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This Monte Carlo simulation examined the effects of variable selection (combinations
of confounders with four patterns of relationships to outcome and assignment to
treatment) and number of strata (5, 10, or 20) in propensity score analyses. The
focus was on how the variations affected the average effect size compared to quasi-
assignment without adjustment for bias. Results indicate that if a propensity score
model does not include variables strongly related to both outcome and assignment,
not only will bias not decrease, but it may possibly increase. Furthermore, models that
include a variable highly related to assignment to treatment but do not also include a
variable highly related to the outcome could increase bias. In regards to the number of
strata, results varied depending on the propensity score model and sample size. In 75%
of the models that resulted in a significant reduction in bias, quintiles outperformed
the other stratification schemes. In fact, the richer that the propensity score model
was (i.e., including multiple covariates of varying relationships to the outcome and to
assignment to treatment), the more likely that the model required fewer strata to balance
the covariates. In models without that same richness, additional strata were necessary.
Finally, the study suggests that when developing a rich propensity score model with
stratification, it is crucial to examine the strata for overlap.

Keywords: propensity score, stratification, Monte Carlo simulation, effect size, variable selection

INTRODUCTION

Although randomized studies may be the ideal, the nature of the subjects and settings as well as
economic constraints and ethics prohibit many large-scale experimental studies in social science
or psychological research. When data are observational or quasi-experimental, the subjects who
receive a particular intervention (the treatment group) and those who do not (the comparison
group) may have systematic pretreatment differences that are related to the outcome of interest,
such as different ability levels (Rosenbaum and Rubin, 1983; Joffe and Rosenbaum, 1999;
D’Agostino and Rubin, 2000; Braitman and Rosenbaum, 2002). Differences in outcomes between
the two groups may reflect these differences, which are regarded as bias, rather than effects of the
intervention, whether it is a program, policy, or other “treatment.” Therefore, when examining
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treatment effects in observational studies to make causal
inferences, psychologists must make analytical adjustments for
the overt bias, that is, the measured pretreatment differences
[Note that even after adjusting for overt bias, researchers cannot
assume that treatment effects are measured without bias unless
all necessary covariates are observed and measured without error
(Rosenbaum and Rubin, 1983)].

The first step in propensity-score methods is to create the
propensity score. One of the goals of this study is to examine
whether researchers should focus only on variables related to
assignment (as historically was done) or also to covariates
related to the otucome. Once the propensity score is created,
the author must choose a propensity-score method. Frequently
used propensity-score methods include stratification, covariate
adjustment, and matching (for more detailed description, see
Austin, 2007, 2008; Austin et al., 2007; D’Agostino, 2007; Lunt
et al., 2009; Shadish and Steiner, 2010). Of particular interest to
this study is the method of stratifying subjects on a propensity
score (Rosenbaum and Rubin, 1983) to estimate treatment effects.
In this method, the researcher creates balanced strata based on
the propensity score, and the researcher must make a decision
of how many strata to create. Some examples of propensity
score stratification in educational psychology research include
studies by Hong and Raudenbush (2005), Adelson et al. (2012),
Dağli and Jones (2013), and Goos et al. (2013). Despite the
widespread usage of propensity-score methods, limited research
has been conducted on variable selection for the propensity
score model or on the number of strata needed to minimize
bias in the estimate of the treatment effect. The purpose of
this Monte Carlo simulation study was to examine the effects
of variable selection and number of strata in propensity score
analyses.

LITERATURE REVIEW

The Propensity Score
The propensity score represents the conditional probability
of membership in the treatment group based on measured
pretreatment background variables (Rosenbaum and Rubin,
1984, 1985; Joffe and Rosenbaum, 1999). Stated formally, the
propensity score e(x) is the conditional probability of belonging
to the treatment group given the observed pretreatment variables,
x, denoted as

e(x) = pr(z = 1|x),

where z = 1 for subjects in the treatment group and z = 0
for comparison subjects (Rosenbaum and Rubin, 1983). By
making analytical adjustments based on the relationship between
pretreatment characteristics and treatment group membership,
researchers attempt to reconstruct a situation similar to random
assignment after the fact, although this is limited to observed
pretreatment characteristics only and does not adjust for
hidden bias (Braitman and Rosenbaum, 2002). By adjusting for
these pretreatment confounders through the propensity score,
researchers obtain “quasi-randomization of treatment groups to

minimize bias and to better estimate the true effects of treatment”
(Newgard et al., 2004, p. 954).

The propensity score creates balance between treatment and
comparison groups in the sense that when the propensity score is
held constant – that is, when subjects have the same propensity
score – the joint distribution of the pretreatment covariates is the
same across the two groups. Because the propensity score adjusts
for this vector of covariates, the researcher assumes strongly
ignorable treatment assignment given those observed covariates,
although that assumption only holds to the degree that all
relevant pretreatment covariates are measured (Rosenbaum and
Rubin, 1983). Thus, by using the propensity score, researchers
can compare subjects with equal probability of being in the
treatment group based on the covariates but who are, in fact,
in different groups (Rosenbaum and Rubin, 1983, 1984; Shadish
et al., 2006).

Researchers have several options regarding how to use the
propensity score in their analyses, including matching, weighting
(Thoemmes and Ong, 2016) and stratification (also called
subclassification). One method is stratification, or grouping
subjects based on their propensity score (either with equal-
interval strata in which the range of propensity scores is divided
by the number of strata so that each stratum is equal width or
with equal-size strata in which the strata are divided according
to percentiles so that each stratum includes the same percent
of participants, with varying ranges of propensity scores in each
stratum). Once researchers stratify the subjects on the propensity
score, they can compare the effects of treatment between the
two groups within the same strata, or subclass, thus controlling
for overt bias (Cochran, 1965, 1968; Rosenbaum and Rubin,
1984). Stratification has several advantages, including that it
is easy to implement and to interpret, it often is convincing
to non-technical audiences, and it easily can accommodate
additional model-based adjustments (Rosenbaum and Rubin,
1983, 1984; Rosenbaum, 1987). According to Rosenbaum and
Rubin (1983), propensity score stratification is easier and
almost as efficient as matching and also is less sensitive to
non-linearities in the relationship between propensity scores
and outcomes than other methods. Furthermore, researchers
can examine treatment effects within particular strata, such
as the stratum for which treatment is most likely to be
effective.

Because the propensity score is a scalar function of
pretreatment covariates that “summarizes the information
required to balance the distribution of the covariates”
(Rosenbaum and Rubin, 1984, p. 516), researchers can use
the propensity score alone to form strata that may balance all
covariates, or make the conditional distribution of the covariates
given the propensity score equal for those in the treatment
and those in the comparison conditions, regardless of the
number of observed covariates from which it was constructed
(Rosenbaum and Rubin, 1983). This makes stratification much
more feasible than stratifying on individual covariates, which
can become extremely unwieldy, as even with dichotomous
covariates, for p covariates there are 2p subclasses (Cochran,
1968). Note that covariate balance is an empirical issue
that must be checked, as the distributional balance of the
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covariates is expected rather than guaranteed (similar to in
randomization). Two methods to check for balance include
(a) regressing each covariate and the logit of the propensity
score on the treatment assignment, controlling for S−1 dummy
indicators for the S propensity strata and their interactions with
treatment assignment, and (b) conducting 2 × S (Conditions
× Strata) ANOVAs, using both the propensity score and
each predictor individually as dependent variables. Rubin
(2001) presents three criteria for assessing the adequacy of
the regression adjustment: (a) the difference in the means of
the propensity scores in the groups being compared must be
small, (b) the ratio of the variances of the propensity score
in the treatment and comparison groups must be close to
one, and (c) the ratio of the variances of the residuals of the
covariates after adjusting for the propensity scores must be close
to one.

Stratification on the propensity score does have some
limitations. As mentioned previously, although this method
balances the distribution of the observed pretreatment covariates
included in the propensity score (overt bias), it cannot balance
unobserved covariates (hidden bias) except to the extent that
they are correlated with observed covariates (Rosenbaum and
Rubin, 1984). Additionally, in practice, strata generally will not
be exactly homogenous in the propensity score that was used to
create the strata. As a result, the estimate of the effect may contain
some residual bias due to measured pretreatment covariates
(Rosenbaum and Rubin, 1983).

Rosenbaum and Rubin (1983, 1984) have shown that five
equal-size propensity score strata (quintiles) can remove over
90% of the bias due to each of the pretreatment covariates used
to construct the propensity score (depending on the variables
that are included, as strong ignorability must hold), just as
Cochran (1968) indicated that stratifying on individual covariates
would do. That being said, the literature on propensity score
stratification provides several different recommendations for
the number of strata. Rosenbaum and Rubin (1983, 1984),
Rosenbaum (2002a), and Shadish et al. (2006) recommend
stratifying on quintiles. On the other hand, Imai and van Dyk
(2004) recommend that researchers examine the sensitivity of
their results by repeating the analysis with different stratification
schemes as “results may be sensitive to the number of subclasses”
(p. 857). This recommendation is supported by Hullsiek and
Louis (2002), who indicate that with a large data set (such as
those typically used with propensity score analysis), researchers
might need to form more than five strata to achieve maximal
bias reduction [Alternatively, researchers can address residual
bias after stratification by running regression adjustments within
each stratum (Rubin, 2001)]. Researchers using propensity
score stratification have differed in which approach they have
used. For instance, Leow et al. (2004) stratified high school
students into quintiles based on a propensity score. On the
other hand, Hong and Raudenbush (2005) divided schools into
seven strata, dropping the lowest propensity stratum because
the comparison group did not have matches in the treatment
group, and divided students into 14 propensity score strata,
dropping the last stratum as 8 students in the treatment
group had no matches in the comparison group. They made

their decision for seven and 14 strata based on balance
indices.

Selecting Variables to Construct
Propensity Scores
Parsimony is not essential when estimating propensity scores
because the propensity score operates as a scalar function
and summarizes the collection of pretreatment covariates when
estimating the treatment effect. To minimize bias, the goal of
propensity score analysis is to balance treatment and comparison
subjects on as many pretreatment covariates as possible. Omitting
even pretreatment variables that are weakly predictive of
the outcome will have biasing effects that may override the
statistical efficiency of not including them (Rubin, 1997; Newgard
et al., 2004). In fact, Rubin and Thomas (1996) recommended
that researchers retain non-statistically significant predictors.
If researchers do construct the propensity score from only
pretreatment covariates that are statistically significantly different
between the treatment and comparison groups, they are failing
to take into account the relationship between the covariates and
the outcome, are relying heavily on sample size and not practical
relevance, and are considering the covariates in isolation rather
than collectively (Rosenbaum, 2002b). Furthermore, if iterative
model-building algorithms such as stepwise regression are used
to predict assignment, the researcher may miss important
confounders that while only weakly related to assignment are
strongly related to the outcome.

Researchers have conducted limited studies on the effects of
using variables with varying relationships to the outcome and
to assignment to treatment. Brookhart et al. (2006) explored
the effects of using variables with varying relationships to the
outcome and to assignment to treatment in two simulation
studies. The first study investigated how estimated treatment
effects were affected by the inclusion of (a) a variable related
both to assignment and to the Poisson-distributed outcome, (b) a
variable related to the outcome only, and (c) a variable related
to assignment only, independently and in all combinations.
When they analyzed the data using stratification (based on
quintiles), they found that failure to include the variable related
to both assignment and outcome yielded a biased estimator.
For the second simulation, they included only a single variable
that was related to both outcome and assignment, varying the
correlation magnitude. The researchers consistently found that
the variance of the propensity score estimator may be “slightly
more sensitive” to the strength of the relationship between the
variable and assignment. Brookhart et al. (2006) found that
when they added a single variable with varying magnitudes of
correlation to the outcome and assignment, the variance of the
estimator decreased proportionally to the sample size. Despite
this decrease in variance, the bias due to an omitted confounder
remained, regardless of sample size.

The results of Brookhart et al. (2006) simulation studies
suggest that when analyzing at least moderate-sized data sets,
researchers should not exclude any variable related to assignment
from the propensity score model unless they know a priori
that the variable truly has no relationship to the outcome.
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Additionally, researchers should include in propensity score
models all variables that might relate to the outcome even if they
are unrelated to assignment, which also was the recommendation
of Rubin and Thomas (1996). In reality, nearly all pretreatment
variables will have some relationship to both outcome and
assignment, and researchers must adjust for that bias.

STATEMENT OF THE PROBLEM

The study reported here built on the work of Brookhart
et al. (2006) by further exploring variable selection, except
with a normally distributed outcome variable. In this study,
we examined the effects of including different combinations
of variables with differing relationships to outcome and to
assignment, as well as those variables independently. Because the
propensity score is “a means of obtaining quasi-randomization
of treatment” (Newgard et al., 2004, p. 954), the treatment
effects obtained with random assignment were compared to
those obtained with a quasi-assignment variable only (a non-
random assignment to the treatment condition, correlated with
the outcome variable). Then, both of those treatment effects
were compared with those obtained with propensity score
stratification using models built with the various combinations of
covariates. Furthermore, because prior research and theoretical
work indicates that the number of strata may affect the estimated
treatment effects, this study compared the estimates obtained
with varying number of strata.

METHODOLOGY

To explore the variable selection problem and the effects of using
different numbers of strata, a Monte Carlo simulation study was
performed. A Fortran program written by the authors in Lahey
ED for Windows, version 3.80, was used on a Windows platform.
To assign individuals to the treatment or comparison group,
the program generated an assignment variable that provided for
non-random assignment to the treatment condition, as happens
in observational or quasi-experimental data. This assignment
variable (mean of 0, standard deviation of 1) was specified to
have a 0.50 correlation with the outcome, a moderate relationship
between assignment and outcome as one might expect in
educational settings in which achievement is closely related to
programs in which students participate, such as gifted classes
or remedial tutoring. Similarly, in many voluntary treatment
programs, such as a group for narcotics addiction, participating
in the program is closely related to an outcome measure, such
as as number of days clean. For individuals with an illness such
as HIV, choosing to attend appointments with a doctor or at a
clinic is closely related to adherence to a drug regimen. After the
assignment variable was created, the subjects were ranked.

To create a dichotomous assignment variable from this
normally distributed continuous assignment data that had a
correlation of 0.50 with the outcome, the program ranked
the subjects according to their continuous assignment variable
again assigned the top 50% to the treatment group (1) and

the bottom 50% to the comparison group (0). Additionally, to
create a dichotomous variable that simulated random assignment
(correlation of 0 with the outcome), the program generated a
random number for each subject, ranked the subjects according
to their random number, and then assigned those in the bottom
50% to the comparison group (0) and those in the top 50% to the
treatment group (1).

The program also generated four different types of covariates,
each a true confounder but with varying relationships to outcome
and assignment. Note that because the propensity score model
includes many covariates (thus, being rich in their representation
of the potential covariates that relate to the outcome and
assignment), these four variables could be considered composite
variables made up of many other variables. Variable HH had a
high (0.70) relationship with assignment and with outcome, HL
had a high (0.70) relationship with assignment but a low (0.20)
relationship with outcome, LH had a low (0.20) relationship
with assignment but a high (0.70) relationship with outcome,
and LL had a low (0.20) relationship with assignment and with
outcome. These correlation strengths fall within rules of thumb
for a “high positive correlation” and “little if any correlation”
(Hinkle et al., 2003, p. 109). From our research, an example of two
variables correlated at 0.70 is mathematics achievement scores
in spring with reading achievement scores the following winter,
and an example of two variables correlated at 0.20 is students’
exceptional motivation to succeed (as rated by their teachers) and
their reading achievement at that same time point. All of these
covariates had a 0.20 correlation with one another. All variables
were created to be normally distributed with a mean of 0 and
standard deviation of 1.

One thousand data sets were simulated, each with a sample
size of 10,000. Because propensity score analysis is a large-
sample method, this is a reasonable sample size. For instance, the
Early Childhood Longitudinal Study, Kindergarten Class of 1998-
1998 (ECLS-K) had a sample of over 20,000 kindergarteners,
High School and Beyond (HSB) had an initial sample of over
28,000 high school students, and the Trends in International
Mathematics and Science Study (TIMSS) assessed about 4,000
students per grade and per country. Moreover, it is only over
the long run or in very large samples that randomization can
be expected to work “perfectly,” resulting in no difference, or
treatment effect, between the two random groups. For example,
with a sample size of 10,000 and a true effect size (defined by
Cohen’s d) of zero, an average effect size for the random model
of 0.0001, with a standard deviation of the estimate of 0.0004, was
obtained across the 1,000 replications. However, with half that
sample size (n = 5,000), the average effect size for the random
model was 0.011 due to sampling error, and with an even smaller
sample size (n= 2,500), the average estimate of the effect size was
0.063.

For each simulated data set, logistic regression was used
to estimate 15 different propensity scores for each participant,
corresponding to all possible combinations of the four covariates
(Table 1). Then, any treatment participant whose propensity
score was outside the range of the comparison group’s propensity
scores was eliminated and vice versa, ensuring overlap in
propensity scores and that there were appropriate comparison
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TABLE 1 | Propensity score models.

Model Variables

1 HHa

2 HL

3 LH

4 LL

5 HH HL

6 HH LH

7 HH LL

8 HL LH

9 HL LL

10 LH LL

11 HH HL LH

12 HH HL LL

13 HH LH LL

14 HL LH LL

15 HH HL LH LL

aThe first letter indicates whether the covariate has a high (H) or a low (L) correlation,
0.70 and 0.20, respectively, with the assignment to treatment. The second letter
indicates whether the covariate has a high (H) or low (L) correlation, 0.70 and 0.20,
respectively, with the outcome.

participants for each one remaining in the data set. Although this
insures appropriate overlap of participants in the two groups, it
does mean that we are no longer able to generalize to the full
sample, and that must be noted in an applied study. For each data
set and all 15 specifications of propensity score models, across
5, 10, and 20 strata, equal-size strata were created by creating
strata at the appropriate percentile (quintiles, deciles, etc.) of
the sample distribution of the propensity score. For example,
for quintiles, the sample with the lowest 20% of propensity
scores were one strata, the sample with the next lowest 20%
of propensity scores were another strata, and so on to create
five strata, each consisting of 20% of propensity scores. Equal-
interval strata originally also were estimated by finding the
range of propensity scores and dividing by the number of strata
to determine the width of the strata. Overall, equal-interval
strata were not as effective as equal-size strata at removing
bias and resulted in the retention of fewer viable strata when
calculating the average effect size. This is consistent with previous
literature, which does not recommend dividing strata into equal-
size intervals.

Propensity score models typically are used to determine
the effect of a treatment. Rather than focusing on statistical
significance of the differences between treatment and comparison
groups (the estimand), the primary interest of this study was
the average effect size of the treatment for each model over
the 1,000 replications. That is, our model was examining the
difference in average outcome scores for the treatment and
comparison groups across the strata. As a measure of effect
size, Cohen’s d, the difference between the comparison and
treatment means divided by the pooled standard deviation for
those means, was used. The average quasi-experimental and
randomized effect size for each data set were estimated by finding
the effect size within strata and averaging over strata. Also, the
95% confidence interval around that estimate was estimated by

adding/subtracting 1.96 times the standard deviation of the effect
size to/from the average effect size. After performing all 1,000
replications, the overall average effect size (ModelAverageEffect)
for each of the 15 models for each specified number of strata
was found. Then, those model average effect sizes were used to
determine the proportion reduction in bias, which was calculated
with the following:

Proportion reduction in bias

=
QuasiAverageEffect −

∣∣ModelAverageEffect
∣∣

QuasiAverageEffect
,

where the QuasiAverageEffect was equal to the average effect
size for a model in which the quasi-assignment variable was
used without accounting for any of the pretreatment covariates.
The absolute value of the average effect size for the model
was used to account for the fact that some models resulted
in a negative estimate of the effect size, which also indicates
bias.

In summary, this simulation study compared the performance
of the 15 various specificiations of propensity score models
with 5, 10, and 20 equal-size strata. To have a randomized
effect that approximated 0, a sample size of 10,000 was
used. Because propensity score analysis is a large-sample
technique, the focus was on how the different propensity
score models and number of strata affected the effect size
(Cohen’s d) rather than the rejection rate of the null hypothesis,
which is strongly dependent on sample size. To evaluate
the performance of the various propensity score models, the
simulated results were used to determine the average effect size
when participants were randomly assigned, the average effect
size when participants were assigned based on quasi-assignment
without adjustment for the covariates, the average effect size
across the strata for each model, and the proportion reduction
in bias.

RESULTS

Comparison Models
With a sample size of 10,000, the average effect size for the
random model was 0.0001, and the standard deviation of
the estimate was 0.0004, making the 95% confidence interval
(−0.0007, 0.0009). However, for the model with participants
grouped by the quasi-assignment variable without adjustment for
the covariates, the average effect size was 0.893, with a standard
deviation of 0.001, making the 95% confidence interval (0.891,
0.895). This estimate represents the bias that the researcher incurs
due to using quasi-experimental, or observational, data in which
assignment is not random but is related to the outcome measure.
Despite the “treatment” not having an effect, a large average effect
size due to the non-random assignment was observed.

Propensity Score Models
Figure 1 displays the average effect sizes observed from the 15
propensity score models with 5, 10, and 20 equal-size strata
created at the appropriate percentiles of the sample distribution
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FIGURE 1 | Average effect sizes from the propensity score models with varying number of specified equal-size strata, with 95% confidence interval for the estimate.
Any effect size present is due to bias because the model on which these data were based had an effect size of 0. (Top) Models with minimal bias. (Bottom) Models
with extensive bias. Note that participants with a propensity score outside the range of the other group were eliminated prior to stratification; therefore, sample sizes
varied as different models resulted in differing overlap in treatment and control propensity scores (Table 2).

and the 95% confidence intervals of those estimates. Effect size
estimates closer to zero (those for models that contain HH,
the variable with a high correlation to both assignment and
outcome) show better adjustment for bias due to non-random
assignment and better approximation to the effect size obtained
with random assignment. On the other hand, effect size estimates
above 0.893, the average effect size for the quasi-assignment
model, show increased rather than decreased bias. Figure 2 shows
the proportion reduction in bias for the 15 propensity score
models with the various numbers of strata. When interpreting

the results, one must note that non-overlapping propensity
scores between the treatment and comparison groups were
eliminated, resulting in reduced sample sizes for some models
(see Table 2 for the average sample size for each model).
Although the majority of models included more than 95% of
the treatment sample, comparison sample, and total sample, four
models only retained about 80% of the total sample: Model 1
(HH), Model 7 (HH, LL), Model 11 (HH, HL, LH), and Model
13 (HH, LH, LL). In addition to reduced sample sizes, when
this occurs, the researcher must be careful when interpreting
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FIGURE 2 | Average proportion reduction in bias for the propensity score models with varying number of specified equal-size strata. The model with no adjustments
for the covariates had an effect size of 0.893. This figure indicates the proportion of reduction in that bias. (Top) Models that reduced bias by 85% or more.
(Bottom) Models that removed less than 15% of bias (or increased biase). Note that participants with a propensity score outside the range of the other group were
eliminated prior to stratification; therefore, sample sizes varied as different models resulted in differing overlap in treatment and control propensity scores (Table 2).

the results to identify who was not included in the analyses
and acknowledge to whom the results generalize. The type of
participant that was in one group and not the other may be of
substantive interest, such as if one group included students with
higher or lower achievement, motivation, intelligence, parental
involvement, socio-economic status, etc., than were found in the
other group.

Every model that removed at least 90% of the bias (average
effect size of ≤ |0.089|, which is 90% of the average effect
size when participants were grouped based on quasi-assignment

without adjustment for the covariates; i.e., 0.893−[0.089]
0.893 = 0.90)

contained HH (Models 1, 5, 6, 7, 11, 12, 13, and 15). All models
that omitted HH removed less than 15% of the bias, and in
some cases, increased the amount of bias. In fact, without this
variable, the proportion of reduction in bias was near zero and
sometimes even negative. Interestingly, for any model containing
HH and at least one other variable with a strong correlation
to assignment or outcome, quintiles were the most effective
at removing bias, whereas in models that only included HH
or HH along with LL, quintiles reduced the bias by less than
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TABLE 2 | Average sample sizea for the propensity score models.

Model Treatment Comparison Total

1 (HH) 4859 (97%) 4834 (97%) 9693 (97%)

5 (HH, HL) 3776 (76%) 4191 (84%) 7967 (80%)

6 (HH, LH) 4876 (98%) 4826 (97%) 9702 (97%)

7 (HH, LL) 4849 (97%) 4805 (96%) 9654 (97%)

11 (HH, HL, LH) 3793 (76%) 4200 (84%) 7993 (80%)

12 (HH, HL, LL) 3778 (76%) 4266 (85%) 8044 (80%)

13 (HH, LH, LL) 4849 (97%) 4833 (97%) 9682 (97%)

15 (HH, HL, LH, LL) 3797 (76%) 4265 (85%) 8062 (81%)

2 (HL) 4837 (97%) 4855 (97%) 9692 (97%)

3 (LH) 4996 (99+%) 5000 (100%) 9996 (99+%)

4 (LL) 4998 (99+%) 4998 (99+%) 9996 (99%)

8 (HL, LH) 4829 (97%) 4795 (96%) 9624 (96%)

9 (HL, LL) 4861 (97%) 4857 (97%) 9718 (97%)

10 (LH, LL) 4999 (99+%) 4998 (99+%) 9997 (99+%)

14 (HL, LH, LL) 4851 (97%) 4830 (97%) 9681 (97%)

Overall 4597 (92%) 4703 (94%) 9300 (92%)

aParticipants with a propensity score outside the range of the other group were
eliminated prior to stratification. Therefore, sample sizes varied as different models
resulted in differing overlap in treatment and comparison group propensity scores.
The percent of the original 5000 treatment, 5000 comparison, and 10,000 total
participants is given in parentheses.

90% but 20 strata performed extremely well. In fact, those two
models were the best performing when 20 strata were used.
On the other hand, with quintiles, the models behaved in a
manner more similar to that expected, with the model with
all four covariates and the model with all covariates except LL
reducing the bias most. Following those models, the next best
models with quintiles included the covariate strongly related to
the outcome but not to assignment to treatment (LH). Looking
at the top four models at reducing bias, one sees that the
two models that show up in all three stratification schemes
are the models that included HH, HL, and LH (Models 11
and 15). For all stratification schemes, the worst two models
(Models 2 and 9) did not include any variables with a strong
relationship to outcome but did include a variable with a
strong relationship to assignment. In fact, any time HL was
included with HH, the amount of bias was increased rather than
reduced.

In terms of overlap of participants in the treatment and
comparison groups, the more predictors that were strongly
related to assignment to treatment, the less the overlap. Any
model containing both HH and HL (Models 5, 11, 12, and 15)
had an overlapping sample size of about 8,000, with more people
in the comparison group than the treatment group, whereas
all other models retained greater than 95% of the sample. This
highlights the fact that when the assignment to treatment is not
random but even moderately related to the outcome, there are
great differences between the treatment and comparison groups.
With 10 or 20 strata, Models 5 (HH, HL) and 12 (HH, HL, LL)
were the only two models that contained HH and failed to reduce
the bias by at least 90%. This result may be due to the lack of
overlap of propensity scores between treatment and comparison
groups in these models, which reduced the sample size to around

8,000. In general, the models with smaller samples performed
better with quintiles, perhaps because with the reduced sample
size, the number of subjects in each stratum was reduced.
Thus, when the data became sparser as the number of strata
increased.

CONCLUSION

Perhaps most importantly, this simulation study revealed that
if a propensity score model does not include variables strongly
related to both outcome and assignment, bias will not decrease
and may possibly increase when using the stratification method.
Although also including variables with weak associations either
to outcome, to assignment, or to both tends to result in a greater
decrease in bias (particularly with quintiles and deciles), without
a variable (or composite of variables) strongly related to both
outcome and assignment, the propensity score is ineffective at
removing bias from the estimated effect size. Thus, researchers
must be sure to include variables like a pretest score, which would
have a high correlation to the assignment to or inclusion in
many “treatments” as well as to an outcome like posttest score.
Additionally, including a variable highly related to assignment
but not also including a variable highly related to outcome could,
in fact, be detrimental, causing an increase in bias, which supports
the findings of Brookhart et al. (2006). In fact, our study provides
further evidence of the importance of the variable highly related
to the outcome because it found that including only a variable
with a low correlation to both assignment and outcome was less
detrimental than including a variable with a strong relationship
with assignment but not including a variable with a strong
relationship with outcome.

Overall, the findings are consistent with the advice of Rubin
and Thomas (1996), Rubin (1997), Newgard et al. (2004),
and Brookhart et al. (2006) that researchers should include in
propensity score models all variables thought to be related to the
outcome. Because all variables considered in this simulation had
at least a weak relationship with both outcome and assignment,
they are empirical confounders for the study. According to
Brookhart et al. (2006), “including such a covariate in a
[propensity score] model removes the non-systematic bias due to
the chance association between the covariate and [assignment]”
(p. 1155). Removing this non-systematic bias brought the
estimated effect size closer to the true effect size of zero. This
finding has important implications for researchers as they plan
their study and as they select variables from pre-existing data sets.

In terms of number of strata, this study highlights Imai
and van Dyk (2004) comment that researchers must be aware
that their results may vary depending on the number of strata.
Depending on the covariates and the sample size, 5, 10, and
20 strata performed differently, although in six of the eight
models that resulted in a significant reduction in bias, quintiles
outperformed the other stratification schemes. With quintiles,
as long as two sets of covariates with a strong relationship
to the outcome were included, more than 95% of the bias
was removed, and when at least one variable with a strong
relationship with either outcome or assignment was included
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with the HH variable, at least 90% of bias was removed. These
results support the recommendations of Rosenbaum and Rubin
(1983, 1984), Rosenbaum (2002a), and Shadish et al. (2006)
that when the assumption of strongly ignorable assignment to
treatment is met, quintiles may remove 90% of the bias. Based
on the results of this study, the richer the propensity score model
in terms of varying relationships to outcome and assignment to
treatment, the more likely that fewer the strata will be needed
to balance the covariates. However, without that same richness,
additional strata may be necessary.

Finally, this simulation study should serve as a cautionary
tale to applied researchers using propensity score analysis. When
developing a rich propensity score model and using stratification,
it is crucial to examine the strata for overlap. With models that
included more than one covariate with a strong relationship to
assignment to treatment, the overlapping sample size was only
about 80% of the original sample size. However, models that did
not include the variable strongly related to assignment but not
to outcome (HL) still removed at least 90% of the bias for all
stratification schemes as long as HH also was included in the
model, and for those models, more than 95% of the sample had
overlapping propensity scores.

Limitations
The results from this simulation are consistent with theoretical
results (e.g., Rubin and Thomas, 1996) as well as previous
simulation results (e.g., Brookhart et al., 2006). However, the
amount of bias reduced is dependent on the generated sample
data and the specification of the data-generating process. For
instance, only certain correlations between the covariates and
assignment, outcome, and other covariates were considered.
Although different numbers of strata were investigated, this
study did not explore the effects of using other propensity
score methods, such as different methods of matching, or the
effects of using an outcome model with additional covariates
or a hierarchical linear outcome model. Finally, because of
the “gold standard” to which the results were compared in
this study, we used a large sample size of 10,000. However,
many applied studies include fewer observations. These results
may not be generalizable to studies with small sample
sizes.

Although researchers should strive for a rich propensity score
model with many covariates, only one to four covariates were
included in the propensity score model. These covariates could be
considered composite variables. However, with multiple variables
with varying specifications, results may differ.

Future Research
This study does raise questions about the performance of
propensity score models that are more complex, including
more covariates and even interactions between covariates.
More research on model-building strategies to construct the
propensity score needs to be conducted. Of particular concern
is the fact that iterative model-building algorithms (e.g.,
stepwise regression) are “designed to create good predictive
models of [assignment]” (Brookhart et al., 2006, p. 1156).
However, the goal of using the propensity score is not to

predict assignment but to balance on the covariates, thus
efficiently controlling confounding (Brookhart et al., 2006), and
using iterative model-building algorithms may miss important
confounders that are strongly related to outcome but weakly
related to assignment (like LH). It also may reduce the overlap
in propensity scores between the comparison and treatment
groups.

Although there are varying recommendations for the number
of strata that should be used, further research on how to
determine the optimal number of strata to use to minimize bias
is needed. In this study quintiles generally were more effective
overall at adequately removing bias; however, the most effective
number of strata varied depending on the covariate(s) included
in the propensity score model. This leaves the question of how a
researcher should determine the number of strata to use with rich
data sets.

Summary
Propensity score models have great potential to reduce bias in
estimated effect sizes in quasi-experimental research. However,
researchers must note that these models are not effective unless
the propensity score model includes a covariate that is strongly
related to both assignment and outcome. A pretest score often will
meet this criteria. It is essential to include a “strong” covariate,
but researchers also should include additional variables, which
may further reduce bias, especially when using quintiles. The
goal when creating propensity score models should be to create
as rich a model as possible while including a strong covariate.
Additionally, researchers must be aware that with larger number
of strata, including two variables highly related to assignment
but not including a variable highly related to outcome may not
adequately reduce bias, potentially because those models result in
only about 80% overlap of the treatment and comparison groups
in propensity scores.
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