50 ICs
to help provide refined components that better correspond to
known structural and functional divisions (Allen et al., 2014).
Signal change was represented in z-scores. After running ERBM
we ran the Icasso program, using 10 iterations of the ICA analysis.
Icasso then provides metrics of component stability and statistical
overlap.

Because ICA identifies periodic signals within the BOLD
response, regardless of origin, it was necessary to separated
task-related ICs from artifact. This involved several convergent
methods. We sorted the ICs by the degree to which their beta
weights indicated significantly greater signal during the word
stimuli relative to the tone stimuli. We retained ICs for which
the Beta weight reflecting the association between the task period
and the BOLD signal were statistically non-zero (one-sample
t-test, p < 0.05, uncorrected for multiple comparisons) in at least
one of the four scans. This allowed for the possibility that some
areas might be needed either early or late in learning, but not
throughout learning. This criterion reduced candidate ICs from
50 to 32.

We further assessed the stability, the replicability, and the
statistical overlap among the remaining components. One of the
remaining ICs failed to replicate across the ten iterations of the
ICA procedure. We used the Icasso component similarity graph
to insure that we chose only components that were compact and
isolated across all 10 iterations Icasso (i.e., no overlap with other
components). This assured true statistical independence of the
components. Three additional components were eliminated on
this basis. We used the Icasso stability estimate (Iq) in GIFT
to identify and reject components with an Iq < 0.80. This
eliminated two additional components. Visual inspection of these
two components indicated that the greatest signal in these ICs

were associated with pulsatility in the basal ventricular system or
blood vessel pulsatility at the level of the pons. We also inspected
the power spectra of the remaining ICs to insure that the
components we chose had good dynamic range and power ratio
(Allen et al., 2011). Finally, we visually inspected spatial activation
maps to identify ICs that had activation primarily in white matter
or CSF, and ICs that were characterized by susceptibility artifact
or rim activation at the cortical edge associated with movement.
These were eliminated from further consideration. This process
left five ICs available for further analysis.

RESULTS

Behavioral Results
The d-prime scores for double- and single-marked words were
calculated for each participant, for each test. The d-prime data
are displayed in Figure 1. Results for the Pretest indicated
that responses for the double-marked items did not differ
from chance, t(1,17) = −0.77, p = 0.2252, nor did results
from the single-marked items, t(1,17) = 0.94, p = 0.1752. As
Figure 1 indicates, performance for each item type overlapped
and straddled the zero (or chance) line at pretest, indicating that
participants were not able to correctly guess test items. Responses
to double- and single-marked words also did not differ from each
other, t(1,17)= 1.72, p= 0.2568.

For each post-scan behavioral test, we evaluated the d′
values to determine whether they exceeded chance performance.
Post-scan test 1, obtained after the first scan, exceeded
chance for both double- t(1,17) = 2.16, p = 0.0228) and
single-marked words t(1,17)= 2.46, p= 0.0130). Performance on
double-marked words remained above chance for the remainder

FIGURE 1 | Behavioral performance (d prime) on test blocks administered
before the first scan (Prescan) and after scans 1–4. Mean behavioral
performance for Double (black) and Single Marked (gray) words. A black
asterisk indicates recognition of Single Marked words was above chance
performance. A gray asterisk indicates the same for Double Marked words.
Error bars reflect the SEM.
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FIGURE 2 | Regional distribution of activation in five task-related ICs and
there associated level of activation. Activation for each IC is thresholded at
p < 0.05 (FWE corrected). Darker colors indicate areas of greatest overlap of
regional activation across the four scans (see also Supplementary Table 1).
Graphs indicate the average level of activation across all voxels within the IC.
Note that the value range is truncated in the graphs. Error bars indicate ±1
standard deviation.

of the experiment (p < 0.02 in all cases). However, performance
on single-marked test items fell below chance after Scan 1
and remained there for the remaining scans (p > 0.45 in all
cases).

Differences on double- and single-marked test items across
time were assessed using a repeated-measures ANOVA with
Marker Type (Double vs. Single) and Time (Scans 1–4) as
within-subject conditions. We found a main effect of Marking
Type, F(1,15) = 14.79, p = 0.0076, with average performance
on double-marked words (M = 1.02, SE = 0.24) exceeding
average performance on single-marked words (M = 0.39,
SE = 0.25). The main effect Time did not reach significance,
F(3,45) < 0.42, p = 0.7389 nor did the Marker by Time
interaction, F(3,45) < 0.21, p= 0.8898.

Imaging Results
Figure 2 displays the alpha corrected (p < 0.05, FWE correction)
activation patterns for each IC. As this figure suggests, ICs
were remarkably stable in terms of the regions activated and

their degree of activation across the four scans. Each image
represents an IC with the color gradient (lighter to darker)
representing increasing overlap of activation across the four
scans. Supplementary Table 1 contains the maximum t-values
and their x, y, z locations for every significantly active region
broken down by IC and scan within predefined regions defined by
the Harvard-Oxford atlas. We briefly summarize the major areas
of activation for each IC here. Supplementary Figure 1 provides
the spatial map of the results of a GLM analysis using the same
data for comparison purposes. As expected, the GLM analysis
returned much more limited activation than did the ICA.

For IC 1, the strongest activation occurred along the length
of the planum temporale, superior temporal gyrus, posterior
supramarginal and angular gyri, and the posterior middle
temporal gyrus. This activation was represented bilaterally.
Additional activation was distributed in the frontal, temporal,
and parietal-occipital cortices.

IC 2 was characterized primarily by activation in the inferior
frontal gyrus (pars opercularis and pars triangularis). Activation
within pars opercularis was right lateralized whereas pars
triangularis was nearly equal across hemispheres.

Activation in IC 3 included bilateral activation in the posterior
superior temporal and angular gyri, as well as right hemisphere
activation in multiple frontal regions (orbital frontal, frontal pole,
superior and middle frontal gyri, paracingulate and posterior
cingulate gyri), and right lateral occipital gyrus. Consistent
activation in the left Crus I and Crus II was also seen.

IC 4 showed left hemisphere activation in inferior frontal
gyrus-pars opercularis, central opercular cortex and precentral
gyrus. Bilateral activation also occurred in the anterior cingulate,
juxtapositional lobule, paracingulate, precentral, and superior
frontal gyri.

IC 5 showed left hemisphere activation of the pre-and post-
central gyri. Bilateral activation was also present in the central
opercular cortex.

Of particular note relative to our hypothesis was that
the inferior frontal gyrus was active across multiple ICs
(see Supplementary Table 1 for activation strength in the
different subregions of this gyrus). Given the particular role of
morphological endings for identifying subcategory membership,
we predicted that the left inferior frontal cortex would be
recruited to a greater extent than previously seen in statistical
learning fMRI studies that examined word segmentation. In the
present study, the left inferior frontal gyrus-pars opercularis was
active in four of the five ICs (1, 2, 4, 5). The right inferior frontal
gyrus-pars opercularis was likewise active in four ICs (1, 2, 3, 4).
All overlapping regions displayed in Figure 3. For the Inferior
Frontal Gryus, the majority of overlapping portions encompassed
the superior aspect of pars opercularis/pars triangularis as well as
an inferior portion that extended into the anterior insula. This
degree of overlap suggests that the inferior frontal gyrus may
have served as a hub in the learning network for morphologically-
defined gender subcategories.

Additional regions showed overlap among two different
ICs. These included additional sub-regions of the inferior
frontal gyrus (pars triangularis extending into pars orbitalis,
and opercularis) in the left and pars opercularis in the
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FIGURE 3 | Overlap among regions activated on multiple time courses (ICs).

right. In addition, regions in the middle frontal gyrus
were active bilaterally along with the full extent of the
temporo-parietal-occipital junction bilaterally. The latter region
included the angular gyrus, posterior supramarginal gyrus, and
superior lateral occipital gyrus.

Activation and Post-scan Testing
To gain converging evidence for the centrality of the inferior
frontal gyrus for Russian morphology learning, we correlated
behavioral performance with activation level in the inferior
frontal gyrus and other commonly activated regions (see
Figure 3), for each IC and scan in which they occurred. We
extracted activations that were statistically significant using
masks of the inferior frontal sub-region derived from the
Harvard-Oxford cortical structural atlas. The average activation
(t statistic) within these regions was extracted on a subject-
by-subject and scan-by-scan basis. These were correlated with
individual subject performance on double- and single-marked
test items using a Pearson product moment correlation (a total
of 24 correlations for 3 inferior frontal regions × 2 learning
measures × 4 scans). The reported correlations are significant
at p < 0.05, uncorrected for multiple comparisons. There were
no significant correlations at a corrected p-value of 0.002. The
results are displayed in Table 3. Significant correlations for the
double-marked test items and left BA44 occurred in scans 2–4
(see Table 3). These also occurred for single-marked words in
Scans 2 and 4. Test performance was correlated with the right
BA44 in Scan 2 for double-marked and Scans 1 for single-marked
activations. In contrast, test performance was correlated for
right BA45 during Scan 4, in IC 5 only. Additional correlations
(p < 0.05 uncorrected) were found for 10 other consistently
activated regions (80 total correlations) as well, but no one region
correlated consistently with performance across scans. Instead,
regions that predicted performance shifted over the learning
period. None of these survived alpha correction to p < 0.0006.

DISCUSSION

Behavioral Learning
The behavioral results indicated that participants were able to
respond to test items accurately only after a brief exposure

to examples of Russian root words and their gender-marked
suffixes. Moreover, learning reflected generalization of the
patterns to untrained words. However, there was a noteworthy
dissociation between learning of double- and single-marked
patterns. Morphological patterns for double marked words were
easier to generalize overall than the patterns for single marked
words. This has also been reported by previous studies that have
used similar Russian stimuli (Gerken et al., 2005; Richardson
et al., 2006; Eidsvåg et al., 2015). Learning the double-marked
pattern only required learning the association between the –
tel and –k markers and the two suffixes each are paired
with (i.e., tel+ya/yme; k+u/oj). Single-marked patterns required
noting that root words that took –ya could also take –yem but
those that took –u also took –oj. Thus, it is the relation between
the single marked suffixes through their occurrence on many
different root words that is required for single-marked category
learning, making it a more difficult dependency to track than the
adjacent dependency needed to learn the double-marked words.

Behavioral performance for Scan 1 indicated participants were
tracking information relevant to both single and double-marked
words simultaneously. This is consistent with the idea that
multiple distributional cues in the input can be tracked
simultaneously (De Diego Balaguer et al., 2007; Mueller et al.,
2009; Havas et al., 2017). However, the drop in performance
on single-marked nouns after Scan 1 suggests that learners
developed an implicit strategy that resulted in increased learning
of the easier of the two distributional relationships after the
initial exposure. An implicit focus on easier patterns (i.e.,
double-marked words) may facilitate later learning of more
difficult patterns (i.e., single-marked words). This is consistent
with behavioral data in which learners bootstrapped learning
of difficult patterns on successful learning of related but easier
patterns (Lany et al., 2007). When input contains multiple
dependencies, as was the case here, there is both behavioral
evidence (Romberg and Saffran, 2013) and physiological evidence
(De Diego Balaguer et al., 2007) that learning of the easier of the
dependencies emerges first. Moreover, when there is more than
one type of statistical dependency is present in the input, brain-
behavior relations also shift over time (De Diego Balaguer et al.,
2007; Plante et al., 2014).

When brain-behavior relations are considered (Table 3),
there are relatively few correlations between activation and
performance for the first scan. The behavioral results after
Scan 1 indicate that the learners as a group showed above
chance performance, despite chance pretest performance levels.
Presumably, therefore, their brains assembled networks that
were capable of learning. However, the learning network was
likely still emerging. Electrophysiologic evidence suggests naïve
learners acquiring grammatical information in a statistical
learning format can achieve high behavioral accuracy while still
showing physiologic responses that differ from native language
users (Mueller et al., 2009; Foucart and Frenck-Mestre, 2012).
Consistent with the idea that the early neural network is not yet
stable, transitional physiological responses have been reported
in a study that involved gender class learning (Foucart and
Frenck-Mestre, 2012). We propose that the dynamic shifts in
level and location of activation in the learning network, as well
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TABLE 3 | Brain-behavior correlations behavioral performance and independent components (IC 1–5).

Double marked words Single marked words

Region Hemisphere Scan 1 Scan 2 Scan 3 Scan 4 Scan 1 Scan 2 Scan 3 Scan 4

Angular Gyrus Left IC 3: −0.54 IC 1: −0.49

BA44 Left IC 3: −0.68 IC 4: −0.53 IC 4: −0.51 IC 2: 0.48

BA44 Right IC 3: −0.71 IC 4: 0.51

BA45 Right IC5: −0.50

Crus II Left IC 2: −0.50 IC 3: 51

Crus II Right IC 1: 0.49 IC 2: −0.50

Insula Left IC 3: 0.60

Insula Right IC 4: −0.49 IC1: −0.65

MFG Right IC 4: −0.50 IC1: −51

MTG-posterior Right IC 4: −0.50

MTG-temp/occip Left IC 1: −0.67 IC 4: −0.54 IC 1: 0.59 IC 2: −0.67

MTG-temp/occip Right IC 2: −0.52 IC 4: 0.48

STG-posterior Right IC 1: −0.50 IC 2: 0.61 IC 2: 0.55 IC 1: 0.53

BA44: Inferior Frontal Gyrus-Pars Opercularis. BA45: Inferior Frontal Gyrus-Pars Triangularis. MFG: Middle Frontal Gyrus. MTG-temp/occip: Middle Temporal Gyrus-
temporal-occipital region. STG-posterior: Posterior Superior Temporal Gyrus. All correlations are significant at p < 0.05, uncorrected for multiple comparisons.

as correlations with behavior, represent physiologic attempts
(successful or otherwise) to optimize the learning network.
This physiologic reconfiguration during early learning likely
contributed to the non-linear growth in behavioral performance
at the group level, as well as shifts in brain-behavior correlations.

The relation between activation and performance during
learning is known to be variable and complex. Learning has
been associated with dynamic changes in regional activation
over time (Plante et al., 2014, 2015, 2017). This is often not
seen because many fMRI studies use a single learning period
rather than track activation over time. Activation that predicts
learning can also change over the initial exposure period (Plante
et al., 2014). The nature of these brain-behavior correlations
is not straight-forward. Increased activation with increased
performance has been reported for word segmentation studies
(McNealy et al., 2006, 2010; López-Barroso et al., 2015) and
learning grammatical relationships (De Diego Balaguer et al.,
2007). However, this positive relation between activation and
performance is not universal. For example, higher than typical
activations have been associated with poorer performance for
participants with poor language or learning skills (Plante et al.,
2006, 2014, 2017; Hoeft et al., 2007). This suggests compensatory
over-activation occurs when learning is particularly difficult
for the groups of learners (Hoeft et al., 2007). Habituation is
also associated with lower activation over time as the brain
requires less activation to process increasingly familiar stimuli
(e.g., Celsis et al., 1999; Joanisse et al., 2007; Plichta et al., 2012).
Habituation-like physiologic changes are seen even within the
first minutes of language learning tasks (e.g., De Diego Balaguer
et al., 2007; Cunillera et al., 2009) as learners succeed at the
task. Cunillera et al. (2009) proposed an inverted U shaped
physiologic function to describe an initial increase in activation
as learning initiates and a decrease as stimuli become recognized
as units. Mathematically, at least, increasing and decreasing
levels of activation for different learners within a group could

average out, yielding little or no correlation in a region that is
actually directly contributing to behavioral performance. This
would explain why, as reported here, significant correlations are
found during some learning periods but not others in studies that
tracked over time (Plante et al., 2014) or across samples (López-
Barroso et al., 2015). Therefore, neither positive nor negative
correlations are necessarily consistent with better learning, and
lack of a correlation does not necessarily mean that a region was
not contributing to learning.

In the present study, all the ICs represented task-dependent
signal, in that greater activation occurred within the learning
blocks compared with the control blocks. In this broad sense, all
ICs were associated with periods of learning. For individual brain
regions within each IC, both negative and positive correlations
with behavior occurred. The strength and even direction of
these correlations shifted over time. This may reflect that the
region’s relative contribution was changing with time, that
learners differed over time in how they were leveraging regions
within the network over time, or both. We also saw that some
right hemisphere activations correlated with behavior. Right
hemisphere activation can occur because increased difficulty
results in greater recruitment of right hemisphere in addition to
the left. Behavioral correlations with the right hemisphere may
reflect the relative recruitment of the non-dominant hemisphere,
driven by task difficulty, rather than a unique contribution of this
hemisphere itself. The relative difficulty of the learning task for
the learner over time, the amount of effort required of neural
systems to meet task difficulty, and the general evolution toward
a stable network state over time may all lead to relative changes
in brain-behavior relations across time and across brain regions.

Network Activation
Activation during the statistical learning process was organized
into five sub-networks each of which showed statistically
independent BOLD signal time courses (i.e., ICs). For each of
these, the BOLD signal cycled with the experimental stimulus
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blocks (Russian words vs. Tones). These task-related networks
included regions that were differentially distributed across
cortical, subcortical, and cerebellar regions. However, a small
number of regions were common to multiple sub-networks,
most notably the inferior frontal gyrus-pars opercularis, the
middle frontal gyrus, and regions comprising the temporal-
parietal-occipital junction. These regions were consistently active
across ICs in Scans 1–4, suggesting they are central to the
network. These findings correspond to those of Tettamanti et al.
(2002), who also identified the pars opercularis, precentral, and
angular/surpramarginal regions for their grammar learning task.
These general similarities between these two studies occurred
despite differences in language modality (auditory vs. visual) and
the presence or absence of ungrammatical exemplars during the
learning period.

This result supports our prediction that this region would be
critical to learning a morpheme system in ways that were not
consistently reported for statistical learning of uninflected word
units segmented from continuous speech (McNealy et al., 2006,
2010; Karuza et al., 2013; López-Barroso et al., 2015; Plante et al.,
2015). The present results can be compared directly with the
results of our previous word segmentation study (Plante et al.,
2015), in that the procedures for scanning and ICA analyses
were identical. In that word segmentation study, activation in
the pars opercularis was reported in the left hemisphere for
two ICs and in the right hemisphere for four ICs. In each of
these ICs, this region was only intermittently activated during
periods of exposure to the input. Likewise, López-Barroso et al.
(2015) reported inconsistent activation of inferior frontal gyrus
in their word segmentation task. However, inconsistent activation
may reflect the difference between requisite activation of regions,
given the nature of the input, and transient activations that
occur as the brain struggles to hone in on the optimal learning
network.

In the current study, the consistent activation of the pars
opercularis, across scans and in multiple ICs, suggests that it
was acting as a hub for this learning task. Logically, within a
neural network, there should be a means to pass information
among sub-networks to produce coordinated functioning at
the overall network level. The left pars opercularis, active
in four out of the five ICs (ICs 1, 2, 4, and 5), is well
positioned for this role. Other areas also showed overlap
among ICs. The second most frequently occurring regions were
in the –temporo-parietal-occipital junction bilaterally, which
showed overlap in two ICs each (ICs 1 and 3). As with the inferior
frontal regions, these areas were also consistently active in all four
scans during the learning period, suggesting these regions were
also central to the learning task. These regions have been reported
for other statistical learning paradigms (e.g., Plante et al., 2014,
2015, 2017; López-Barroso et al., 2015), indicating they have a
general, rather than input-specific role in this type of learning.

If the inferior frontal gyrus plays a role specifically in implicit
learning of inflectional “rules,” then the posterior regions are
likely to support the phonological processing that is pre-requisite
to morphological processing. The supramarginal and angular
gyri appear to contribute differentially to auditory processing.
Activation in the supramarginal gyrus modulates depending

on the listener’s level of attention during word processing
(Christensen et al., 2012), which is consistent with the idea
that posterior temporal-parietal regions are critical for placing
phonological information within the focus of attention (Chien
et al., 2003). The angular gyrus shows greater activation to new
auditory words compared to words heard before (Christensen
et al., 2012). Activation that includes both the supramarginal
and angular gyri is higher for pseudo-words than for real words
(Clark and Wagner, 2003) as well as backward speech than for
forward speech (Karuza et al., 2013). These regions are also
both active when acoustic changes signal different phonological
categories (Turkeltaub and Coslett, 2010). In all these cases,
activation in these areas appears to rise as the signal diverges
from familiar or prototypical phonological material and more
listener resources are required. This function would be critical in
a learning context such as ours as listeners encounter accented
speech, foreign words, and a phonology-based morphological
system for marking gender. Although activation in this area has
not been reported during word segmentation tasks analyzed with
GLM analysis (McNealy et al., 2006, 2010, 2011; Karuza et al.,
2013), both ICA studies (López-Barroso et al., 2015; Plante et al.,
2015) reported supramarginal and angular gyrus activation in
multiple ICs. Therefore, the lack of activation in previous GLM
studies may reflect lack of analytic power rather than a lack of
engagement of these regions.

We suggest that the core statistical learning network for
morphological patterns as seen here is actually the same as
the network that is ultimately activated when skills have been
acquired. This is consistent with the theoretical position that
statistical learning is the mechanism by which language is
established as a cognitive system. However, the present results,
when compared with previous studies of statistical learning,
strongly suggest that there is not one statistical learning module
or network. Instead, the statistical learning network appears
to organize around the input it receives. The present study
demonstrated robust recruitment of the inferior frontal gyrus
that was not present in previous studies of word segmentation
from running speech (McNealy et al., 2006, 2010, 2011; Karuza
et al., 2013; Plante et al., 2015). In the present study, participants
were given single words during the input and during the test
phases, but were not made aware that the target of learning
was a morphological pattern that cued word subclasses. Yet,
from the first scan on, the inferior frontal gyrus was activated
for this input. This strongly suggests that networks leveraged
for statistical learning are driven, from the start, by the nature
of the input rather than strategies that participants develop
to drive their learning. This builds on the finding of Plante
et al. (2015) who reported highly distinct networks for input
that either facilitated or restricted the possibility of statistical
learning. Input that allowed for statistical learning engaged a
much more widely distributed network compared to nearly
identical input from which key input statistics were not present.
This occurred even though the participants were blind to
the nature of the input. The results of the present study
indicate that even when statistical information is present, the
network assembled is driven by fairly specific aspects of the
input.
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The inferior frontal gyrus in particular appears to be
differentially engaged in statistical learning, depending on
the nature of the pattern to be learned. Here, we have
contrasted morpheme learning with the segmentation of words
in running speech. The inferior frontal gyrus appears to
be preferentially engaged in learning phonological patterns
that signal morphological information. For this inflection
pattern, certain gendered morphemes predicted the immediate
occurrence of a specific subset of additional gender morphemes.
This type of co-occurrence is considered an adjacent contingency
in statistical learning parlance. Activation of the inferior frontal
gyrus has also been reported for implicit syntactic learning
(Tettamanti et al., 2002), and with auditory, but non-verbal
stimuli (Barascud et al., 2016). In each of these studies, the
dependencies represented in the input were among adjacent
elements in a sequence. These common findings across similar
input dependencies suggest that bound morpheme learning
may require application of a more general statistical learning
mechanism, rather than different mechanisms for linguistic and
non-verbal learning. Furthermore, the role of the inferior frontal
gyrus’ may be that of “a generic on-line structured sequence
processor that unifies information from various sources. . .”
(Petersson et al., 2012, p. 89). The stimuli used in the present
study required unification of information across elements
presented in the input (e.g., the suffix -tel will also take
either–ya or –yem, but not –oj or –u). This type of learning
can be differentiated from the type of sequential pattern learning
attributed to activation of the superior temporal gyrus in word
segmentation studies (Plante et al., 2015; Barascud et al., 2016).
In word-segmentation paradigms, sequenced elements consisted
of syllable dependencies, such that syllables composing one word
were never encountered within another word. Therefore, every
“word” is phonologically unique in relation to every other word
in the input. In contrast, patterns defining both syntactic and
morphological patterns are distributional in nature. The evidence
for distributional patterns requires calculation of related, but not
always identical contingencies over a set of informative input.

It remains to be seen if other morphological arrangements
show a similar pattern of frontal activation. For example, some
morphological markings reflect non-adjacent contingencies,
as in subject-predicate agreement marking in English. Free
morphemes, such as articles and auxiliaries, may require a
different network than that described for Russian gender
marking. Nevat et al. (2017) reported findings for the inferior
frontal gyrus that may indicate this type of regional variation
is possible. Nevat et al. (2017) reported significant activation
during the test phase of a study in which participants were
previously trained on an artificial grammatical marking system
using an exposure-practice-feedback format. They reported
non-significant activation in pars opercularis, with significant
activation appearing in pars triangularis. Although there are
important methodological differences between their study and
the present work, the findings of Nevat et al. (2017) raise the
possibility that subtle differences in regional activation may
correspond to the distributional properties of the morphology to
be learned.

This basic statistical language-learning system are
accompanied by activations in areas generally associated with
memory and attention (e.g., cingulate cortex, dorsolateral
prefrontal cortex). Again, these activations are more commonly
seen in ICA studies (López-Barroso et al., 2015; Plante et al.,
2015), including the present study, than in those that have
used GLM analyses. However, these additional activations are
consistent with the tenets of the statistical learning framework,
in that attention to and memory for input characteristics is
necessary for this type of learning (Erickson and Theissen, 2015).
The ICA studies have also indicated that a number of transient
activations occur during learning. Some have suggested that
early activation that disappears is involved only during initial
learning (Nevat et al., 2017). However, transient activations also
occurred after the initial learning period here and elsewhere
for implicit language learning tasks (Plante et al., 2014, 2015;
López-Barroso et al., 2015). It is unknown the extent to which
these transient activations actually contribute to the formation
of an effective learning network. If certain transient activations
relate to a particular learning stage, they should replicate
across studies. Activations that fail to replicate are likely to
reflect random changes within the brain as it attempts to form
stable networks that are effective and efficient for the learning
task.
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