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Different Measures of Structural
Similarity Tap Different Aspects
of Visual Object Processing
Christian Gerlach*

Department of Psychology, University of Southern Denmark Odense, Odense, Denmark

The structural similarity of objects has been an important variable in explaining why
some objects are easier to categorize at a superordinate level than to individuate, and
also why some patients with brain injury have more difficulties in recognizing natural
(structurally similar) objects than artifacts (structurally distinct objects). In spite of its
merits as an explanatory variable, structural similarity is not a unitary construct, and
it has been operationalized in different ways. Furthermore, even though measures
of structural similarity have been successful in explaining task and category-effects,
this has been based more on implication than on direct empirical demonstrations.
Here, the direct influence of two different measures of structural similarity, contour
overlap and within-item structural diversity, on object individuation (object decision) and
superordinate categorization performance is examined. Both measures can account for
performance differences across objects, but in different conditions. It is argued that this
reflects differences between the measures in whether they tap: (i) global or local shape
characteristics, and (ii) between- or within-category structural similarity.

Keywords: category-effects, classification, structural similarity, superordinate categorization, visual complexity,
visual object recognition

INTRODUCTION

Structural similarity can loosely be defined as the shape overlap between two or more objects; the
greater the overlap, the more similar they are. From this it follows that the more structurally similar
objects are, the harder it should be to tell them apart; a process termed individuation. This indeed
appears to be the case. Gerlach et al. (2015) for example showed that the more structurally similar
two objects are, the more difficult it is to decide whether they are the same or different objects. This
behavioral effect was further shown to be tightly tied to activation in occipitotemporal brain regions
subserving visual object processing; the greater the structural similarity, the higher the activation.
Perhaps less intuitively, it also turns out that the more structurally similar objects are, the easier it
is to decide whether they belong to the same superordinate class; an effect which probably arises
because objects that belong to the same category are typically more similar in shape than objects
that belong to different categories (Gerlach et al., 2015). Hence, structural similarity can act as a
proxy for category membership (Rosch, 1999) and is considered important for inductive inference
(Sloutsky, 2009; Godwin and Fisher, 2015). These opposing effects of (structural) similarity on
object individuation and object categorization have also been expressed in mathematical terms as
two different decision rules in the Generalized Context Model (Nosofsky, 1986, 1987), which is an
exemplar model of classification. Furthermore, it has been suggested that differences in structural
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similarity can also account for category-specific recognition
disorders following brain damage (Gerlach, 2009), and for
category-effects in normal visual object processing; that is, for
observations that natural objects (animals, vegetables, etc.) are
processed less efficiently than artifacts (vehicles, tools, etc.)
when they must be individuated, as in object naming, but
more efficiently than artifacts when assigned to a superordinate
category, as in superordinate categorization (Riddoch and
Humphreys, 1987; Price and Humphreys, 1989; Gerlach et al.,
2000; Kiefer, 2001; Gale et al., 2006; Gerlach and Gainotti, 2016).
In both cases, it has been hypothesized that the category-effects
reflect that natural objects are more structurally similar than
artifacts (Humphreys et al., 1988; Gerlach, 2016); a suggestion
clearly compatible with the notion that structural similarity is
harmful for object individuation but beneficial for superordinate
categorization.

In spite of its merits as an explanatory variable, structural
similarity is not a unitary construct, and it has been
operationalized quite differently by different authors. Humphreys
et al. (1988), who were the first to consider the role of structural
similarity in category-specific disorders, for example offered two
measures of structural similarity: Contour overlap (CO), and
number of common attributes. The measure of CO was generated
by: (i) Normalizing all the pictures of objects in the Snodgrass and
Vanderwart (1980) corpus for orientation and size, (ii) overlaying
each picture on a grid with pictures of every other object from
the same category (the categories being animals, birds, body
parts, buildings, clothes, crustacea, fruit, furniture, implements,
insects, vegetables, and vehicles), and (iii) calculating the average
overlap between the pictures on their bounding contour –that is,
on their outline shape without consideration of internal details–
as a function of the amount of contour in each target picture.
Ratings of common attributes were based on participants who
were asked to list, from the category name, the attributes in
common across exemplars within the 12 different categories
listed above. Natural objects were found to score higher than
artifacts on both measures, suggesting that natural objects are
generally more structurally similar than artifacts. Similar results
have been found by Tranel et al. (1997) with a related measure
of within-category shape overlap based on silhouettes –which
also captures similarity in global shape– and by Cree and McRae
(2003) based on feature production norms from a corpus of 541
concepts. In contrast to these studies, Laws and Gale (2002) (see
also Laws et al., 2003) found that artifacts were actually more
structurally similar than natural objects when internal details of
stimuli were also measured. This finding was based on Euclidean
Overlap; a measure of pixel overlap across all pairs of pictures in
the Snodgrass and Vanderwart (1980) corpus.

It is clear that the measures described above cover quite a
spectrum. The Euclidean Overlap measure used by Laws and Gale
(2002) –which was based on raw pixel overlap– is more low-level
that the size and orientation normalized CO measure derived
by Humphreys et al. (1988). In comparison to both of these
measures, common attribute ratings are rather high-level being
based on features abstracted from memory rather than physical
images. Clearly, these measures are likely to tap different aspects
of structural similarity (Humphreys and Riddoch, 2002).

A better understanding of what aspects of structural similarity
these different measures may capture can be gleaned from a study
by Op de Beeck et al. (2008). They used a stimulus set comprising
nine artificial shape categories which could be grouped based on
either of two orthogonal similarity dimensions. One dimension
was rather low-level being a pixel-based measure of overlap not
unlike the one derived by Tranel et al. (1997), and thus capturing
the overlap in global shape across stimuli; the dimension also
captured by the CO measure. The other dimension captured
similarity in terms of features (which could be characterized
as either spiked, smoothed, or cubed). Grouping the categories
along the latter dimension corresponded rather closely to a
multidimensional-scaling-derived solution based on pair-wise
similarity ratings provided by the participants, suggesting that
perceived similarity was based on abstraction of the objects’
features rather than on physical overlap among the objects’ global
shapes. Furthermore, fMRI revealed that there were no reliable
patterns of “preference” for low- or high-level based similarity in
visual brain regions V1, V2, V3, or V4v, although activation in
these areas tended to be better associated with low-level than with
high-level measures of similarity. In comparison, the activation
pattern in the lateral occipital complex (LOC) was clearly related
to ratings of perceived (feature-based) shape similarity (Op de
Beeck et al., 2008). A similar finding was reported by Weber
et al. (2009). They found that the pairwise similarity of neural
responses in LOC to pictures of mammals correlated highly with
subjective pairwise similarity ratings of the same set of mammals
but not with measures of pixel-based similarity. Together these
findings suggest a posterior-to-anterior anatomical axis gradient
in similarity sensitivity with posterior regions being sensitive
to low-level based similarity, reflecting physical global shape
overlap, and more anterior areas being sensitive to high-level
based similarity, reflecting more abstract feature-based similarity.
This posterior-to-anterior axis similarity gradient has also been
demonstrated with use of photographs of real objects (Bracci and
Op de Beeck, 2016).

It has recently been suggested that the difference between
globally- and feature-based structural similarity, which here is
tied to low- and high-level measures, respectively, may offer
an explanation for the observation that pixel- and contour-
based measures of similarity have been successful in predicting
category-effects in classification at the superordinate level
(e.g., that natural objects in general are assigned faster to
a superordinate category than artifacts), but not category-
effects in classification at basic and subordinate levels where
objects must be individuated (e.g., that natural objects are
named less efficiently than artifacts) (Gerlach, 2016). The
explanation rests on the assumption that low-level measures
of structural similarity, based on pixel and contour overlap,
capture similarity at a coarse scale (global shape) which is
sufficient to support superordinate classifications, but which
is simply too crude to serve for subordinate or even basic
level classifications, which in turn may rely on more fine-
grained differentiation among features. It has further been
proposed that if this assumption is correct, low-level similarity
measures, reflecting global shape overlap, should correlate with
superordinate classification performance, whereas higher-level
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(feature-based) similarity should correlate with performance in
tasks requiring object individuation such as basic level (dog vs.
cat) or subordinate (Fox Terrier vs. Rottweiler) naming (Gerlach,
2016).

The purpose of the present study is to test these predictions
directly by examining how structural similarity affects the
processing of individual objects at two levels of classification.
This is done by examining the performance of 457 participants in
two different tasks: (i) difficult object decision (deciding whether
pictures represent real objects or non-objects), which requires
object individuation at a finer scale than basic level naming
(Gerlach and Toft, 2011), and (ii) superordinate categorization
(deciding whether stimuli represent natural objects or artifacts).
The real objects in the object decision task were the same objects
which were presented in the superordinate categorization task
allowing for a direct comparison of items across tasks. As a
relatively low-level measure of (physical) structural similarity the
CO measure developed by Humphreys et al. (1988), which was
described above, was used. As a high-level measure of structural
similarity the within-item structural diversity (WSD) measure
developed by Turnbull and Laws (2000) was used. Turnbull and
Laws (2000) presented participants with the name of an object
(e.g., dog, fork) and asked them to rate the extent to which
instances with that name had similar structural representations
(on a scale of 1–5; 1 = very dissimilar; 5 = very similar). Hence,
elephants score higher on this measure than chairs as chairs
come in a variety of shapes whereas elephants do not. The WSD
measure can be considered a high-level measure of structural
similarity because it is based on memories of objects rather than
on the physical properties of objects (drawings) such as the CO
measure. Both measures (CO and WSD) were based on items in
the Snodgrass and Vanderwart (1980) corpus, which also served
as stimuli in the object decision and superordinate categorization
tasks examined here.

The specific hypotheses tested, and their premises, were:
(1) If CO reflects global (physical) structural similarity among
objects from different basic level categories (e.g., different types
of animals), and if global structural similarity is beneficial for
making superordinate categorizations, a negative correlation
between CO and reaction time (RT) in the superordinate
categorization task should be found; the greater the CO, the
faster the categorization. (2) If WSD reflects more abstract
feature-based structural similarity among objects belonging to
the same basic level categories (e.g., different dogs), and if
structural similarity is harmful for object individuation, a positive
correlation between WSD and RT in the object decision task
should be found; the greater the structural similarity, the longer
it will take to individuate the object.

If the predicted effects are found, it will suggest that structural
similarity, or at least different aspects of structural similarity,
exerts opposing effects on individuation and superordinate
categorization.

We have recently demonstrated that another variable; visual
complexity, acts in a similar way in that high visual complexity
is beneficial for superordinate categorization but harmful for
individuation (Gerlach and Marques, 2014). In this study, visual
complexity was indexed by the total number of concavities on the

bounding contour of each picture combined with a measure of
the pictures’ internal details. The reason why visual complexity
exerts opposing effects on superordinate categorization and
object individuation is further addressed in the discussion below.
Here it suffices to say that visual complexity and visual similarity
are likely to reflect different dimensions of objects (Panis and
Wagemans, 2009). As an example, fruits and mammals are both
categories with many structurally similar members but mammals
are more visually complex than fruits, which again are more
structurally similar but less visually complex than members of
the category furniture. It is, however, not known how visual
complexity and structural similarity exert their influence. Do
the effects modulate each other or are they additive? Hence,
as a last objective the relative influences of structural similarity
and visual complexity on superordinate categorization and object
individuation were examined.

MATERIALS AND METHODS

Participants
The data comprised responses from a total of 457 individuals
(mean age 23, range 18–57 years, 331 females). Following data
trimming (see below) the dataset comprised responses from a
total of 409 individuals (mean age 23, range 18–57 years, 298
females).

The dataset has been collected over a 5 year period (2011–
2015), and parts of the dataset have formed basis for two
published papers. As mentioned above, Gerlach and Marques
(2014) examined the role of visual complexity on object
individuation and superordinate categorization (N = 184),
whereas Gerlach and Gainotti (2016) examined whether there
were any gender differences in category-effects which they did not
find support for (N = 366). The participants were students who
performed the experiments as part of their education; a course
in cognitive psychology. The course is approved by the study
board at the Department of Psychology, University of Southern
Denmark, and the experiments conducted do not require formal
ethical approval/registration according to Danish Law and the
institutional requirements. Prior to participation the students
were informed that data collected in the experiments might be
used in an anonymous form in future publications. Participants
were free to opt-out if they wished, and participation in the
experiments was taken as consent.

Design
Each participant first performed the categorization task followed
by the object decision task. In the categorization task the
participants were to press the M-key if the stimulus depicted
an artifact and the N-key if it depicted a natural object. In the
object decision task the participants were instructed to press the
M-key if the stimulus represented a real object and the N-key if it
represented a non-object. The participants were asked to respond
as fast and as accurately as possible. Prior to data collection the
participants performed a practice version of the upcoming task.
Stimuli used for practice were not used in the actual experimental
conditions.
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Stimuli
In the categorization task 80 pictures were presented. These
pictures were selected from the set by Snodgrass and Vanderwart
(1980) and comprised 40 artifacts and 40 natural objects. The two
sets of objects were matched with respect to image agreement,
visual complexity, and familiarity based on the norms collected
by Snodgrass and Vanderwart (1980). However, the two sets
of objects differed significantly in both CO [t(59.98) = −6.2,
p < 0.001] and WSD [t(78) = −3.4, p < 0.001], with natural
objects scoring higher –being more similar– than artifacts on
both measures. The CO measure was available for 35 of the
natural objects and for 33 of the artifacts. The WSD measure was
available for all 80 items.

In the object decision task 160 stimuli were presented: 80
chimeric non-objects and 80 real objects. The real objects were
the same as used in the categorization task. The 80 chimeric
drawings of non-objects used in the difficult object decision tasks
were selected mainly from the set made by Lloyd-Jones and
Humphreys (1997). These stimuli are line-drawings of closed
figures made by exchanging parts belonging to objects from the
same category (Figure 1). The non-objects were composed by
parts from objects that were not used as real objects. The order
of stimuli was randomized in each task.

Procedure
All stimuli subtended 3–5◦of visual angle and were presented
centrally on a white background on a PC-monitor. The stimuli
were displayed until response. The interval between response and
presentation of the next stimulus was 1 s. RTs were recorded via
keyboard.

Statistical Analysis
The RT data were positively skewed and contained several
outliers. This was addressed using the same procedure as Gerlach
and Marques (2014). First the data was trimmed by excluding any
participant who had a RT which fell above/below 2 SDs from the
mean of the whole sample for any of the four conditions (object

FIGURE 1 | Examples of stimuli used in the object decision task. (A) Chimeric
non-objects, and (B) real objects. The real objects were also used in the
superordinate categorization task.

decision with artifacts, object decision with natural objects,
categorization of artifacts, and categorization of natural objects).
Data from 48 participants were removed [10.5% of the data,
which is within the recommended limits; Ratcliff (1993)]. Next
the same procedure was performed across items. This resulted
in the removal of 7 items [8.8% of the data, which again is
within the recommended limits; Ratcliff (1993)]: 2 items from
object decision with natural objects [#159, 201], and 2 items
from object decision with artifacts [#189, 213], 2 items from
the categorization of natural objects [#241, 252], and 1 item
from the categorization of artifacts [#58]. The items removed
were exactly the same as the ones removed in the study by
Gerlach and Marques (2014). This is not just a consequence of
the fact that part of the current dataset (40%) comprised the
data used by Gerlach and Marques (2014). When trimming was
performed on the data not used in the study by Gerlach and
Marques (2014) (n = 273), all of the seven pictures besides #241
deviated more than 2 SDs from the sample means. The trimmed
data (over both participants and items) were subsequently log
transformed (LogRT). Following these procedures the data did
not depart significantly from normality (Kolmogorov–Smirnov,
all p’s > 0.05).

The first series of analyses examined effects of task and
category on accuracy scores across the four conditions, and also
included a two-way ANOVA on the LogRTs with the factors
Task (categorization vs. object decision) and Category (artifacts
vs. natural objects). These analyses are performed over both
participants and items. Analyses by participants identify effects
that are reliable across participants, but which could in principle
be driven by a few items which are not representative for the
whole set of items. In contrast, analyses by items identify effects
that are reliable across items, but which could potentially be
driven by a few participants who are not representative for the
whole group of participants. Hence, an effect of category, which is
found significant across both participants (denoted F1) and items
(denoted F2), will signify an effect which is representative for the
majority of the participants tested and for the majority of the
examined items from the category. While the analysis of Category
is not of direct importance here, it is included because the dataset
gives a unique possibility to test category-effects across the two
tasks in a very large sample (N = 409).

Given that the only purpose of the non-objects in the present
study was to ensure detailed shape processing of the real objects,
the analyses of LogRTs presented below are all based on correct
responses to real objects only (Gerlach and Toft, 2011). Likewise,
accuracy scores are also based on responses to real objects only.

In the second series of analyses it is first examined whether the
two measures of structural similarity –CO and WSD– correlate
with each other. Then it is examined whether they correlate with
performance on the object decision and the categorization tasks.
The measure of CO is available for 63 of the 73 items that survived
the trimming procedure. The measure of WSD is available for
all. To make comparisons of the two measures comparable the
analyses are confined to the 63 items for which both measures
are available. However, the correlations for the WSD measure
on all 73 items are also reported. The correlations reported are
based on the Pearson product-moment correlation coefficient,
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and their 95% confidence intervals are computed by means of bias
corrected and accelerated bootstrap analyses with 1000 samples.

In the final series of analyses, the relative influence
of structural similarity and visual complexity on object
individuation and categorization is examined by means of
multiple regression. The measure of visual complexity used
here is based purely on objective image statistics: The total
number of concavities on the bounding contour of each picture
combined with a measure of its internal details [the ratio (internal
pixels)/(total pixels)]. For a more detailed discussion of this
measure compared with other measures of visual complexity the
reader is referred to Gerlach and Marques (2014).

RESULTS

Effects of Task and Category
Accuracy
Analyses by participants (Wilcoxon signed-rank test) revealed a
significant difference in accuracy between artifacts and natural
objects in both the object decision task (Z = −4.67, r = 0.23,
p < 0.001) and the superordinate categorization task (Z =−4.95,
r = 0.25, p = 0.001); with accuracy being higher for artifacts
in both conditions. Accuracy was also significantly higher in
the categorization task than in the object decision task for both
artifacts (Z = −8.95, r = 0.44, p < 0.001) and natural objects
(Z =−8.43, r = 0.42, p < 0.001).

Analyses by items revealed a significant difference in accuracy
between artifacts and natural objects in the object decision task
(Mann–Whitney test, U = 229.5, r = 0.57, p < 0.001), and in the
categorization task (Mann–Whitney test, U = 429.5, r = 0.32,
p = 0.001). Also, for natural objects, accuracy was significantly
higher in the categorization task than in the object decision task
(Wilcoxon signed-rank test, exact test, Z = −3.99, r = 0.47,
p < 0.001). For artifacts this difference was not significant
(Wilcoxon signed-rank test, exact test, Z = −1.1, r = 0.13,
p= 0.28).

Log RTs
The ANOVA analyses revealed a significant main effect of Task
[F1(1,408) = 334.95, MSe = 1067, η2

p = 0.45, p < 0.001;
F2(1,71)= 95.32, MSe = 0.08, η2

p = 0.57, p < 0.001], with longer
logRTs during object decision compared with categorization,
an effect of Category that was significant over participants
[F1(1,408) = 10.12, MSe = 0.007, η2

p = 0.02, p < 0.001]
but not over items [F2(1,71) = 0.03, MSe = 0.00, η2

p = 0.0,
p = 0.87], and a significant interaction between Task and
Category [F1(1,408)= 316.1, MSe = 0.234, η2

p = 0.44, p < 0.001;
F2(1,71) = 32.93, MSe = 0.027, η2

p = 0.32, p < 0.001], with the
difference between tasks being greater for natural objects than for
artifacts. Pairwise comparisons over both items and participants
(t-tests) revealed that all simple main effects were significant (all
p’s < 0.03). See Table 1 for details concerning RTs, LogRTs, and
accuracy.

The finding of faster LogRT for natural objects than for
artifacts in the superordinate categorization task in the context
of lower accuracy for natural objects than for artifacts could

in principle reflect a speed-accuracy trade-off. To address this
formally, it was examined whether the difference in LogRT
between categories in the superordinate categorization task could
be accounted for by differences in accuracy. This was done
by computing the correlation between LogRT and category
while controlling for accuracy. Performed over participants, the
correlation between LogRT and category was unchanged after
controlling for accuracy (r = −0.21 in both cases). For the same
analysis over items, the correlation between LogRT and category
increased from r = −0.47 to r = −0.69 after controlling for
accuracy. Hence, there is nothing to suggest that the faster LogRTs
for natural objects compared with artifacts in the superordinate
task reflects that the participants have reduced their RT to natural
objects relative to artifacts at the cost of reducing their accuracy
with natural objects. Note also that the significant decrease in
latency for natural objects in the superordinate categorization
task compared with the object decision task is mirrored by a
similar reduction in error rate; just as the case was for artifacts
(over participants).

Considered together the results from the analyses examining
effects of category are rather clear: Natural objects are
processed less efficiently than artifacts when the demand on
perceptual differentiation is high (object decision), but this
disadvantage is reversed (latency)/reduced (accuracy) when the
demand on perceptual differentiation is lowered (superordinate
categorization).

Effects of Structural Similarity on Object
Individuation and Superordinate
Categorization
There was a reliable positive correlation between the CO and
the WSD measures for the items examined here {r(63) = 0.32,
95% CI [11, 49], p < 0.05}. In comparison, the correlation
between the CO and the WSD for the whole sample of Snodgrass

TABLE 1 | Number of observations (n), median accuracy in %, mean RTs and
mean log-transformed RTs (LogRT) in the object decision task and the
categorization task computed across items and participants.

n Accuracy in % RT LogRT

Object decision (Real objects) over items

Artifacts 37 98 (89–100) 765 (80) 2.88 (0.04)

Natural objects 36 96 (91–98) 800 (66) 2.90 (0.04)

Categorization over items

Artifacts 37 98 (94–100) 729 (31) 2.86 (0.02)

Natural objects 36 98 (94–99) 684 (36) 2.83 (0.02)

Object decision (Real objects) over participants

Artifacts 409 97.5 (80–100) 762 (108) 2.88 (0.06)

Natural objects 409 95 (67.5–100) 799 (119) 2.90 (0.06)

Categorization over participants

Artifacts 409 100 (72.5–100) 718 (111) 2.85 (0.07)

Natural objects 409 97.5 (75–100) 672 (102) 2.82 (0.07)

Range for accuracy in % and standard deviations for RTs and LogRTs are given
in brackets. The differences between natural objects and artifacts in accuracy
and latency were significant in both tasks (object decision and categorization) and
across both items and participants (all p’s < 0.01).

Frontiers in Psychology | www.frontiersin.org 5 August 2017 | Volume 8 | Article 1404

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-01404 August 17, 2017 Time: 18:7 # 6

Gerlach Structural Similarity and Object Processing

and Vanderwart items for which both measures are available is
r(219)= 0.24 (95% CI [13, 35], p < 0.001). This suggests that the
association between the two measures is not only found for the
subset of items examined here.

Contour overlap did not correlate reliably with LogRT in the
object decision task {r(63) = 0.02, 95% CI [−18, 23], p = 0.86}
whereas WSD did {r(63) = 0.32, 95% CI [14, 50], p < 0.05}
[For the full set of items surviving the trimming procedure
(N = 73), the correlation between object decision LogRT and
the WSD measure was r = 0.32, 95% CI [14, 50], p < 0.01]. For
superordinate categorization the reverse was found in that CO
correlated reliably with LogRT {r(63) = −0.42, 95% CI [−61,
−24], p < 0.001} whereas WSD did not {r(63) = −0.1, 95%
CI [−31, 13], p = 0.45} {For the full set of items surviving
the trimming procedure (N = 73), the correlation between
superordinate categorization LogRT and the WSD measure was
r = −0.03, 95% CI [−26, 19], p = 0.78}. See Figure 2 upper
and lower left panels for scatterplots showing the relationship
between LogRT and structural similarity (WSD and CO) in the
object decision task and the superordinate categorization task.

As described above natural objects and artifacts differed
in terms CO and WSD, with natural objects scoring higher

than artifacts on both measures. Hence, the category-effects
observed in the first analysis could in principle be driven
by differences between the two categories in CO and WSD.
To examine this possibility, two new ANCOVA analyses were
performed on all items for which CO and WSD measures
were available (33 natural objects and 30 artifacts), with the
two measures used as covariates. Prior to entering WSD as
a covariate in the analysis of the object decision task, there
was a significant effect of category (F2 = 5.66, MSe = 0.009,
η2

p = 0.09, p < 0.05). However, following adjustment for the
effect of WSD, the effect of category was no longer significant
(F2 = 1.84, MSe = 0.003, η2

p = 0.03, p= 0.18). For superordinate
categorization, the effect of category was significant both before
(F2 = 33.84, MSe = 0.011, η2

p = 0.36, p < 0.001) and after
adjusting for CO (F2 = 17.05, MSe = 0.006, η2

p = 0.22,
p < 0.001).

In summary, increasing levels of structural similarity affected
object processing in a negative manner during individuation
(WSD), but in a positive manner during superordinate
categorization (CO), and these effects of structural similarity were
able to account for much of the variance otherwise attributed to
category (natural objects vs. artifacts).

FIGURE 2 | Scatterplots showing the correlations (zero-order) between structural similarity (WSD and CO)/visual complexity and LogRT in the object decision task
(Upper) and the categorization task (Lower). Also shown are the regression lines, the Pearson correlation coefficients (r) and their associated 95% CI’s computed
by means of bias corrected and accelerated bootstrap analyses with 1000 samples.
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The Relative Influence of Structural
Similarity and Visual Complexity on
Object Individuation and Superordinate
Categorization
Given that WSD correlated reliably with performance in the
object decision task, and given that visual complexity has been
shown to affect performance in this task (Gerlach and Marques,
2014), the relative influence of these measures on performance
was examined by means of a hierarchal multiple regression
analysis with two steps. Step one included only WSD as a
predictor of object individuation performance, whereas step
two also included visual complexity as a predictor. As can
be seen from Table 2, both WSD and visual complexity were
reliable predictors of object individuation performance, and
hence addition of visual complexity increased the fit of the
regression model from R2

= 0.1 to R2
= 0.28.

Given that CO correlated reliably with performance in
the superordinate categorization task, and given that visual
complexity has been also shown to affect performance in this
task (Gerlach and Marques, 2014), the relative influence of
these measures on performance was also examined by means
of a hierarchal multiple regression analysis with two steps.
Step one included only CO as a predictor of categorization
performance, whereas step two also included visual complexity
as a predictor. As can be seen from Table 3, both CO and
visual complexity were reliable predictors of superordinate
categorization performance, and hence addition of visual
complexity increased the fit of the regression model from
R2
= 0.18 to R2

= 0.28.
It is worth noting that adding visual complexity as a predictor

to the two regression models did not affect the strength of
the correlations found between object decision performance
and the WSD measure on the one hand and superordinate
categorization performance and the CO measure on the other. In
other words, the effect of structural similarity on object decision
and superordinate categorization performances is not influenced

TABLE 2 | Linear model of predictors of object individuation performance (object
decision).

b 95% CI SE b β

Step 1

Constant 2.824 2.786, 2.868 0.0212

Within-Item
structural
similarity

0.020 0.008, 0.03 0.005 0.32

Step 2

Constant 2.805 2.766, 2.846 0.0212

Within-Item
structural
similarity

0.018 0.007, 0.028 0.005 0.29

Visual
complexity

0.000011 0.000006, 0.000018 0.000003 0.42

95% confidence intervals and standard errors are estimated by means of bias
corrected and accelerated bootstrap analyses with 1000 samples. R2

= 0.10 for
Step 1; 1R2

= 0.28 for Step 2 (p’s < 0.05).

TABLE 3 | Linear model of predictors of superordinate categorization
performance.

b 95% CI SE b β

Step 1

Constant 2.874 2.862, 2.887 0.0065

Contour overlap −0.002 −0.003, −0.001 0.0004 −0.42

Step 2

Constant 2.885 2.870, 2.903 0.0072

Contour overlap −0.002 −0.003, −0.001 0.0004 −0.42

Visual complexity −0.000004 −0.000007, −0.000002 0.000001 −0.33

95% confidence intervals and standard errors are estimated by means of bias
corrected and accelerated bootstrap analyses with 1000 samples. R2

= 0.18 for
Step 1; 1R2

= 0.28 for Step 2 (p’s < 0.01).

by differences in visual complexity suggesting that effects of
structural similarity and visual complexity are additive.

DISCUSSION

The object decision task was more difficult to perform than the
superordinate categorization task. This is compatible with the
assumption that it requires less object individuation to classify
an object at a superordinate level than it does to decide whether
it represents a real object or a chimeric non-object (Gerlach
et al., 2000). As in previous studies, it is also found that task
type (object decision vs. categorization) interacts with category
(natural objects vs. artifacts), with natural objects being processed
faster than artifacts in the superordinate categorization task but
more slowly in the object decision task (Gerlach, 2009).

A lot of evidence suggest that this interaction between task
type and category can be explained by assuming that natural
objects are more structurally similar than artifacts, and that
high structural similarity is advantageous when objects must
be assigned to a superordinate category but disadvantageous
when objects must be individuated (Gerlach, 2009). However,
as discussed in the Introduction, evidence directly supporting
the role of structural similarity in visual object processing has
been inconsistent. It has recently been proposed that some of this
inconsistency may reflect that low-level measures of structural
similarity, based on pixel and CO, may capture similarity at
a coarse level (global shape) that is informative for making
categorizations at the superordinate level. In comparison, the
type of similarity that affects classification at the basic and
subordinate level is likely to be captured by more abstract
measures, such as number of common parts and distinctive
features, which may not correspond in any direct way to
statistics derived from physical images (Gerlach, 2016). This
proposal was tested directly here by examining how two different
measures of structural similarity correlated with performance
in a superordinate categorization task, which requires little
object individuation, and an object decision task which requires
comparably more object individuation. The first similarity
measure examined is a relatively low-level measure based on
the amount of CO between objects belonging to the same
superordinate class (e.g., animals) (Humphreys et al., 1988).
The other high-level measure examined, termed WSD (Turnbull
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and Laws, 2000), reflects how structurally similar people judge
different instances of the same basic level category, i.e., DOG,
to be.

As predicted, the CO measure correlated significantly with
performance in the superordinate categorization task accounting
for 18% of the variance; the higher the CO, the faster the
classification. In comparison, CO had no reliable effect on
object individuation performance (object decision). For the WSD
measure the reverse was found. WSD had no reliable effect
on superordinate categorization performance but it accounted
for 10% of the variance in object individuation performance,
with low structural similarity being associated with faster
performance. These findings directly support the suggestion that
structural similarity exerts opposing effects on superordinate
categorization and object individuation. Moreover, analyses
of covariance demonstrated that category (natural object vs.
artifact) did not explain any variance in the object decision
task that could not be accounted for by differences in WSD,
and that adjusting for CO caused the amount of variance
explained by category in the superordinate categorization task
to drop considerably. Both observations support the notion
that category-effects may, at least partly, be accounted for
by difference in structural similarity between natural objects
and artifacts. Finally, the present results reflect performance
differences with individual objects, rather than performance
differences based on mean similarity ratings for given categories
of objects (e.g., natural objects vs. artifacts).

In spite of the different effects of CO and WSD on task
performance, there was a moderate positive correlation between
the measures (r = 0.32). This relationship may reflect that basic
level categories, whose members are rather similar according to
the WSD measure, such as DOG, also tend to resemble other basic
level categories in structure, such as TIGER, with which they form
superordinate categories, such as ANIMAL. It is the latter aspect
which is most clearly captured by the CO measure.

It has recently been described how another measure –
visual complexity– seems to work in the same manner as
structural similarity (Gerlach and Marques, 2014). Using the
same tasks as described here (and a subset of the same
participants; n = 184), Gerlach and Marques (2014) showed
that high levels of visual complexity were beneficial for fast
superordinate categorization performance (r = −0.31) but
harmful for fast object individuation (r= 0.43). These similarities
between visual complexity and structural similarity prompted
an examination of the conjoint effects of these variables on
superordinate categorization and object individuation in the
present sample. This was done by means of multiple regression
with WSD and visual complexity as predictors of object
individuation performance (object decision), and with CO and
visual complexity as predictors of superordinate categorization
performance.

The results of these analyses showed that WSD and visual
complexity had similar, but independent, effects on object
individuation performance (object decision), and that adding
visual complexity as a predictor increased the amount of
explained variance from 10 to 28%. For both predictors,
higher scores on these variables were associated with poorer

performance. Likewise, CO and visual complexity had similar,
but independent, effects on superordinate categorization
performance, and adding visual complexity as a predictor
increased the amount of explained variance from 18 to 28%. For
both predictors, higher scores on these variables were associated
with better performance. Hence, structural similarity and visual
complexity cause similar and opposing effects on superordinate
categorization and object individuation, and the effects of these
variables are additive.

Both effects of structural similarity and visual complexity
can be accounted for in the framework of the PACE model
which was originally advanced in order to account for category-
effects in visual object processing (Gerlach, 2009). To see
how, this model will be described briefly. According to PACE,
visual object classification is based on two operations: Shape
configuration and selection. The first is the binding of visual
elements into elaborate shape descriptions which specifies the
relationships between the parts. This shape description can then
be matched with structural representations stored in visual long-
term memory (VLTM). The matching process is conceived of as
a race between VLTM representations competing for selection.
The VLTM representation that matches the configured shape
description the best wins the race, i.e., is selected. The match
criterion is considered task dependent. Hence, when fine-grained
discrimination is required, as in classification at a subordinate
level, there will be an elaborate match criterion. In a task like
superordinate categorization on the other hand, which requires
gross perceptual processing only, a more lax match criterion will
be sufficient. When the shape description is successfully matched
with a VLTM representation based on a given criterion, the
object is classified as a particular sort of instance. The more
specific the match criterion, the more loops of VLTM access
and shape configuration must be undertaken to gain sufficient
evidence for correct classification. Thus, the degree of perceptual
differentiation—or object individuation—required by a given
task depends directly on the nature of the match criterion.

At the stage of selection, then, objects with high structural
similarity are thus disadvantaged compared with structurally
distinct objects when the demand on perceptual differentiation
is high. This is so because structurally similar objects activate a
greater number of related VLTM representations that compete
for selection than do structurally distinct objects. However, at
the stage of shape configuration, objects characterized by high
structural similarity may enjoy an advantage. This assumption is
based on the following premises: (i) Global shape characteristics
may be processed before local shape characteristics, providing an
initial frame in which local details are later embedded; (ii) global
shape characteristics are more diagnostic of basic level object
identity for structurally similar than for structurally distinct
objects; and (iii) information concerning object identity can be
used to augment shape configuration in a top-down manner
[for evidence supporting these assumptions see Gerlach (2016)].
Hence, global shape characteristics may be more supportive for
the shape configuration of structurally similar than for the shape
configuration of structurally distinct objects.

A final –and central– assumption in the PACE model is that
shape configuration does not precede access to VLTM. Rather,
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there is a first pass access to VLTM representations based on
the global outline of the stimulus. This first pass will yield initial
hypotheses concerning the likely identity of the stimulus which
can then be used in a top-down manner to support the build-
up of a more detailed description of the stimulus; a description
which can serve as input for a more specific match with VLTM
representations (Gerlach and Toft, 2011).

In PACE then, structural similarity is thus assumed to be
harmful for object individuation. If, on the other hand, the
demand on perceptual differentiation is low –that is, when objects
need not be individuated– PACE predicts better performance
with structurally similar objects. This is so because: (i) The
global shape of structurally similar objects is more diagnostic
of category membership than the global shapes of structurally
distinct objects, (ii) the shapes of structurally similar objects are
more easily configured than the shapes of structurally distinct
objects, while (iii) there is no need for selection based on fine-
grained discriminations. Hence, PACE can readily account for the
opposing effects of structural similarity on object decision and
superordinate categorization found here.

As demonstrated by Gerlach and Marques (2014), PACE
can also account for the effect of visual complexity. Specifically
they argued that high visual complexity will be: (i) Beneficial
for selection because objects of high complexity, due to their
richness of information, activate fewer candidate representations
in VLTM that need to be differentiated than less complex
objects, but (ii) harmful for shape configuration because it is
more difficult to form (elaborate) perceptual representations
of complex objects than of less complex objects [for similar
arguments see Panis and Wagemans (2009) and Torfs et al.
(2010)]. Hence, during superordinate categorization, high visual
complexity is advantageous because there is little need for object
individuation. In comparison, during object decision there is
such a need, causing high visual complexity to be harmful.

Finally, PACE also offers a possible explanation for a
somewhat puzzling aspect of the current results. As argued
above, it is not surprising that the CO measure did not correlate
with object individuation, as it taps structural similarity among
rather than within basic-level categories. What is more surprising
is that the WSD measure did not correlate with both object
individuation performance and superordinate categorization
performance. After all, if members of a given basic-level category
are highly similar, and if high structural similarity is beneficial
for superordinate categorization, why then are objects which are
highly structurally similar according to the WSD measure not
assigned to a superordinate category faster than objects which
are more structurally distinct? To answer this question, consider
first that the CO measure primarily reflects similarity in global
shape characteristics, being based only on the objects’ bounding
contour and not on internal details. In comparison, the WSD
measure is likely to reflect similarity in terms of features (local
shape characteristics), cf. the finding by Op de Beeck et al. (2008)
that people spontaneously, that is without specific instructions
other than to rate visual similarity, weigh features more than
global shape. If this is so, and if superordinate classification can
be accomplished based primarily on global shape characteristics
(Collin and McMullen, 2005), this may explain why WSD

does not correlate with superordinate classification performance
even though it taps structural similarity and affects object
individuation. In PACE, this idea can be tied to the assumption
that global shape, and hence global shape similarity, dominates
early on in object processing, driving the first pass access
to VLTM representations. If object classification can be
accomplished based on this first pass, within-category similarity
may not matter much. Accordingly, within-category similarity
will only affect the shape configuration process, and subsequent
recurrent processing, if the demand on perceptual differentiation
increases, and then in a proportion contingent on the degree of
perceptual differentiation required.

The present findings bear some resemblance to visual
search studies which have also shown that form-based target-
distractor similarity modulates search performance (Duncan and
Humphreys, 1989; Tollner et al., 2015); the higher the similarity
the less efficient the search becomes. This modulation may reflect
similarity in both local shape characteristics (details/features)
and global shape characteristics (the configuration of local shape
characteristics). Interestingly, when the target is defined by a
configuration of local shapes which forms a pregnant global
shape (e.g., a Kanizsa figure), search is less affected by target-
distractor similarity than when the local configuration does not
form a pregnant shape (Conci et al., 2007). In other words, target-
distractor similarity cannot simply be predicted by summing the
similarity between the individual local elements but also rests on
higher order shape characteristics carried by the configuration of
the local elements. This is not unlike the role that the PACE model
ascribes to global shape in mediating the first pass access to VLTM
representations.

CONCLUSION

The present study finds direct support for the assumption that
structural similarity is beneficial for superordinate categorization
but harmful for object individuation. In comparison with
previous studies, the present results reflect differences in
performance with individual and common objects, rather than
performance differences based on mean similarity ratings for
given categories of objects (e.g., natural objects vs. artifacts)
or artificial stimuli. It is also suggested that different measures
of structural similarity may capture different aspects of this
construct. In particular, the two measures examined here: CO
and WSD, may differentially tap variations along two dimensions:
(i) global (CO) versus local shape characteristics (WSD), and
(ii) between-category (CO) versus within-category structural
similarity (WSD). Both dimensions are likely to be relevant at
different stages in visual object processing, which is also reflected
in the explanations offered for the present findings. A firmer
understanding of their relative contributions, however, must
await future studies that can tease these aspects apart.
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