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In this paper, we review the evidence that learning is driven by signaling of Prediction Error
[PE] by some neurons. We model associative learning in artificial neural networks using Hebbian
(non-PE) learning algorithms to investigate whether the data used to implicate PE in learning
can arise without actual PE computation. We conclude that the metabolic demands of synaptic
change during Hebbian learning would produce a PE-correlated component in functional magnetic
resonance imaging (fMRI), which suggests that the research used to imply PE in learning is
currently inconclusive.

There is a considerable body of evidence that PE is computed by dopaminergic neurones in
ventral midbrain. Single-cell recordings have shown neurons that are excited by unexpected reward,
and depressed by unexpected lack of reward (Schultz et al., 1997). This response implies reward
PE computation takes place in the brain; however, it does not imply that the PE signal is utilized
during learning, and no single-cell study, to our knowledge, has demonstrated this link to learning.
Furthermore, these findings have only been obtained with regard to rewarded behavior, while the
majority of learning in humans happens in absence of reward (Tolman, 1932).

These concerns can be potentially addressed in fMRI studies by relating a PE-related component
of fMRI to subsequent memory, with or without overt rewards. Unfortunately, most fMRI research
has focused simply on replicating the single-cell findings by identifying a correlate of PE in the
human brain (e.g., McClure et al., 2003; Abler et al., 2006; D’Ardenne et al., 2008), without assessing
its effect on behavior.We are only aware of two fMRI studies that attempted to go beyond the single-
cell recording findings by demonstrating an effect of a PE-related component in fMRI on learning
(Gläscher et al., 2010; McGuire et al., 2014). Both of these studies identify a component of the fMRI
signal that is correlated with trial-by-trial estimates of PE from an assumed learning model, and
then link that component to subsequent decision-making.

However, PE-correlated fMRI signal does not necessarily originate from PE computation: the
BOLD signal measured by fMRI may relate to metabolic changes that are only indirectly related
to neural activity. One of the major factors contributing to the BOLD signal is cellular respiration
associated mainly with ATP metabolism (Aubert and Costalat, 2002), which is elicited by a large
number of cellular processes. Synaptic plasticity has several components working at different
timescales (Collingridge et al., 2004), but there are four notable processes that operate at the
timescale of these studies: (a) Synaptic transmission of signal, (b) facilitation, which is an important
form of short-term synaptic plasticity (Kandel, 2001), (c) migration of receptors, which is crucial
components of long-term potentiation and depression (Collingridge et al., 2004), and (d) fast
forms of homeostatic activity, which serve as a form of global synaptic scaling and metaplasticity
(Pérez-Otaño and Ehlers, 2005).While synaptic transmission (a) is the main energy expense during
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signaling (up to 55% of signaling cost, Harris et al., 2012),
synaptic plasticity (b–d) can increase signaling efficiency up to
hundred-fold (Harris et al., 2012) and therefore be expected
to have a significant energy budget. Many of these synaptic
processes occur rapidly (Collingridge et al., 2004), and could
therefore take place within the same timewindow (resolvable by
fMRI) as any neural activity related to PE. Thus while the actual
energy consumption of synaptic plasticity is unknown (Harris
et al., 2012), we conclude that there is a distinct possibility that
it is sufficiently large to contribute to the BOLD response.

The outstanding question for this alternative explanation
is why synaptic plasticity would correlate with PE, unless PE
were computed and used to update synapses. In what follows,
we model synaptic plasticity as the magnitude of Hebbian
weight update in associative networks, and demonstrate that this
quantity correlates with PE even when the learning algorithm
does not compute PE.

We consider a modified Hebbian learning rule that includes
weight decay term, also called Oja’s rule (Equation 1, Oja, 1982).
This learning rule does not use the current state of network
(e.g., predictions) to inform learning in any way. The only
modification from the classic Hebbian algorithm is that the
weights decrease linearly at each time step, which is the minimal
modification necessary to obtain stable and biologically plausible
learning dynamics. We contrast this variant of Hebbian learning
with Widrow-Hoff learning algorithm, also modified to include
decay to increase its biological plausibility (e.g., Rumelhart and
McClelland, 1988) as shown in Equation (2). The formulation
of Widrow-Hoff learning rule used here is essentially Hebbian
learning scaled by PE. In these equations, wij refers to the weight
between unit i (representing the cue) and unit j (representing the
outcome), ai/aj refer to the activity of unit i/j, tj refers to a desired
output of unit j, 0 ≤ k < 1 is the learning rate, 0 < d ≤ 1 is the
decay rate and the H and WH superscripts refer to Hebbian or
Widrow-Hoff learning rules, respectively.

1wH
ij = −dHwij + kHaiaj (1)

1wWH
ij = −dWHwij + kWHai(tj −

∑

i′

(wi′jai′ )) (2)

First, we address the relationship between learning under
Hebbian and Widrow-Hoff rules in an experiment conducted by
McGuire et al. (2014). The parameter estimation task they used
is effectively associative learning with a single cue, because the
participants’ task was simply to predict the value of a parameter
during each trial. As only one stimulus exists in this paradigm, the
i subscript becomes redundant, therefore we can say that aj = wj

and both H and WH learning rules can be simplified to

1wH′

j = −dH
′

wj + kH
′

aj (3)

and

1wWH′

j = −dWH′

wj + kWH′

(tj − wj). (4)

By equating 1wH′

j = 1wWH′

j , we can see that this statement

is true whenever kH
′

= kWH′

and dWH′

+ kWH′

= dH
′

. This

means that in parameter estimation tasks, learning according to
the Widrow-Hoff rule can be perfectly mimicked by a Hebbian
rule. Therefore, performance on this task cannot be used to argue
for PE learning.

This proof cannot be extended to experiments with multiple
cues (Čevora, 2017), such as the one by Gläscher et al. (2010).
We therefore turn to computational simulations to investigate
whether there is a correlation between Hebbian weight update
and prediction error. In these simulations we look at whether
PE correlates with weight update. Because fMRI observes entire
populations of neurons, in contrast to single-cell recordings, we
need to specify the variables of interest at the population level too.

We only consider the magnitude of the population weight
change, |1WH |, because the fast decreases in synaptic strength
are likely to require a similar amount of ATP as increases (Kandel,
2001; Collingridge et al., 2004) thus producing the same BOLD
signal. Therefore the change associated with trial τ is:

|1WH(τ )| =
∑

i

∑

j

|wij(τ )− wij(τ − 1)| . (5)

Likewise, we only consider the magnitude of the population
PE, given that both positive and negative PE is likely to have
metabolic consequences.We define this quantity, |PE|, as the sum
of the absolute values of differences between predictions for each
possible outcome, ‖aj‖, and the corresponding target values tj, on
the current trial:

|PE| =
∑

j

∣

∣

∣

∣

tj − ‖aj‖

∣

∣

∣

∣

, (6)

where the prediction ‖aj‖:

‖aj‖ =

∑

i aiwij
∑

j

∑

i′ ai′wi′j
(7)

is a normalized activation vector as parameterizations of Hebbian
learning do not produce predictions that can be interpreted
directly as probabilities.

Another quantity of interest is resulting classification error
after learning E . This is defined as a magnitude of difference
between prediction and true (noiseless) outcome for each cue
C, thus not only capturing how well the learning model can
remember observations, but also how resilient it is to noise
during learning:

E =
∑

C





∑

j

tCj − ‖aCj ‖



 . (8)

Simulations were conducted for a number of possible
experimental designs, for both categorical and continuous
associative learning, with various degrees of stochasticity and
various numbers of cues/outcomes. The simulations were run
across the range of values for learning rate and weight decay that
produce plausible learning dynamics (Figure 1). We recorded
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FIGURE 1 | Left plot shows the correlation coefficient between |PE| and |1WH| as a function of learning rate and decay parameters of Hebbian learning during a

quasi stochastic associative learning task. Right plot shows the average classification error E on the task after 50 learning trials. These particular plots reflect a

learning situation where 4 cues are alternately associated with 4 distinct outcomes. 90% of the stimulus-outcomes pairs followed a particular bijective mapping, while

the other stimulus-outcome pairs violated this mapping to introduce stochasticity.

|1WH | and |PE| on each trial, and calculated the correlation
between them.

The resulting correlations, plotted as a function of learning
rate and weight decay, reveal that most of the parameter
space results in strong correlations (Figure 1). Moreover, the
classification error E is almost identical across the parameter
space (except for a region in bottom left where both parameters
are near zero), and therefore almost all parameter combinations
are equally plausible for a real learner that tunes its learning
parameters to the task. In other words, it is not the case that
situations in which |PE| and |1WH | are highly correlated are
non-optimal.

We conclude that, while there is convincing evidence that
PE is computed by some neurons, the current evidence used
to implicate this neural PE signal in learning has alternative
explanations. There are a few fMRI studies that correlate brain
activity with PE, a subset of which go further and link this to
learning outcomes. However, due to the nature of BOLD signal
measured by fMRI, the correlation with PE may not be a result
of actual PE signaling, but rather a result of metabolic processes

related to synaptic plasticity: Our computational modeling
demonstrates that the magnitude of synaptic plasticity is highly
correlated to PE, even when no PE computation takes place
during learning. Note that this article has not addressed the role
of PE at higher levels of analysis, such as the computational level
(Marr, 1982), though one would expect such computation to
still have a neural correlate. Further modeling and experimental
paradigms are therefore needed to establish the basic form of
learning rules underlying human associative learning.
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