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The issue of equality in the between-and within-level structures in Multilevel Confirmatory

Factor Analysis (MCFA) models has been influential for obtaining unbiased parameter

estimates and statistical inferences. A commonly seen condition is the inequality of

factor loadings under equal level-varying structures. With mathematical investigation and

Monte Carlo simulation, this study compared the robustness of five statistical models

including two model-based (a true and a mis-specified models), one design-based,

and two maximum models (two models where the full rank of variance-covariance

matrix is estimated in between level and within level, respectively) in analyzing complex

survey measurement data with level-varying factor loadings. The empirical data of 120

3rd graders’ (from 40 classrooms) perceived Harter competence scale were modeled

using MCFA and the parameter estimates were used as true parameters to perform the

Monte Carlo simulation study. Results showed maximum models was robust to unequal

factor loadings while the design-based and the miss-specified model-based approaches

produced conflated results and spurious statistical inferences. We recommend the

use of maximum models if researchers have limited information about the pattern of

factor loadings and measurement structures. Measurement models are key components

of Structural Equation Modeling (SEM); therefore, the findings can be generalized to

multilevel SEM and CFA models. Mplus codes are provided for maximum models and

other analytical models.

Keywords: multilevel confirmatory factor analysis, design-based approach, model-based approach, maximum

model, level-varying factor loadings, complex survey sampling, measurement

INTRODUCTION

Multilevel Confirmatory Factor Analysis (MCFA) extends the power of Confirmatory Factor
Analysis (CFA) to accommodate the complex survey data with the estimation of the level-specific
variance components and the respective measurement models. Complex survey data are obtained
through cluster sampling or multistage sampling, where a few individuals within a class/household
or the entire class/family are selected. This type of sampling scheme is likely to result in non-
independent observations with within-cluster dependency (Skrondal and Rabe-Hesketh, 2007). If
the dependent data are analyzed through the traditional approaches which assume independent
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observations, “incorrect parameter estimates, standard errors,
and inappropriate fit statistics may be obtained” (du Toit and du
Toit, 2008, p. 456).

Researchers has devoted their attention in discussing
the influences of applying different multilevel modeling
constructions on complex survey data (e.g., model-fit indices:
Hsu et al., 2015; reliability measures: Geldhof et al., 2013;
parameter estimates and statistical inferences: Wu and Kwok,
2012; longitudinal design: Wu et al., 2014). Among the research
designs in these studies, the issue of inequality in the between-
(i.e., the higher level or cluster level) and within-level (i.e.,
the lower level or individual level) structure in complex
survey data has been proven to be influential for obtaining
unbiased parameter estimates along with their consistent
statistical inferences. Compared to inequality of level structures
in multilevel models, a less addressed condition is that the
true model did have the same factor structure at both levels
while the magnitudes and statistical significance of the factor
loadings varied across levels and varied within the levels, which
occurred frequently in empirical research (e.g., Dyer et al., 2005;
Klangphahol et al., 2010).

For example, Dyer et al. (2005) applied MCFA to study
organizational leadership at the individual and societal level and
obtained a common factor consisting of five items of being
“formal,” “habitual,” “cautious,” “procedural,” and “ritualistic.”
The five items loaded much stronger onto the single factor at
the between level (i.e., societal level) than at the within level
(individual level), which supported the belief that this leadership
scale operates mainly at the societal level. Based on this finding,
Dyer et al. (2005) suggested that a three-item factor (discarding
two trivial items with small factor loadings) instead of a five-
item factor should be used if the interest of leadership study
is at the individual level. Dyer et al.’s suggestion capitalized on
the importance of specifying an optimal measurement model
with complex survey data in terms of both model structure and
sizes of factor loadings to obtain correct statistical and practical
interpretations in scale development.

From the factor analysis point of view, items with variance
explained smaller than 20% or standardized factor loadings
less than 0.45 would be considered as low communality (EFA:
MacCallum et al., 1999; CFA: Meade and Bauer, 2007). From
a measurement point of view, items with standardized factor
loadings larger than 0.6 would exhibit better psychometric
properties (Bagozzi and Yi, 1988; Kline, 2010). Failing to detect
items with small factor loadings may lead to a misunderstanding
that all items are equally important, causing researchers to
investigate problems that are of little importance or little
relevance to the intended measure.

Therefore, in this study, we performed a substantive-
methodological synergy (Marsh and Hau, 2007) by applying
different modeling strategies on simulated synthetic datasets with
population parameters specified based on an empirical dataset
to examine the robustness of model-based, design-based, and
maximum models regarding their effectiveness and efficiency in
producing unbiased parameter estimates and statistical inference
for the measurement data obtained from complex survey
sampling. Below we elaborated on the issues with modeling

strategies and unequal factor loadings, followed by introduction
to three modeling strategies on complex survey data.

Issues with Modeling Strategies and
Unequal Factor Loadings
Traditionally, several multilevel modeling strategies can be
applied to address data dependency in complex survey data
(Heck and Thomas, 2008; Rabe-Hesketh and Skrondal, 2008;
Hox, 2010; Snijders and Bosker, 2011). Specifying different
structures for separate levels, namely a model-based approach,
on complex survey data allows free estimation of level-specific
parameters and enables the detection of possible inequality
in parameter estimates. However, in reality, information or
truth about the higher-level structure is rarely known without
the support of theoretical evidence. If researchers jump into
multilevel analysis without theoretical or empirical evidence, the
correctness of the multilevel structure is at risk.

Alternatively, researchers can apply the design-based
approach by specifying only an overall model for the complex
survey data to infer their findings to the lower level sampling
units, and using the robust standard error estimator (Huber,
1967; White, 1980) to correct for the bias in standard error of
the fixed effects (Muthén and Satorra, 1995). The design-based
approach has been proved to yield satisfying analytic results only
when the complex survey data meet the assumption of equal
structures in both between- and within-levels (Wu and Kwok,
2012). In addition to design-based and model-based approaches,
a possible alternative for analyzing multilevel data is through
the use of maximum models (Hox, 2002, 2010; Wu and Kwok,
2012), where a saturated between-level model is estimated and
can be used to focus on a specific level of analysis.

To examine the robustness of reliability measures on complex
survey data, Geldhof et al. (2013) used MCFA and single-level
CFA (i.e., without taking data dependency into consideration) on
the simulated multilevel datasets, where the between and within
levels had exactly the same factor loadings but with different high
and low reliability across levels using the average item ICC as a
dependency measure. Their study findings suggested that single-
level CFAs cannot yield the actual scale reliability unless the true
reliabilities are identical at each level. Moreover, in the simulation
study, they postulated that the true MCFA model had the same
factor loadings within and across levels, i.e., the between and
within level model were identical in terms of magnitude of factor
loadings and factor structures. Few studies have investigated the
issue of inequality of factor loadings under equal factor structure
within and across levels. Besides, systematic investigation on
the performance of model-fit statistics, indices and information
criteria, and the resulted parameter estimates with statistical
inferences were not discussed in Geldhof et al. (2013).

Extending the simulation settings of Geldhof et al. (2013),
we examined performance of different model specifications
regarding the issues of inequality of factor loadings and different
factor structures within and across levels. Distinct Cluster
Numbers (CN), Cluster Sizes (CS) and ICCs were used in true
model for the simulation settings of this study. The criterion
variables include overall exact model fit chi-square test and
various model fit indices, both fixed-effect and random-effect
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parameter estimates, their 95% coverage rate and empirical
power, as well as the variance explained measure (R2) and scale
reliability (ρ).

Specifically, this study aims to examine the robustness of the
three modeling strategies using five analytic models (i.e., MCFA,
miss-specified MCFA, one-level design-based CFA, Max CFA
with saturated Between level, Max CFA with saturated Within
level) in testing the multilevel measurement data with unequal
magnitudes of factor loadings. Of the factor loadings, some may
be trivial or of little relevance in a practical sense at the individual
level under equal level structures. In the following section, we
provide a review of three multilevel modeling strategies.

Three Modeling Strategies on Complex
Survey Data
Model- and Design-Based Strategies
The rationale for using multilevel models in analyzing complex
survey data is to reflect the natural multistage sampling scheme
(Muthén, 1994; Heck and Thomas, 2008). Researchers can do
so by constructing the analytic model either to simultaneously
calculate the lower- and higher-level parameter estimates which
may have different values at each level or to adjust the standard
errors of fixed effects. The model-based approach (e.g., MCFA
technique) conforms to the actual multi-stage sampling scheme
by specifying a level-specific model for each level of the data.
In other words, for a two-level clustered sampling data, it
specifies a between-level model that conforms to the level
2 structure (i.e., higher level) and a within-level model that
conforms to the level 1 structure (i.e., lower level). Instead
of constructing separate level models for multilevel data, the
design-based approach analyzes the data with only one overall
model and considers the sampling scheme by adjusting for the
standard errors of the parameter estimates based on the sampling
design. The adjustment is implemented using the robust standard
error estimator (Huber, 1967; White, 1980) or sandwich-type
variance estimator, a general name for alternative variance
estimators. The sandwich-type variance estimator functions as an
overall adjustment of the deviated standard error of parameter
estimates due to extra data dependency along with the original
statistical approach. This kind of relative variance estimators
has been proposed to address data non-independence (i.e., data
heteroskedasticity) more directly in CFAs (Muthén and Satorra,
1995). The adjustment is a post-hoc process and is said to only
affect the standard errors, not the parameter estimates (Hardin
and Hilbe, 2007).

In a simulation study, Muthén and Satorra (1995) showed
that under the same model structure for all data levels, these
two approaches performed equally well for complex survey
data. Compared to the model-based approach, the design-based
approach is used more frequently by researchers in the applied
areas (Rebollo et al., 2006; Róbert, 2010; Roberts et al., 2010;
Rosenthal and Villegas, 2010; Wu et al., 2010; Brook et al., 2011;
Martin et al., 2011; Wu, 2015, 2017) because it only requires a
single model specification and often researchers were interested
in examining the lower level (i.e., the within-level) model with
the most sampling units.

Despite the simplicity of themodel’s specifications, the design-
based approach for complex survey data is built upon the
assumption of the same level-varying structures (Muthén and
Satorra, 1995; Wu and Kwok, 2012). However, this assumption
is often violated in empirical research when researchers examine
the level-specific structures of their multilevel dataset (e.g.,
Wilhelm and Schoebi, 2007). Inequality in the between- and
within-level structures leads to conflated estimations of the fixed
and random effects if the design-based approach is used (Wu
and Kwok, 2012). What’s more, in the current study, we posit
that if the same magnitude and significance of factor loadings
do not hold at different levels under same level structures,
inequality of the between- and within-level factor loadings may
also cause potential problem with the design-based approach.
In the case of Dyer et al. (2005), if the authors had used the
design-based approach for their procedural leadership analysis,
they would obtain the design-based estimates which would have
been contaminated with information from both the between-
and within-level models. Thus, they would have no idea of the
larger factor loadings at the societal level and may not be able to
detect the two trivial items at the individual level. From a practical
perspective, researchers would falsely conclude the scale is a valid
measurement for the research question related to the individual
participant. In addition, the estimation of the overall model
parameters and the scale reliability measures may be questionable
to infer the individual-level characteristics. However, the issue
of inequality of factor loadings between and within the
levels has rarely been systematically examined in previous
studies.

Maximum Model
Another feasible modeling strategy for complex survey data is
called the “maximum model,” (Hox, 2002, 2010; Wu and Kwok,
2012) where a saturated model in specific level (usually the
higher-level) is built by estimating the full rank of between-level
variance-covariance matrix with the consumption of all available
degrees of freedom. This maximum model technique was firstly
suggested by researchers (e.g., Hox, 2002; Stapleton, 2006; Yuan
and Bentler, 2007) as the baseline model for constructing
multilevel analysis with theoretical evidence. Ryu and West
(2009), on the other hand, examined the performance of level-
specific fit indices using maximum modeling technique. More
recently, Wu and Kwok (2012) found that the maximum model
and correctly specified model-based approaches performed
equally well for analyzing complex survey data regardless of
equality in level structures whereas the design-based approach
only produced satisfying fixed-effect estimates and standard
error under equal within-/between-level structure scenarios.
Compared to inequality of level structures, what is more
commonly found in empirical measurement research is unequal
magnitudes of factor loadings in different levels with the same
number of factors. However, no study to date has systematically
examined the consequences of miss-specifying multilevel models
for a two-level CFA measurement data regarding the violation
of equality of factor loadings. This study will focus on inequality
of factor loadings within and across levels of MCFA to explore
potential analytical problems.
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In the SEM framework, analysts commonly use differential
chi-square tests to conduct model comparison analysis with
numerous completing models. However, this kind of test is
only good for comparisons between nested models. Besides,
the chi-square test statistic is easily influenced by large sample
sizes (Yuan et al., 2007; Kline, 2010). Alternatively, information
criteria statistics can be used for model comparison between
nested and non-nested models (Sclove, 1987). By taking the
model uncertainty into consideration, the information criteria
overcome the above-mentioned difficulties (Bollen et al., 2014).
In this study, besides commonly-used model-fit test statistics and
indices, we discussed the performance of Akaike Information
Criterion (AIC, Akaike, 1974), Bayesian/Schwartz Information
Criterion (BIC, Schwarz, 1978), and the sample-size adjusted
BIC (adj. BIC, Sclove, 1987) in assessing the different model
specifications. Models with smaller AIC, BIC, or adjusted BIC
would be considered a better fit to the designated dataset.
Detailed discussion among these information criteria under the
SEM framework can be found in Nylund et al. (2007) for Latent
Class Analysis and Growth Mixture Modeling, and Bollen et al.
(2014) for single-level SEM modeling. This study would add to
the literature regarding the guideline of interpreting information
criteria to construct measurement models for complex survey
data under the SEM framework.

METHODS

Mathematical Investigation of Three SEM
Techniques on Complex Survey
Measurement Data
We provided the model specifications of the model-based,
design-based, and maximum modeling approaches (with
both saturated between-level model, and saturated within-
level structure model) and their mathematical derivations to
investigate the robustness of these modeling approaches in
dealing with the inequality of factor loadings at between- and
within-level models under equal factorial structures.

Using multilevel data drawn from a two-level multistage
sampling strategy as an example, let us suppose that the G
groups are randomly drawn from the target population at the
first stage of sampling and that ng participants are sampled
within each group g at the second stage. We have a total of

N =
G
∑

g=1
ng participants. For each participant, P item responses

(ypig , p = 1,2,. . . ,P) are gathered. We now have random vector
of response variables yig = [y1ig , y2ig ,. . . , ypig]1×P for participant i
(lower-level unit, i= 1,2,. . . ,ng) within group g (higher-level unit,
g = 1,2,. . . ,G).

For the gth group, the random matrix of observations may be
arranged as follows:

yg =











y1g
y2g
...

yngg











=













[

y11g y21g · · · yP1g
]

[

y12g y22g · · · yP2g
]

...
... · · ·

...
[

y1ngg y2ngg · · · yPngg
]













ng×P

(1)

Analogous to the variance decomposition used in ANOVA
analysis, the observation yig can be decomposed into its between-
group component and within-group component, that is,

yig = yB...g + yW.ig ,∀i = 1, 2, . . ., ng , g = 1, 2, . . .,G (2)

where yB...g is the between-group component withMVN (µ,6B)

(i.e., multivariate normal distribution with grand mean µ and
variance-covariance matrix 6B) and yW.ig is the within-group
component with MVN (µ,6W). Typically, µg is set as 0. The
between-group components in different groups is set to be
uncorrelated; that is, Cov

(

yB...g , yB...g′
)

= 0, ∀g 6= g′. Similarly,
the correlation between different participants in different groups
is also set to be zero (i.e., Cov

(

yW.ig , yW.i′g′
)

= 0, ∀i 6= i′ &
∀g 6= g′). Furthermore, the cross-level correlation between yB...g

and yW.ig is defined as uncorrelated.
Hence, the variance-covariance matrix of yigmay be

decomposed into the combination of between-group and
within-group variations, Cov

(

yig
)

= 6B + 6W . Going a step
further, to consider the MCFA model (i.e., the model-based
approach), Equation (2) may be written as

yig = yB...g + yW.ig

= µ + 3BηB...g + εB...g + 3WηW.ig + εW.ig (3)

The between-group component yB...g is the combination
of a product of factor loading matrix 3B and latent
factor ηB...g∼MVN (0,9B), and the unique vector
εB...g∼MVN (0,2B). The within-group component yW.ig is
the combination of a product of factor loading matrix 3W

and latent factor ηW.ig∼MVN (0,9W), and the unique vector
εW.ig∼MVN (0,2W). Random components were set to be
orthogonal (i.e.,ηB...g⊥εB...g⊥ηW.ig⊥εW.ig).

Equation (3) specifies two sources of random variation for
the observed variables, within-group (i.e., within-level) variation
and between-group (i.e., between-level) variation to the nature of
complex survey data, rather than just one overall random source.
As a result, the variance-covariance matrix of yig may be further
rewritten as

Cov
(

yig

)

= Cov
(

µB + 3BηB...g + εB...g + µW + 3WηW.ig

+ εW.ig

)

= Cov
(

3BηB...g + εB...g

)

+ Cov
(

3WηW.ig + εW.ig

)

= 3B9B3B
′ + 2B + 3W9W3W

′ + 2W (MCFA)

(4)

The variance covariance matrix of indicators is a function
of random effects and fixed effects in both between- and
within-level models. Using the multilevel CFA model, the total
variance-covariance of observations may be expressed as a
combination of three components in two levels: (a) factor
loadings between indicators and latent factors (3B and 3W),
(b) latent factor variances and covariance (explained portion of
observed variance, 9B and 9W), and (c) residual variance of
indicators (unexplained portion of observed variance, 2B and
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2W). The single-factor intraclass correlation (ICC) of MCFA is
then defined as ICC= 9B(9B + 9W)−1 (Muthén, 1991, 1994).

When the maximummodeling technique is applied to analyze
these two-level data, Equation (4) becomes

Cov
(

yig
)

= 6Saturated
B + 3W9W3W

′ + 2W

(Max CFA with saturated between

-level structure, 5.1)

or

Cov
(

yig
)

= 3B9B3B
′ + 2B + 6Saturated

W

(Max CFA with saturated within

-level structure, 5.2)

The full-rank variance-covariance matrix 6Saturated
B or 6Saturated

W
is unstructured, that is, all the possible between-level or within-
level variation of indicators is estimated and separated from
their total variance component. For the multilevel measurement
model specification in this study, the unique within-level or
between-level variation is then used to construct the respective
within-level or between-level model with fixed and random
effects without contamination from the other level. The residual
part is the unique portion of total variation to the within-level
or between-level variation of the indicators. If 3B = 3W (i.e.,
equality of factor loadings and structures holds for between-/
within-level models), the resulting factor loading estimates of
design-based approach with one-level model are equal to the
between-/within-level factor loadings in the true two-level model
(i.e., 3B = 3W = 3y).

If we ignore the multilevel structure and construct a one-level
model with design-based approach for the multilevel dataset y,
the observed variance-covariance matrix of the indicators may
be represented with the model-driven parameters as follows:

Cov
(

y
)

= 3y93y
′ + 2ε = 3y (9B + 9W)3y

′

+ (2B + 2W) (1− level CFA) (6)

With the inclusion of ICC, Equation (4) can be further
reformatted as:

Cov
(

y
)

= 3B ICC 93
′

B + 3W(I− ICC)93′
W

+ (2B + 2W) (7)

However, if the magnitudes of non-zero elements in between-
/within-level factor loading matrix are not the same, the factor
loading estimates of design-based approach is a function of true
between- and within-level factor loadings and the ICC measures.
Snijders and Bosker (2011) shows that, in univariate case, the

regression coefficient of overall model with multilevel dataset will
be λy = ICCλB + (1− ICC) λW . In the MCFA case, if there is a
uni-factor structure in both levels, we hypothesize that the factor
loading estimates of design-based approach could be simplified
as (which is later being validated by the simulation result):

3y = ICC3B + (1− ICC)3W (8)

That is, design-based approach could yield a conflated
factor loading estimate (3y) of complex survey data. If
the indicator has more variation in the within level, its
factor loading estimate from design-based approach will
be close to its within-level counterpart; if the indicator
has more variation in the between level, its conflated
factor loading estimate will be close to its between-level
counterpart.

The composite reliability with congeneric measures based on
CFA can then be calculated for the above models (Raykov, 2004;
Brown, 2006), using:

ρ =





P
∑

p=1

λp





2
/









P
∑

p=1

λp





2

+

P
∑

p=1

2p



, (9)

where λp is the factor loading of item p onto a single
common factor and 2p is the unique variance of item p.
When constructing a one-level model, we can insert Equation
(8) into (9) to obtain the reliability for the design-based
model in Equation (10), which can be further expressed as
the function of between- and within-level factor loadings and
errors:

ρDesign−Based Approach =





(

P
∑

p=1
ICCλBp

)2

+

(

P
∑

p=1
(1− ICC) λWp

)2














(

P
∑

p=1
ICCλBp

)2

+

(

P
∑

p=1
(1− ICC) λWp

)2


+
P
∑

p=1

(

2Bp + 2Wp

)







, (10)

Where λBP and λWp are the standardized factor loadings of item
p in the between- and within-level, and2BP and2Wp are residual
variances of item p in the between- and within-level. The detailed
discussion about reliability measures in complex survey data with
MCFA and CFA can be referred to Geldhof et al. (2013).

In the following sections, the simulation study was provided
to illustrate the robustness of the three SEM modeling strategies
with five model specifications in analyzing a measurement
dataset obtained from complex survey. The simulation results
could inform the influences of different modeling techniques
on overall exact model fit chi-square test and various model
fit indices, information criteria, parameter and standard error
estimates as well as the statistical inferences in the statistical
analysis. Parameter Specification for the Simulation From a
substantive-methodological synergy (Marsh and Hau, 2007)
perspective, we specified the population parameters in our
simulations based on the parameter estimates obtained from an
empirical dataset to examine the performance of the proposed
modeling approaches on multilevel measurement data.
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Empirical Dataset: Measurement and
Sampling
From a sample of 784 academically at-risk children participating
in a longitudinal study, we selected a balanced dataset of 120
students nested within 40 classrooms with 3 students in each
class. A total of 120 students (47 Females and 73males; 39 African
Americans, 38 Hispanics, 40 Caucasians and 3 Asians/Pacific
Islanders) were drawn. No evidence of selective consent for
participation in the larger longitudinal study was found. Details
about recruitment of multilevel sampling procedure of the 784
participants were reported in Hughes and Kwok (2007). Their
Grade 3 Harter competence measures were used in the current
study.We generated the balanced-design synthetic datasets based
on the parameter estimates from the MCFA of their Harter
competencemeasures, considering different levels of cluster sizes,
cluster numbers and intraclass correlations.

The Children Perceived Competence Scale (CPC, Harter,
1982) is composed of three domain-specific competences,
including child-perceived competence in scholastic competence
(CPCSC), social acceptance (CPCSA), and athletic competence
(CPCAC), as well as a general global self-worth scale (CPCSW).
The item-level responses consisted of ordered and categorical 4-
point scale. Each of the subscale was measured using 7 items
for a total of 28 items. Reliability of the item-level subscales
ranged from 0.75 to 0.86. We used the composite scores of each
subscale to form four continuous indicators for children’s general
competence at both classroom and individual levels so that the
analysis result can be generalized to continuous responses.

Simulation Study: True Model Specification
In order to demonstrate the adequacy and robustness of five
different modeling approaches, we used Monte-Carlo simulation
to generate the synthetic complex survey dataset with known true
multilevel measurement model of CPC scale. A two-level uni-
factor CFA model was firstly built for the empirical dataset of
CPC scale with an overall factor of child-perceived competence
including three domain-specific subscale indicators and one
general self-worth indicator in both the between- and within-
levels for the empirical dataset (as shown in Figure 1). With
Full Information Maximum Likelihood (FIML) estimation, the
resulting two-level CFA has an adequate model fit test statistic
and index values (χ2 = 9.421 with df = 4 and p = 0.051, CFI =
0.990, RMSEA= 0.048, SRMR-Within= 0.023, SRMR-Between=
0.018). The parameter estimates of varying factor loadings were
retained in the true models for simulation. The ICCs for the
indicators in the empirical analysis ranged from 0.352 to 0.617.
The factor variances in between- and within-level would then be
altered to have different ICC settings in the simulation study.

Even though the between- and within-level model had equal
structures, their factor loading magnitudes and patterns of
significance were distinct for this empirical dataset (see the two
dashed lines in Figure 1B). The unstandardized factor loading
estimates from the two-level CFA analysis of empirical dataset
were used as the population values for Monte Carlo simulation.
The population values for the within-level factor loadings was
1 for scholastic competence (marker variable with standardized
factor loading λ = 0.719), 0.45 for social acceptance (λ =

FIGURE 1 | The multilevel CFA model with parameters from empirical Harter

dataset. (A) The true between-level model. (B) The true within-level model.

**p < 0.05.

0.400), 0.92 for athletic competence (λ = 0.694), and 0.36 for
global self-worth (λ = 0.331). In the within-level, only athletic
competence was a statistically significant factor loading (i.e., p ≤
0.05). On the other hand, all the between-level factor loadings
were statistically significant. The between-level factor loadings
were 1 (marker variable with standardized factor loading λ =

0.910) for scholastic competence, 0.78 for social acceptance (λ
= 0.871), 0.60 for athletic competence (λ = 0.807), and 0.62 for
global self-worth (λ = 0.816). The intercepts of the indicators
were set as 2.896 for scholastic competence, 2.856 for social
acceptance, 2.860 for athletic competence, and 3.268 for global
self-worth. Finally, the population values of residual variance
for the classroom- and individual-level indicators were set as
0.2 and 0.5. Total variance of factor was set at one (9CPC =

9B_CPC +9W_CPC= 1), and the between- andwithin-level factor
variance was set as 9B_CPC and 9W_CPC. The levels of intraclass
correlation (ICC) were then manipulated as 9B_CPC(9B_CPC +

9W_CPC)
−1. For the simulation study, the true two-level model

was constructed with these empirical parameter estimates under
varying conditions of cluster size (CS = 3, 30, 200), cluster
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number (CN = 40, 100, 300) and Intraclass correlation (ICC =

0.1, 0.3, 0.5, 0.7, 0.9, Muthén, 1994) to generate 1,000 converged
copies of balanced-design complex survey datasets. A total of
3(CS)∗ 3(CN)∗5(ICC)∗1,000(reps) = 45,000 synthetic multilevel
datasets were generated.

Simulation Study: Analytical Models
Specification
Five SEMmodels for multilevel data with robust estimation were
used to analyze the synthetic datasets. For ease of differentiation,
we used the following naming scheme for the five model
specifications:

(1) 2MLR: the two-level model-based model and the true model
(Figures 1A,B).

(2) 1MLR: the one-level design-based model (Figure 1B).
(3) 2MaxB1: the two-level maximum model with saturated

model in between level (Figure 2) and true model in within
level (Figure 1B).

(4) 2MaxW: the two-level maximum model with true model in
between level (Figure 1A) and saturated model in within
level (Figure 2).

(5) 2Miss: the miss-specified two-level model was constructed
as Figures 1A,B by constraining the factor loading estimates
of the between and within levels to be the same. This miss-
specified model was used to test if the model-based approach
is robust in detecting trivial items, and to examine if this
model performs the same as design-based approach (i.e.,
1MLR).

Two Mplus built-in routines were employed for the statistical
modeling (Muthén and Muthén, 2012). First, the TYPE =

TWOLEVEL routine, which allows level-specific specifications
for complex survey data, was used for the 2MLR, 2MaxB,
2MaxW, and 2Miss). Second, TYPE = COMPLEX was used
as design-based approach, where only a single level model is
estimated (i.e., 1MLR) for complex survey data. By default,
both routines use the full information maximum likelihood
(FIML) parameter estimator and the robust standard error
estimator; in Mplus, this procedure is called as maximum
likelihood estimation with robust standard error correction
(MLR), which is useful for non-normal and non-independent
observations (Muthén and Satorra, 1995). Different from using
the inverse of information matrix as the sampling variance
estimate with normal distribution assumption, an asymptotically
consistent estimate of covariance matrix is derived directly from
observations by including a scaling matrix in between two copies
of the Hessian matrix and then is used to compute the robust
estimate of sampling variance, which is the square of standard
error (Huber, 1967; White, 1980; Hardin and Hilbe, 2007). The
chi-square test statistic reported using MLR is asymptotically
equivalent to Yuan-Bentler T2∗ test statistic (Muthén and
Muthén, 2012). We compared each model performance in
simulation convergence rate (CR), model-fit test statistic and fit
indices, Information Criteria (i.e., AIC, BIC and adjusted BIC),

1The exemplary Mplus syntax of 2MaxB model is provided in Appendix for

reader’s reference.

FIGURE 2 | The saturated model.

and the estimates of between/within-level factor loadings, scale
reliabilities, residual variance and mean structure estimates as
well as their 95% coverage rate and empirical power. Level-
specific scale reliability was calculated based on Geldhof et al.
(2013) using Equation (9) to decompose variance in an item into
the individual component and the cluster component.

RESULTS

Convergence Rate of Simulations, Model
Fit Test Statistic, Fit Indices and
Information Criteria
For ease of illustration, we selected the results of simulation
conditions with the smallest cluster number (CN = 40 with CS
= 3, 30, 200) and the largest combination of sample size (CN
= 300 with CS = 200) in Figure 3. When CN larger than 40,
the five modeling techniques achieved convergent results across
different ICC conditions. Nevertheless, with a cluster of 40, the
convergence ratio varied with ICC values: 2Miss and 1MLR
reached 100% convergence for all ICCs, but 2MLR, 2MaxB and
2MaxW had 9.5∼38.2% non-convergent simulation results when
ICC was smaller than 0.3 or larger than 0.7. For instance, in
the smallest case of CN(CS) = 40(3), the CR pattern of the
five modeling techniques differed with ICC values: 1MLR and
2Miss reached perfect convergence in all ICC conditions; the
CR for 2MaxW exhibited a quadratic pattern, which increased
with the increase of ICC and leveled off and reached 100% when
ICC ≥0.5 while 2MaxB demonstrated a reversed pattern. 2MLR
had a downward-U quadratic pattern of CRs verse ICCs with
the peak at ICC = 0.5. According to the error message, the
non-convergent result of 2-level models was mostly due to the
non-positive definite first-order derivative product matrix for the
insufficient portion of variance in the within or between level,
especially in the smaller sample size conditions.

All models yielded significant Chi-square exact test results
but adequate CFIs, RMSEAs, and SRMR-W values (e.g., CFI
> 0.90, RMSEA < 0.08 and SRMR < 0.08, Hu and Bentler,
1999) in all simulation conditions. However, for SRMR-Bs,
2Miss consistently demonstrated badness of fit across most of
simulation conditions. Particularly, the SRMS-Bs of the 2Miss
showed a quadratic pattern with downward-U shape and peaked
between 0.5 and 0.7 for models with a sample size equal or
greater than CN(CS) = 40(30). The result suggested that the
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FIGURE 3 | Plots of selected analytical outputs of ICC against fit statistics across different modeling strategies. CN, Cluster number; CS, Cluster size; CR,

Convergence rate of simulations; ICC, Intraclass correlation. 1MLR, the one-level design-based model; 2MLR, the two-level model-based model and the true model;

2MaxB, the two-level maximum model with saturated model in between level and true model in within level; 2MaxW, the two-level maximum model with true model in

between level and saturated model in within level; 2Miss, the miss-specified two-level model by constraining the factor loading estimates of the between and within

levels to be the same.

2Miss showed lack of fit to the multilevel measurement dataset
with level-varying parameters.

Across all simulation conditions, four 2-level models
consistently generated smaller AIC and adj. BIC than the
1MLR. The average difference of AIC and adj. BIC between
2-level models and 1MLR were larger than 20 for all the
simulation cases even for the smallest sample size conditions
(e.g., for [CN(CS), ICC] = [40(3), 0.1], AIC1MLR = 1,373.41
vs. AIC2MaxB = 1,355.38, and adj. BIC1MLR = 1,368.92 vs.
adj. BIC2MaxB = 1,347.15). AIC and adj. BIC indices preferred
model-based approaches over design-based approaches across
all simulation settings. BIC could distinguish the 2-level models

from 1MLR in most of simulation conditions, but not for
the conditions with the smallest sample CN(CS) = 40(3) at
ICC < 0.3.

Estimation of Fixed Effects
The parameter estimates of [CN(CS), ICC] = [300(200), 0.3],
[40(30), 0.3] and [40(3), 0.3] were summarized in Tables 1–3.
Besides, the relative and absolute bias values of estimated factor
loadings of CPCSA and CPCAC were tabulated in Table 42.

2Because CPCSC is the maker variable so its factor loading would constantly fixed

at one for all the analytical models. Therefore, we didn’t present its bias measures.
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TABLE 4 | The relative bias and absolute bias of factor loading estimates from five SEM modeling techniques for ICC = 0.3.

CN(CS) Model Within Level Between Level

CPCSA CPCAC CPCSA CPCAC

Bias (%) Abs(Bias) (%) Bias (%) Abs(Bias) (%) Bias (%) Abs(Bias) (%) Bias (%) Abs(Bias) (%)

40(3) 2MLR 0.72 24.58 3.52 21.88 19.18 53.69 13.41 52.32

2MaxB 5.21 24.24 7.35 20.57

2MaxW 19.55 54.57 11.11 49.29

2Miss 13.13 23.66 −8.84 17.47 −34.74 35.32 39.78 41.25

1MLR 20.79 28.16 −12.02 19.03

1MLR* −0.99 19.13 −1.77 17.03

40(30) 2MLR 0.23 6.17 0.19 5.27 14.63 39.07 3.55 30.88

2MaxB 0.22 6.17 0.19 5.27

2MaxW 15.48 39.94 3.56 30.87

2Miss 1.59 6.23 −1.43 5.37 −41.39 41.39 51.14 51.14

1MLR 18.49 19.74 −13.55 14.92

1MLR* 2.48 12.03 −2.03 7.75

300(200) 2MLR −0.02 0.89 0.02 0.72 0.62 8.76 0.57 9.41

2MaxB −0.02 0.89 0.02 0.72

2MaxW 0.62 8.76 0.57 9.41

2Miss 0.19 0.90 −0.22 0.75 −42.20 42.20 52.99 52.99

1MLR 18.67 18.67 −14.01 14.01

1MLR* −2.73 3.87 −3.92 4.63

Bias: relative bias = Estimate−Parameter
Parameter ; Abs(Bias) =

∣

∣

∣

Estimate −Parameter
Parameter

∣

∣

∣
. The parameter value of 2-level models and 1MLR in the within level: λCPCSA = 0.45, λCPCAC = 0.92 and in the

between level: λCPCSA = 0.78, λCPCAC = 0.60 of population two-level model. 1MLR* presents the bias measures with respect to its true conflated parameter value from Equation (8):

λCPCSA = 0.549, λCPCAC = 0.824.

CPCSC was the maker variable so its factor loading would
constantly be fixed at one for all the analytical models. CPCSW
and CPCSA had the same pattern of bias; therefore, we presented
the result of for CPCSA and CPCAC only. Relative bias (RB)
is calculated as the value of parameter estimate minus the
population value divided by the population value. RB quantifies
the degree of deviation of the parameter estimate relative to the
population value. A zero value of RB reflects an unbiased estimate
of the parameter. A negative value indicates an underestimation
of the parameter; on the other hand, a positive value indicates
an overestimation of the parameter. According to Flora and
Curran (2004), the value of RB less than 5% is considered as
trivial, between 5 and 10% as moderate, and greater than 10% as
substantial. Absolute bias (AB) is the absolute value of RB, which
will always be positive and cumulated to reflect the total amount
of bias. Across simulation settings, 2MLR, 2MaxB, and 2MaxW
models tended to generate factor loading estimates consistent
with the population values in respective levels. The empirical
results were consistent with the mathematical derivations [e.g.,
Equation (4), (5.1) and (5.2)]. Generally, as shown in Table 4,
ABs were larger than their RB counterparts in smaller CN
and CS, but as CN and CS increased, the discrepancy between

The bias measures for CPCSW had the same pattern with CPCSA; thus, we did not

present the bias statistics, either.

RB and AB were smaller. The RBs and ABs of the parameter

estimates were also getting smaller when sample size increased
for 2-level models, except that 2Miss consistently generated

biased between-level loading estimates across all sample size
settings.

On the other hand, 1MLR and 2Miss tended to generate

conflated estimates for the factor loadings, consistent with

Equation (7). Take the condition of the smallest sample size
as example [CN(CS), ICC] = [40(3), 0.3], compared with the

within-level fixed effects in the population model, substantial

relative bias was found in the factor loading estimates of

1MLR and 2Miss ranging from −12.02 to 20.79%. In contrast,

negligible relative bias of factor loading estimates was found

in the 2MLR and 2MaxB models ranging from 0.72 to 7.35%
(e.g., λTrue model

CPCSA, W_CPC = 0.450, λ̂2MLR
CPCSA,W_CPC = 0.453 and

λ̂2MaxB
CPCSA,W_CPC = 0.474 vs. λ̂1MLR

CPCSA,CPC = 0.607, and

λ̂2Miss
CPCSA,W_CPC = 0.509). We also compared the factor loading

estimates of 1MLR with its theoretical conflated values (obtained
from Equation (8) with ICC = 0.3, e.g., λ1MLR

CPCSA,CPC = 0.549)

and presented the biases in Table 4 at the row of 1MLR∗. 1MLR

generated negligible biases which grew larger as sample size
increased (e.g., the relative bias ranged from −0.99 to −3.92%).

Compared with the between-level fixed effects in the population
model, the 2MLR and 2MaxW models yielded considerable
relative and absolute biases at CN = 40 (the relative bias ranged
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from 3.55 to 19.55%; the absolute bias ranged from 54.57 to
30.87%).

To further investigate the relationship between factor loading

estimates and sample sizes (e.g., CN×CS), we tabulated the
between- and within-level λ̂ of CPCSA and CPCAC in boxplots

for ICC = 0.3 in Figure 4. The dispersion of the parameter
estimates of the five models decreased as the sample size

increased. When sample size was small, the dispersion of 2MLR

was larger than 2MaxB/2MaxW. Across all cluster number and
cluster size combinations, the 2MLR and the 2MaxB/2MaxW

had consistent median estimates to their parameters. However,

the 1MLR models generated conflated parameter estimates
which would regress to the weighted means of the true
factor loadings from the between-and within-level models (The

true value of within-level λTrue model
CPCAC, W_CPC = 0.920, between-

level λTrue model
CPCAC, B_CPC = 0.600, and the conflated parameter

λ1MLR
CPCSA,CPC = 0.824, vs. the estimate of λ̂1MLR

CPCAC, CPC =

0.791; λTrue model
CPCSA, W_CPC = 0.450, λTrue model

CPCSA, B_CPC = 0.780, and

λ1MLR
CPCSA,CPC = 0.549 vs. λ̂1MLR

CPCSA, CPC = 0.534). Different from
1MLR, the 2Miss models had consistent and efficient factor
loading estimates as those produced by the 2MLR and 2MaxB
models when sample size was greater than 1,200 [i.e., CN(CS)
= 40(30)] in the within-level models; whereas, the 2Miss models
generated biased parameter estimates across all sample size
conditions in the between-level level.

The Conflated Factor Loading Estimates in
Design-Based Models As ICC Changes
To probe into the consequence of applying design-based
approach on complex survey data, we plotted the estimates (solid
lines) of factor loadings from simulations and those (dash lines)
from mathematical derivation (see Equation 8) against different
ICC values in Figure 5. As we expected from the mathematical
derivation, the factor loading estimates of the design-basedmodel
approached the true between-level values as ICCs increased.
Even though they were supposed to reflect the within-level
information, the estimates got conflated across all simulated
ICCs, except for ICC= 0.

Estimation of Random Effects
In terms of factor variance, the four 2-level models yielded
consistent random effect estimates (e.g., for [40(3), 0.3], in the
between level: 9̂2MLR

B_CPC = 0.337, 9̂2MaxW
B_CPC = 0.342 and 9̂2Miss

B_CPC =

0.338; in the within level: 9̂2MLR
W_CPC = 0.723, 9̂2MaxB

W_CPC = 0.654,

9̂2Miss
W_CPC = 0.720). The performance of the 1MLR, however,

was not as consistent as that of the three 2-level models in
estimating the random effects. Specifically, the factor variance
estimate of 1MLR equaled 1.061, which was roughly the sum of
the population between- and within-level factor variance values
as shown in Equation (6). The substantial relative bias reached
51.57%. The 1MLR also yielded the same overall estimates
for the residual variances (i.e., residuals of Equation 7), while
the three 2-level models had fair within-level residual variance
estimate (e.g., θ̂1MLR

CPCSW = 0.687 vs. θTrue model
CPCSW, Within−level

= 0.500,

θ̂2MLR
CPCSW, Within−level

= 0.487, θ̂2MaxB
CPCSW, Within−level

= 0.484 and

θ̂2Miss
CPCSW, Within−level

= 0.484).

Mean Structures
As for themean structure, all examinedmodels yielded consistent
mean/intercept estimates with conformable statistical inferences
as shown in Tables 1–3.

The 95% Confidence Interval Coverage
Rate and Empirical Power of Estimates
With the conflated parameter estimate of fixed and random effect,
the 95% confidence interval coverage rate3 (95%) of 1MLR and
2Miss tended to be much smaller than its nominal level. In
terms of empirical power4 (Sig.), all the empirical power for the
three factor loading estimates were equal to or close to 1 in the
1MLR and 2Miss (e.g., for [40(3), 0.3], λ̂1MLR

CPCSA,CPC = 0.659,
95% = 0.891, Sig = 0.988 in Table 3). In contrast, in the 2MLR
and 2MaxB models, the empirical power of λ̂CPCSA,W_CPC and

λ̂CPCSW,W_CPC were both close to 0.8 (e.g., λ̂2MLR
CPCSW,W_CPC =

0.358, 95% = 0.944, Sig = 0.796; λ̂2MaxB
CPCSW,W_CPC, 95% = 0.951,

Sig = 0.819). In the true model, these two factor loadings were
considered as non-zero and smaller effects without statistical
significance at small sample size. With the small sample size
setting in the simulation, this kind of smaller effects were set
to have less empirical rate of significant estimates over total
replications than the nominal level of 0.8 (Eng, 2003). Results
of the 2MLR and 2MaxB were consistent with the population
model, in which only the empirical power for the factor loading
of individual-level athletic competence (CPCAC) far more than
0.8 but not those for social acceptance (CPCSA) and self-worth
(CPCSW).

Variance Explained5 and Scale Reliability of
Indicators
Taking [CN(CS), ICC] = [40(3), 0.3] as an example shown in
Table 5, 1MLR tended to generate inflated R2 measure, especially
for the indicators with smaller within-level factor loadings but
larger between-level factor loadings, so did the 2Miss model
(e.g., R̂2, 1MLR

CPCSA = 0.467 and, R̂2, 2Miss
CPCSA, Within−level

= 0.278 vs.

R̂2, 2MLR
CPCSA, Within−level

= 0.175 and R̂2, 2MaxB
CPCSA, Within−level

= 0.176). As

for the between-level, 2MaxW provided consistent R̂2 as 2MLR
but 2Miss generated biased estimate (R̂2, 2MaxW

CPCSA, Between−level
=

3The 95% confidence interval coverage rate (95%, defined as the empirical

proportion for which the 95% confidence interval of estimate contained the true

population parameter value).
4Empirical power (Sig., defined as the empirical significance pattern of the

estimates; that is empirical power= average rate of significant estimates over total

replications).
5In two-level models, the variables are partitioned into level-l and level-2

components. So the R2 computed in these approaches should be interpreted as

the proportion of variance in each within-group component that is accounted for

by the lower-level model, and the proportion of variance in each between-group

component that is accounted for by the higher-level model; while in 1-level MLR,

R2 is proportion of variance in each indicators that is accounted for by an overall

model where the variance composition is confounded by components from both

levels.
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FIGURE 4 | The Boxplots of selected factor loading estimates vs. sample size conditions. The red dots in the boxes indicate the means of factor loading estimates.

The red dashed lines indicates the parameter settings in respective levels.

0.746 and R̂2, 2MLR
CPCSA, Between−level

= 0.740 vs. R̂2, 2Miss
CPCSA, Between−level

=

0.623).
As for the scale reliability, the 2MaxB and 2MaxW yielded

consistent reliability measures as 2MLR in respective levels,
but 1-level MLR and 2-level Miss tended to underestimate the
score consistency of indicators (e.g., ρ̂2MaxB

Within−level
= 0.830 ∼=

ρ̂2MLR
Within−level

= 0.825; ρ̂2MaxW
Between−level

= 0.926 ∼= ρ̂2MLR
Between−level

=

0.930 vs. ρ̂1MLR = 0.747, ρ̂2Miss
Within−level

= 0.798 and

ρ̂2Miss
Between−level

= 0.915).
In summary, given the conflated estimates of fixed and

random effects, the 1MLR models would provide overestimated
variance explained measure and underestimated reliability
measure for the indicators. In contrast, the 2MaxB and 2MaxW
model generated consistent R2 and ρ for respective within-level
and between-level indicators consistent with those of the 2MLR
model across simulation settings.

DISCUSSION AND CONCLUSION

As researchers call for the need to adequately take into account
of the multilevel structure of social and behavioral data (Skinner
et al., 1997; Lee and Forthofer, 2006), the use of multilevel

data modeling techniques will be inevitable. However, multilevel
models are not an infallible statistical strategy unless the
hypothesized model conforms to the real data structure. In
this study, we demonstrated that maximum models are robust
analytic methods as to the inequality of higher- and lower-
level factor loadings or to detect possibly non-significant trivial
items, especially when researchers have limited information
about the significance pattern of factor loadings and level-varying
measurement structures. The current study focuses on multilevel
CFA, which is a generic form of structural equation models;
therefore, the study result can be generalized to more complex
models.

Specifically, we examined the performance of five proposed
SEM techniques on analyzing complex survey data with
unequal factor loadings under equal between- and within-level
structures. Across different combinations of cluster numbers,
cluster sizes and ICC values, all models yield acceptable model-
fit information. AIC and adjusted BIC could be utilized to
differentiate 1MLR from 2-level models but could not select the
best 2-level model. Among 2-level models, 2MLR, 2MaxB and
2MaxW could consistently generate the effective and efficient
parameter estimates. On the contrary, the design-based model
would not be an appropriate approach on analyzing complex
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FIGURE 5 | ICCs vs. parameter estimates from the simulations and those from the mathematical derivations of the design-based approach: As ICC increases,

design-based approach tends to generate factor loading estimates which are closer to its between-level counterpart and deviate from its within-level values in the true

model. There is one factor in both within and between levels with factor variance 9Within−level = (1− ICC)·9total and 9Between−level = ICC·9total with 9total =

9Between−level + 9Within−level = 1. Solid line illustrates the factor loading estimates of design-based approach (1MLR) from simulations; dotted line illustrates the

theoretical parameter values of design-based approach. CPCSC is the marker variable. The true value of CPCAC λTrue model
CPCAC, W_CPC

= 0.920,

λTrue model
CPCAC, B_CPC

= 0.600; CPCSA λTrue model
CPCSA, W_CPC

= 0.450 and λTrue model
CPCSA, B_CPC

= 0.780; CPCSA λTrue model
CPCSW, W_CPC

= 0.360 and λTrue model
CPCSW, B_CPC

= 0.620.

TABLE 5 | Values of ICC and R2 on indicators in the synthetic dataset of harter’s

competence measures using five SEM modeling techniques for [CN(CS), ICC] =

[40(3), 0.3].

CPCSC CPCSA CPCAC CPCSW Scale

reliabilityρ

ICC 0.617 0.612 0.352 0.431 ---

R2 2MLR Within-level 0.506 0.175 0.473 0.124 0.825

Between-level 0.802 0.740 0.651 0.662 0.930

1MLR 0.697 0.467 0.482 0.370 0.747

2MaxB Within-level 0.503 0.176 0.473 0.124 0.830

2MaxW Between-level 0.799 0.746 0.653 0.660 0.926

2Miss Within-level 0.468 0.278 0.271 0.195 0.798

Between-level 0.843 0.623 0.745 0.553 0.915

CPCSC, Harter perceived scholastic competence; CPCSA, Harter perceived social

acceptance; CPCAC, Harter perceived athletic competence; CPCSW, Harter perceived

global self-worth.

survey data due to its conflated fixed and random effect estimates,
inflated standard error estimates, and inconsistent statistical
inferences, along with the overestimated variance explained and
underestimated reliability measures of the indicators. Below we
elaborated on the consequences of using design-based models
and miss-specified 2-level models as well as the advantages

of our recommended methods in analyzing complex survey
measurement data.

Disadvantages of the Design-Based
Approach and Mis-Specified Multilevel
Models
Using both mathematical derivation and empirical data
simulation, we demonstrated that the 1MLR as well as 2Miss
yields similar but conflated fixed effect; on the other hand, 2Miss
could specify level-specific random components while 1MLR
would yield overall random effect estimates. When 1MLR model
is used, it truly estimates the combination of variations from
different levels in a single-level modeling simultaneously. The
parameter estimates got mixed with components from both
levels except for ICC = 0 and 1 (as shown in Figure 5). In that
case, the consequences were spurious fixed effect estimates with
more likely statistical significance and bigger R2. Moreover,
with the overall estimate of residual variance, the design-based
approach tended to generate smaller scale reliability estimates.

On the other hand, if the model-based approach is miss-
specified, researchers will yield parameter estimates which
deviate from the population values in respective levels. In this
study, we construct the miss-specified model-based model by
constraining the between- and within-level factor loadings to be
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equal, and the consequence of the analytic results is similar to that
of the design-based approach because the design-based approach
assumes the between andwithin level model have not only exactly
the same structure (Muthén and Satorra, 1995; Wu and Kwok,
2012), but also the same magnitude of factor loadings.

In regression-like analyses, the design-based approach is
reliable to generate consistent statistical inference of parameter
estimates by adjusting its standard error considering data
dependency (Hardin and Hilbe, 2007); however, in CFA or SEM-
based analysis, we demonstrate that the design-based approach
on complex survey data cannot guarantee consistent statistical
inferences of the result to a specific level with conflated parameter
estimates. Design-based approaches are beneficial to take the
data dependency into consideration by adjusting the estimate of
standard error when the between and within levels have equal
structures. However, only when the equality in structures and in
population values holds for both levels, the analytic result can be
unbiased to specific-level inferences. In most of MCFA or MSEM
analyses, the parameter estimates obtained from the design-based
approach is a function of between- and within-level population
values and the analytic result cannot infer to any level. In the
case of children’s perceived Harter competence, the four factor
loadings of different competence aspects were all statistically
significant at the classroom level while only the factor loading
of athletic competence was significant at the individual level
in early childhood, based on a correctly specified and analyzed
result. Nevertheless, as shown in the 1MLR and 2Miss, all four
factor loadings were statistically significant which could mislead
researchers to conclude that all four competence aspects were
important for the individual development of the overall perceived
competence and to invest their efforts to items (aspects) that
are trivial or of little importance for early elementary student’s
individual competence development.

Under the MCFA framework, we provided evidence to
illustrate that design-based approaches yield conflated parameter
estimates with multilevel measurement data even under equal
level structures as long as the population values at each level are
different. In reality, we can hardly know the true model and thus
should be more cautious about making inferences with estimates
from design-based approaches to represent the lower-level model
characteristics.

Advantages of Maximum Models
To have consistent and unbiased statistical inferences,
methodologists debated over the adequacy of model-based
approaches and design-based approaches on analyzing
multilevel dataset from complex survey sampling (Snijders
and Bosker, 2011). Adding new findings to the literature, first,
we demonstrated that the design-based approach is not a robust
analytic model for multilevel data under equal level structures
with unequal factor loadings. Second, the model-based approach
can produce unbiased fixed and random effect estimates as
well as their corresponding statistical inferences if and only
if the model is correctly specified. Third, most importantly,
we suggested that 2MaxB and 2MaxW models are robust and
feasible techniques for separating variance components from
different levels and for investigating possible higher-level and

lower-level structures. Fourth, when the number of clusters in
the higher-level sampling units is sufficient (e.g., no less than
40 as shown in simulation), the 2MLR and 2MaxW models can
yield consistent and effective estimates of the fixed and random
effects. By estimating a saturated between- or within-level model,
maximum models enable researchers to focus on examining
the lower- or higher-level findings and to obtain consistent
statistical inference for findings that researchers are interested
in. In the current empirical data simulation, compared to those
in the design-based model, variables with smaller factor loadings
and smaller R2 in the within level of the maximum model
(e.g., social competence in 2MaxB model) may suggest stronger
factor loadings in the between level based on the Equation (7).
Researchers in the applied area are encouraged to compare
results from maximum models with those from design-based
models to investigate possible higher level variation and avoid
investing unnecessary efforts on unimportant aspects (i.e., trivial
items with smaller amount of factor loadings and variance
explained).

Recommendations for Practice and
Limitation
According to the simulation results, information criteria
performed better than model-fit test and fit indices in selecting
the optimal analytical models on multilevel measurement
data. Researchers can refer to information criteria statistics
to determine if their hypothesized models fit the multilevel
measurement data adequately. They can start by fitting a 2Miss
and a 1MLR. If the information criteria suggested better fit for
the 2Miss model (e.g., 1 AIC or 1 adj.BIC ≥ 20), they should
go a step further to perform 2MLR when they have theoretical
or empirical evidence, or they could specify 2MaxB or 2MaxW
depending on their primary interest in the specific level to ensure
consistent and effective estimates of the fixed and random effects.
Especially 2MaxB is recommended when the number of between-
level sampling units is small (e.g., CN< 40) under the setting of 4
or fewer manifest variables. As a caveat, though AIC and adj. BIC
reflected better fit for 2-level models than design-based models
across all simulation conditions, they were shown to perform
poorly in many contexts (e.g., Preacher and Merkle, 2012). More
research can be done to investigate the effectiveness of AIC and
BIC in model selection across different parameter settings.

Moreover, in this study, we discuss a multilevel measurement
model with a uni-factor structure in both levels; however, if
the level structure is misspecified, part of the misspecification
would still pass on to the other level and influence the modeling
result. Thus, it is possible that the residual part may not
truly reflect the misspecification in 2MaxW or 2MaxB. Similar
concerns have been raised for developing the method of MUML
(Muthén, 1994) and for separately evaluating the within and
between level structures (Yuan and Bentler, 2007). Since it is
very unlikely to have a correct model specification in practice,
results obtained for 2MaxB and 2MaxW may be too optimistic
to generalize for empirical dataset. The performance of 2MaxB
and 2MaxW models applied in substantial research warrants for
future investigation. In addition, the model specification may
become more complicated when there is more than one factor or
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when the observed variables are not normally distributed. Future
study can be conducted to investigate the performance of 2MaxB
and 2MaxW in more complex settings.
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APPENDIX

Mplus Syntax for 2MaxB Model

TITLE: This is an example of a Maximum model

DATA: FILE = Harter3_change_2l.dat;

VARIABLE: NAME = cpc31-cpc34 Cluster;

USEVARIABLES = cpc31-cpc34;

CLUSTER = Cluster;

ANALYSIS: TYPE = TWOLEVEL;

MODEL:

%Within% ! Set up Within-level Model

cpc3w BY cpc31@1 cpc32 cpc33 ! Specify lower-level CFA model

cpc34; ! Item residual variance

cpc31 cpc32 cpc33 cpc34; estimates

%Between% ! Set up Between-level Model

cpc31 WITH cpc32 cpc33 cpc34; ! Estimate full rank

cpc32 WITH cpc33 cpc34; ! variance-covariance matrix in

cpc33 WITH cpc34; ! higher-level structure

[cpc31 cpc32 cpc33 cpc34]; ! Item intercept estimates

OUTPUT: SAMP RES STAND MOD;
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