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Class Enumeration and Parameter
Recovery of Growth Mixture
Modeling and Second-Order Growth
Mixture Modeling in the Presence of
Measurement Noninvariance
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Eun Sook Kim * and Yan Wang
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Population heterogeneity in growth trajectories can be detected with growth mixture
modeling (GMM). It is common that researchers compute composite scores of repeated
measures and use them as multiple indicators of growth factors (baseline performance
and growth) assuming measurement invariance between latent classes. Considering that
the assumption of measurement invariance does not always hold, we investigate the
impact of measurement noninvariance on class enumeration and parameter recovery
in GMM through a Monte Carlo simulation study (Study 1). In Study 2, we examine
the class enumeration and parameter recovery of the second-order growth mixture
modeling (SOGMM) that incorporates measurement models at the first order level.
Thus, SOGMM estimates growth trajectory parameters with reliable sources of variance,
that is, common factor variance of repeated measures and allows heterogeneity in
measurement parameters between latent classes. The class enumeration rates are
examined with information criteria such as AIC, BIC, sample-size adjusted BIC, and
hierarchical BIC under various simulation conditions. The results of Study 1 showed
that the parameter estimates of baseline performance and growth factor means were
biased to the degree of measurement noninvariance even when the correct number of
latent classes was extracted. In Study 2, the class enumeration accuracy of SOGMM
depended on information criteria, class separation, and sample size. The estimates
of baseline performance and growth factor mean differences between classes were
generally unbiased but the size of measurement noninvariance was underestimated.
Overall, SOGMM is advantageous in that it yields unbiased estimates of growth trajectory
parameters and more accurate class enumeration compared to GMM by incorporating
measurement models.

Keywords: growth mixture modeling, second-order growth mixture modeling, measurement invariance, latent
class, class enumeration
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INTRODUCTION

In educational and psychological research the change or growth
in temporal outcomes (e.g., alcohol use, depression, antisocial
behavior, reading skills over time) is one of the major research
questions (e.g., Muthén et al., 2000; Li et al., 2001; Miner and
Clarke-Stewart, 2008). Given that the growth over time is likely
variant across units of analysis (e.g., children), researchers are
often interested in clustering in terms of the pattern or trend
of growth. To investigate potential unobserved groups or latent
classes in growth trajectories growth mixture modeling (GMM)
is often used. For example, using GMM Baams et al. (2014) found
resilients, undercontrollers, and overcontrollers in personality
types; Hill et al. (2017) identified mild, increasing, elevated,
and decreasing trajectories of depressive symptoms; and Oshri
et al. (2017) observed declining, ascending, and stable high self-
esteem.

Like many statistical methods, GMM is based on statistical
assumptions. It is generally expected that the results of a
statistical method are compromised to the extent to which
statistical assumptions of the method are violated. One of
the major assumptions of GMM is measurement invariance
of longitudinal outcomes across latent classes that emerge
from the data (Grimm and Ram, 2009). However, it is not
known how the violation of the measurement invariance
assumption impacts the performance of GMM. Thus, this
study investigated the behaviors of GMM under the violation
of measurement invariance across latent classes. Furthermore,
we proposed the second-order growth mixture modeling
(SOGMM) that allows modeling and testing measurement
invariance explicitly across latent classes in the growth mixture
analysis.

In the following section we first introduced latent growth
modeling (LGM) that is a basic building block of second-order
LGM and, next, discussed the advantages of second-order LGM
addressing measurement invariance issues between observed
groups in LGM. Then, we shift the focus to GMM for unobserved
groups in growth trajectories and its extension to second-order
GMM raising the issues of measurement noninvariance across
latent classes.

Latent Growth Modeling and
Second-Order Latent Growth Modeling

When researchers are interested in changes of individuals
over time (e.g., changes in social role functioning over time
in developmental psychology), LGM is often employed. LGM
is appropriate to address research questions about the (a)
average baseline performance, (b) average growth trajectories, (c)
variability in baseline performance, and (d) variability in growth
trajectories across individuals. That is, in addition to estimating
the mean level of initial performance and growth, it allows
those growth parameters to randomly vary across individuals
(i.e., random effects). For example, in a study investigating
the development of depressive symptoms of 7th graders over
3 years, the average depressive symptoms at grade 7 and the
average growth rate of depressive symptoms over 3 years can
be estimated with LGM. In addition, psychologists will be

informed of how much variability exists among adolescents
in terms of their initial depressive symptoms and growth
rates.

In LGM, researchers can also incorporate covariates to
explain the variability in the baseline scores and growth rates
of depressive symptoms. For example, when gender difference
is expected in the development of depressive symptoms among
adolescents, this effect can be modeled and tested in LGM as
shown in Figure 1A: gender differences in baseline depressive
symptoms and growth trajectories (paths a and b, respectively). In
estimating these gender differences, LGM assumes measurement
invariance of depressive symptoms between boys and girls.
In other words, it is assumed that boys and girls respond
to the items of a depressive symptoms checklist in the same
manner.

However, this assumption of measurement invariance
between boys and girls can be violated, which is illustrated in
Figure 1B. In this figure, gender differences are present not
only in the initial performance and growth rates of adolescents
but also in their responses to an item that measures depressive
symptoms (denoted by path e). When measurement invariance
between boys and girls is violated, it is well-known that the
mean comparison between them is not legitimate. Generally,
scalar measurement invariance (i.e., invariance of factor
structure, factor loadings, and intercepts of a measurement
model) is required for meaningful mean comparisons
between groups (Millsap and Kwok, 2004). Specifically in
the context of LGM, Kim and Willson (2014a) investigated
the impact of measurement noninvariance between groups
on the performance of LGM and demonstrated that intercept
noninvariance was directly associated with bias and Type I
error inflation on the group effect on baseline performance
(path a in Figure 1A) whereas factor loading noninvariance was
associated with bias and Type I error inflation on the growth
rate (path b in Figure 1A). To explicitly test measurement
invariance in LGM, they recommended the second-order LGM
(SOLGM).

As shown in Figure 1B, SOLGM includes measurement
models of longitudinal outcome variables as the first-order
part (McArdle, 1988; Meredith and Tisak, 1990). In LGM, the
temporal outcomes are observed variables measured repeatedly
over a period of time (squares denoted by T;-T, in Figure 1A).
When multiple items are used to measure the outcome (e.g.,
depressive symptoms), it is a common practice to use composite
scores of the items (Leite, 2007). When composite scores are
created, all items in a measure are equally weighted regardless
of their relation to the latent factor measured. On the other
hand, in SOLGM the temporal outcomes are latent factors
that are measured by multiple items (circles denoted by T;-T4
in Figure 1B). Thus, the relations of items to the factors are
explicitly modeled with different weights (i.e., factor loadings).
Because unique factor variance or error variance is taken out,
growth parameters are estimated with reliable sources of variance
(common factor variance; McArdle, 1988; Grimm and Ram,
2009). In addition, measurement invariance (both longitudinal
invariance and group invariance) can be examined with SOLGM
(Kim and Willson, 2014b).
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latent classes).
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FIGURE 1 | (A) Latent growth model, LGM (B) second-order latent growth model, SOLGM (C) growth mixture model, GMM (D) second-order growth mixture model,
SOGMM. | = continuous latent intercept, S, continuous latent slope; ¢, unobserved categorical variable or latent classes; G, observed covariate (e.g., gender). T1-Ty4
are observed longitudinal outcome variables (squares) in LGM and GMM, but latent factors (circles) in SOLGM and SOGMM. Y41-Y,3 are observed items of latent
factors, T1-T4. Note that Y»1-Y33 are not shown due to a limited space. Paths a-d represent covariate effects on the intercept and slope factors (or group-specific
effects if a covariate is categorical). Paths f-i represent class-specific effects on the intercept and slope factors. Path e (a dotted line) represent a covariate effect on an
item (measurement noninvariance in terms of a covariate). Path j (a dotted line) represent a class-specific effect on an item (measurement noninvariance between

Growth Mixture Modeling

Although, LGM is very useful providing information of the
average initial performance and growth trajectory, it is generally
assumed that all individuals are from a single population and
thus the same growth pattern is applied to all individuals
(Muthén, 2004; Frankfurt et al., 2016). However, it is often
observed in social sciences that individuals change over time
and those changes are not homogeneous across individuals.
For example, the development patterns of depressive symptoms
could be different among adolescents. Not to mention potential
heterogeneity in baseline depressive symptoms, some may exhibit
stably low or high symptoms over time, some may show steadily
increasing trend, and others may experience exponential change.
GMM allows researchers and practitioners to investigate the
heterogeneity of growth patterns across individuals by combining
the latent class approach or mixture modeling to LGM (Grimm
and Ram, 2009; Frankfurt et al., 2016). Latent classes are
unobserved groups that emerge from the data depending on the

patterns of growth in GMM. Subgroups with their own unique
growth parameters are identified as illustrated in Figure 1C
(latent classes ¢ represented by a circle as an unobserved
categorical variable and their specific means of intercept and
slope factors denoted by paths f and g). For example, Cabrera
etal. (2016) identified four distinctive trajectories of post-combat
aggression among American combat team soldiers returned
from an Iraq deployment: low-stable, delayed, recovery, and
chronic. They expected that their study findings could help
targeted intervention of combat-related posttraumatic stress
disorder through improved identification of at-risk subgroups. In
addition to identifying subpopulations of heterogeneous growth
curves, GMM is used to approximate non-normal distributions
(McLachlan and Peel, 2000; Lubke and Neale, 2006). Normal
distribution is typically assumed within subpopulation (Muthén,
2004) and the distribution of observed variables is the mixture
distribution of subpopulations (Lubke and Neale, 2006). As in
LGM, researchers can incorporate covariates in GMM although
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not demonstrated in the figure. For interested readers, refer to
Muthén (2004) about the extension of GMM with covariates and
distal outcomes.

When subpopulations are identified in GMM, it is assumed
that measurement invariance of longitudinal outcome variables
holds across identified subpopulations. For example, soldiers
showing low-stable post-combat aggression and soldiers showing
chronic post-combat aggression (Cabrera et al, 2016) are
assumed to respond to the items of the aggression scale in the
same way. However, this assumption can be violated as illustrated
in Figure 1D. The figure shows that there is heterogeneity across
latent classes not only in baseline performance and growth
rates (paths h and i, respectively) but also in their responses
to an item (path j). As discussed in the LGM section above,
it is well-known that scalar invariance between groups is a
prerequisite to a meaningful group mean comparison. Similarly,
a comparison between latent classes in terms of means of
intercept and slope factors (or initial performance and growth)
is expected to be meaningfully interpretable when measurement
invariance holds. Based on the findings of Kim and Willson
(2014a) with LGM, when measurement noninvariance across
latent classes is present but invariance is assumed in GMM,
it is possible that spurious heterogeneity in growth parameters
occurs, which can result in the detection of a spurious latent
class. It is also reported that assumption violations could lead to
the misidentification of an extra latent class (Bauer and Curran,
2003). Particularly, specifying a more restrictive model than a
true population model within class could result in overestimation
of the number of classes (Lubke and Neale, 2008; Vermunt,
2011). For example, four latent classes may be identified when
there are three distinctive classes in the population. However, the
impact of measurement noninvariance across latent classes on
the performance of GMM has not been systematically studied yet.

Second-Order Growth Mixture Modeling

In GMM, longitudinal outcome variables are observed variables.
Many applied studies using GMM employed mean or sum
composite scores of multiple items of a scale (e.g., mean of
eight items of 3-point peer victimization scale, Brendgen et al.,
2016; sum of five items of 4-point positive religious coping
scale and sum of five items of 4-point negative religious coping
scale, Hayward and Krause, 2016; sum of five items of 5-
point self-esteem scale, Oshri et al,, 2017; mean of 16 items
of 5-point depressive symptoms, Wang et al., 2015). On the
other hand, the second-order GMM (SOGMM) directly models
the relation of multiple items to the factor that is repeatedly
measured for changes as illustrated in Figure 1D. Grimm and
Ram (2009) described SOGMM by decomposing the model into
four components: (1) a longitudinal measurement model or
longitudinal common factor model, (2) measurement invariance
constraints, (3) a latent growth model, and (4) a mixture model.
On top of GMM (components 3 and 4) which is the second-
order part, SOGMM includes a measurement model at each
time point as the first-order part (components 1 and 2). Thus,
the benefits of SOLGM over LGM we listed above will equally
apply to SOGMM over GMM and we do not reiterate those
benefits here. Of note is that Grimm and Ram demonstrated

the application of SOGMM with multiple assessment (different
reporters of a measure, that is, mother, father, and teacher reports
of child externalizing behavior) not with multiple items of a
measure. They still used sum composite scores of multiple items
of mother, father, and teacher reports, and a measurement model
of each scale was not employed in their SOGMM. Following their
demonstration, some applications of SOGMM included multiple
assessment in the measurement model with composite scores
not with multiple items of a measure (e.g., Nash et al., 2015;
Lee et al,, 2017). Of another note is measurement invariance
constraints. When measurement invariance holds over time,
invariance constraints are imposed as illustrated in Grimm
and Ram and also in Figure 1D (denoted by k, I, and m
over occasions). In their demonstration measurement invariance
across latent classes were assumed (Grimm and Ram, 2009).
That is, a path from latent classes to an item (or multiple
assessment) denoted by path j was constrained at zero for all
items. However, in SOGMM this path, that is, measurement
invariance of the corresponding item can be explicitly tested and
also freely estimated when the invariance assumption does not
hold. Even though SOGMM has great flexibility in testing and
modeling heterogeneity across latent classes not only in growth
patterns but also in measurement models, its application is not
common and very limited (only with multiple assessment not
with items) up to date. Moreover, the efficacy of SOGMM in
detecting heterogeneous subpopulations is unknown.

Given that research on the performance of GMM and second-
order GMM in the presence of measurement noninvariance
is lacking, the purpose of this study is two-fold. In Study
1, we purport to investigate the impact of measurement
noninvariance on class enumeration and parameter recovery
in GMM. Specifically, when population heterogeneity exists
in terms of measurement parameters but the scale composite
scores are used in GMM ignoring measurement noninvariance,
how the violation of measurement invariance affects the class
enumeration and parameter estimates is examined through a
Monte Carlo simulation study. In Study 2, we examine the class
enumeration accuracy and parameter recovery of SOGMM in
which measurement parameters are allowed to vary across latent
classes.

THEORETICAL FRAMEWORK
Latent Growth Modeling

With data from repeated measures researchers can investigate
growth trajectories such as the average performance at the
initial stage and the average growth rate across individuals. The
common factor model in structural equation modeling (SEM)
can be used to address such research interest. In the SEM
framework, growth trajectories such as baseline performance
and growth are modeled as latent variables. As shown in
Figure 1A, baseline performance and growth are represented by
the intercept and slope latent factors, respectively in LGM. For
the sake of simplicity, we assume linear growth in this example,
but the model can be easily extended to different growth curves
by including additional latent factors (e.g., a quadratic factor
for curvilinear growth) or freely estimating factor loadings of

Frontiers in Psychology | www.frontiersin.org

September 2017 | Volume 8 | Article 1499


http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

Kim and Wang

Measurement Noninvariance in GMM

the slope factor. The intercept and slope (&;) are estimated with
observed continuous outcome variables of repeated measures
(T;) for an individual i (Meredith and Tisak, 1990; Wu et al.,
2009) as shown in Equation (1).

T, =T +¢; (1)

where T; is a m x 1 vector of observed variables, I" isa m x r
matrix of factor loadings, &, is a vector of latent factor scores (i.e.,
intercept and slope values), ; is a m x 1 vector of time-specific
error scores for an individual i, m is the number of occasions, and
r is the number of latent factors (2 with the intercept and slope
factors). For linear growth over time, the factor loadings of the
intercept and slope factors can be specified as:

1 m—1

The factor loadings of the intercept factor are all unity and those
of the slope factor increase by unity from 0 to m — 1 to represent
linear growth over m occasions. The subscript i in the intercept
and slope factors (&;) indicates that individuals are allowed to
have different intercepts (initial performance) and slopes (linear
growth rates), but the average is of focal interest. The means of
two latent factors, E(§;) are expressed as:

EE) =k = [K’] )

KS

where k7 and kg represent the average baseline performance
and the average growth rate across individuals, respectively. The
variance covariance matrix of the latent factors is:

_ | ¢r
®= |:¢IS ¢s:|

where ¢, ¢s, and ¢rs represent the variability in baseline
performance and growth across individuals and the covariance
between baseline performance and growth, respectively. Finally,
the population mean vector 1 and variance covariance matrix
S of T; are defined as:

wy =T«
;= Tor + ¥ (3)

where W is the variance covariance matrix of residuals (¢;). The
residuals (¢ ;) are assumed to be multivariate normally distributed
with the mean of zero and independent of each other, but the
assumption of independence can be relaxed by allowing residual
covariance. Of note is that in LGM applications the observed
outcome variables (Tj,) are typically mean or sum composite
scores of a measure.

Growth Mixture Modeling

To model the differences specifically in growth trajectories across
individuals, GMM incorporates latent classes in LGM. Thus,
GMM includes both latent continuous variables (latent factors)
and latent categorical variables (latent classes; Muthén, 2004).
The latent growth model introduced in Equation (1) will be
specified for each latent class as shown below.

(Tile) =T, + ¢4, (4)

where ¢ denotes latent classes (¢ = 1, 2, ..., C). Within class,
the residuals (¢j|c) are assumed to be multivariate normally
distributed with a mean vector of 0 and variance covariance
matrix of W.. Accordingly, Equations (2) and (3) are rewritten as

K
K = fe >
KSc

. = Teko,
Y = [® T, +V,.

Thus, all parameters of LGM such as the intercept and slope
factor means (k7 and kg) and their variances and covariance
(¢1, ¢s, and ¢ys) can be class specific in GMM. In addition, the
probability that an individual belongs to each category of latent
classes is estimated. Hence, the distribution of the longitudinal
outcome variables is a mixture of normal distributions of latent
classes as shown below:

C
fT) =) mpelie T1o) (5)

c=1

where ¢, is a m-dimensional normal probability density function
for class ¢, m. is the proportion of participants in class ¢, and
chzl 7. = 1 (Bauer, 2007).

Measurement Invariance Testing in the
Second-Order Growth Mixture Model

With repeated measures, the second-order growth mixture model
(SOGMM) that incorporates a measurement model at the first-
order level has advantages over GMM that usually uses composite
scores of repeated measures. SOGMM takes into account
measurement error (residuals of items not related to a common
factor) and allows researchers to evaluate psychometric qualities
of a scale including measurement invariance across latent classes.
Thus, SOGMM is appropriate to detecting unknown clustering
due to noninvariance in measurement parameters of a scale as
well as heterogeneity in growth trajectories among individuals.
As illustrated in Figure 1D, the first-order part of SOGMM is
a measurement model at each occasion ¢ that models the relation
of observed continuous variables to latent factors (e.g., depressive
symptoms items to a latent factor depressive symptoms):

(Yile) = vie + Aeelype + €ire (6)

where conditional on latent class ¢, Yj; is a p x 1 vector of
continuous observed variables (or items), v, is a p x 1 vector
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of item intercepts, A is a p x g matrix of item factor loadings,
Nire is @ g x 1 vector of latent factor scores, € is a p x 1
vector of the corresponding item error scores for an individual
i, and p and gq are the number of items and the number of
factors, respectively. Within class, the residuals are assumed to
be multivariate normally distributed with a mean vector of 0:
(eitle) ~ N(0, ©y).

Because measurement models are explicit in SOGMM,
measurement invariance over time can be specified. Strict
measurement invariance holds over time for class c if

Atc = Ac’ Vic = V¢, ®tc = G)c'

Similarly, measurement invariance across latent classes can be
specified in SOGMM. If measurement invariance over time holds
as shown above, strict measurement invariance across latent
classes (c=1, 2, ..., C) can be further defined as:

Ac = A, (7)
Ve =, (8)
0.=0. )

When strict invariance holds across classes, factor variances and
means are freely estimated and compared across classes (or over
time).

Then, the second-order part of SOGMM is basically GMM
that is shown in Equation (4). To thread the first- and second-
order parts of SOGMM together, the measurement model at
occasion t in Equation (6) is rewritten as a measurement model
over t occasions without the ¢ subscript: (Y;|c) = v+ Ap;.+€ic.
By replacing n;. with (Tj|c) in Equation (4), the measurement
model and the growth mixture model (Equation 4) are combined
as the second-order growth mixture model (Figure 1D):

(Yilo) = v+ A, (rcgic + Eic) + &ic.

The mean vector wy, and variance covariance matrix Xy, of
(Y;lc) are defined as

Ry, = v+ Acrc’Cca

Ty = A (T, + W) A, + O, (10)
When GMM is used with composite scores of repeated
measures, measurement noninvariance, if present, cannot be
properly modeled. Kim and Willson (2014a) showed that when
measurement noninvariance was present between groups but not
correctly modeled by constructing latent growth models with
composite scores, ignoring measurement noninvariance resulted
in biased estimates of baseline performance and growth factor
means and incorrect statistical inferences on these parameters.
Specifically, they found that noninvariance in factor loadings led
to a spurious mean difference in growth between groups whereas
noninvariance in intercepts yielded a spurious mean difference in
baseline performance. The size of measurement noninvariance
ignored in LGM was directly related to the size of bias in those
mean differences. In Appendix (Supplementary Material) we

analytically demonstrated the impact of ignored measurement
noninvariance on the estimates of growth factor means using
SOGMM.

Class Enumeration in Growth Mixture
Modeling

In practice of mixture modeling, a series of models with
an increasing number of latent classes are specified. Then,
the number of latent classes is commonly determined by
identifying the best-fitting model among all specified models
through model comparisons. To select the best-fitting model,
different methods are introduced in the literature. Tein et al.
(2013) summarized class enumeration methods into three
categories: (a) using information criterion (IC) such as the
Akaike Information Criterion (AIC; Akaike, 1974), Consistent
AIC (CAIC; Bozdogan, 1987), Bayesian Information Criterion
(BIC; Schwarz, 1978), and sample-size adjusted BIC (saBIC;
Sclove, 1987), (b) conducting likelihood ratio tests (LRT) such
as Lo-Mendell-Rubin LRT and bootstrap LRT, and (c) using
entropy that evaluates how well the classes are separated. In
this study we use information criteria for class enumeration.
Among ICs, Nylund et al. (2007) recommended BIC and saBIC
for class enumeration in GMM. These two ICs are also commonly
used and suggested in the general mixture modeling literature
(e.g., Lubke and Muthén, 2005; Tay et al., 2011). However, some
authors showed the outperformance of AIC over BIC particularly
when sample size was small and the class separation was poor
(Lukocieneé et al., 2010), but the AIC tended to overestimate the
number of latent classes in other cases (Celeux and Soromenho,
1996; Nylund et al., 2007; Tein et al., 2013). In model selection
with mixture modeling, the hierarchical BIC (HBIC) is also
suggested (Zhao et al,, 2013, 2015; Gollini and Murphy, 2014;
Zhao, 2014). Zhao et al. (2015) argued that BIC tends to
overpenalize model complexity in mixture modeling by using
the total sample size for all estimated parameters and suggested
to penalize parameters with their relevant sample size, that is,
local or effective sample size that is used to estimate parameters
associated with a specific class (nm. in the equation below). As
shown in Equation (11), the HBIC equals to the BIC when ¢
= 1, but is smaller than BIC when ¢ > 1. Zhao and colleagues
demonstrated that the HBIC outperformed the BIC especially
when sample size was small. Thus, we included these four ICs
in our study. These ICs are computed as:

AIC = —2logL + 2%k,
BIC = —2logL + log(n)*k,
saBIC = —2logL + log[(n + 2)/24]%k,
C
HBIC = —2logL + (ko +C— 1) log (n) + Zlog (nm.) *k;

c=1

(11)

where logL means log likelihood, log(n) is the natural logarithm
of sample size, log(nm.) is the natural logarithm of sample size
specific to a latent class ¢ where 7, > 0, ¢ = 1, 2, ..., C,
and ch=1 w. = 1, k and k/c represent the number of freely
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estimated parameters for the total sample and for a latent class
¢, respectively, and kg is the number of free parameters common
across latent classes (hence, k = ko +C — 1 + ZCC:1 k;).

This study investigated how measurement noninvariance in a
scale across latent classes makes impact on class enumeration and
parameter estimates when GMM is used to evaluate growth over
time ignoring the lack of invariance. In addition, when SOGMM
is used, that is, measurement models are incorporated in GMM
and measurement parameters are allowed to be heterogeneous
across latent classes, the class enumeration accuracy and bias
of parameter estimates in SOGMM was examined in the
presence of measurement noninvariance. We hypothesize the
following:

1. When baseline performance and growth are homogeneous on
average, that is, latent classes are not present in terms of the
intercept and slope factor means, GMM would falsely identify
latent classes because the ignored measurement noninvariance
would be detected as heterogeneity in these factor means.

2. When latent classes are falsely identified, a spurious mean
difference in the slope factor would be observed if there is
noninvariance in factor loadings; a spurious mean difference
in the intercept factor would be observed if there is
noninvariance in intercepts. The size of the spurious mean
difference would be associated with the size of ignored
measurement noninvariance.

3. SOGMM would correctly identify the number of latent classes
in the presence of measurement noninvariance.

4. SOGMM would vyield unbiased estimates of the difference
between latent classes with respect to the intercept and slope
factor means in the growth model part as well as factor
loadings and intercepts in the measurement model part.

STUDY 1: GROWTH MIXTURE MODELING
IN THE PRESENCE OF MEASUREMENT
NONINVARIANCE BETWEEN LATENT
CLASSES

Method

We conducted a Monte Carlo simulation study to investigate the
impact of measurement noninvariance on the class enumeration
and parameter recovery of GMM. The simulation factors
included (a) location of noninvariance (factor loading/intercept),
(b) degree of noninvariance (small/large), (c) difference
in the intercept and slope factor means (zero/large), (d)
sample size (100/200/400/1000), and (e) mixing proportion
(balanced/unbalanced). Because the impact of measurement
noninvariance on the performance of GMM was of focal
interest in this study, the following factors were fixed as
a constant for simplicity of discussions: two latent classes,
four occasions, six items that load on a single factor at each
occasion, and two noninvariant items, which were commonly
adopted in previous simulation studies (e.g., Nylund et al,
2007; Chen et al., 2010; Kim and Willson, 2014a). In addition,
measurement invariance over time was simulated. Although
temporal invariance can also be violated in reality, the impact

of noninvariance across latent classes could be less clear to
delineate when noninvariance is present at both locations.
Of note is that measurement invariance over time can be
tested separately with a longitudinal common factor model
and, if invariance holds, researchers can impose temporal
invariance constraints on SOGMM which was demonstrated
by Grimm and Ram (2009). However, measurement invariance
across classes cannot be tested separately because latent classes
are unobservable in advance. Of another note is that we
investigated the impact of measurement noninvariance in
factor loadings and intercepts between latent classes (violation
of Equations 7 and 8) because scalar invariance is considered
as a prerequisite to meaningful mean comparisons across
groups (Millsap and Kwok, 2004; Raykov et al., 2012; Jak et al,,
2014). Finally, error correlations over time were not simulated
for the simplicity because this is not a major interest in this
study.

Data Generation

Data were generated using the second-order growth mixture
model with a measurement model at each occasion of repeated
measures. The population parameters used for data generation
are presented in Figure 2. The parameters in the first-order
measurement model were majorly adopted from Kim and
Willson (2014a) who conducted a similar study with observed
groups using the second-order LGM. The generated values
of factor loadings (0.80 ~ 1.25), intercepts (—0.15 ~ 0.25),
and residual variances (0.36) were also observed in previous
simulation studies of measurement invariance (Wirth, 2009; Kim
et al., 2012). In the second-order latent growth model, a linear
growth over four occasions was simulated. The means of baseline
performance and growth factors (or intercept and slope factors)
were 0 and 1, respectively. The respective variances were 0.5
and 0.1, and their covariance was 0.089 which corresponded to
correlation 0.4 (Leite, 2007). The ratio of the intercept factor
variance to the slope factor variance, 5:1 is considered reasonable
in practice and adopted in other simulation studies (Muthén
and Muthén, 2002; Depaoli, 2013; Li and Harring, 2016). The
reliability estimates of 24 generated items (6 items per occasion)
ranged from 0.59 to 0.91.

In the first-order measurement model, two out of six items
were simulated as noninvariant across all simulation conditions.
The 0.20 and 0.40 differences between classes for small and
large factor loading noninvariance, respectively, and the 0.30
and 0.60 differences for small and large intercept noninvariance,
respectively, were generated (e.g., Stark et al., 2006). On top
of measurement noninvariance, population heterogeneity was
simulated in the mean of intercept and slope factors at two
levels (zero or large). When there was no difference between two
classes in the intercept and slope factor means, both classes had
the intercept and slope factor means of 0 and 1, respectively.
When a large difference between latent classes was generated, the
intercept and slope factor means of the second class were higher
by 1.4 and 0.4, respectively and thus this class performs better
at the baseline and also grows faster over time. The generated
mean differences corresponded to Mahalanobis distance (MD)
2.0. In the mixture literature, MD 2.0 is considered as large class
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FIGURE 2 | Population parameters for data generation with the second-order growth mixture model under the factor mean difference conditions. A linear growth over
time is generated. |, Latent intercept; S, latent slope; ¢, unobserved categorical variable or latent classes. For simplicity the measurement intercept values are not
specified in this figure. Y11-Y4q are observed items of latent factors, n1-n4. Note that Yo1-Y3g are not shown due to a limited space. The same set of factor loadings
and residual variances of six items are applied over time for n1-n4. 8The intercept and slope factor means of a latent class (i.e., reference class), respectively. PThe
mean differences between latent classes for the intercept and slope factors, respectively when the number of classes is two.

separation (e.g., Tueller and Lubke, 2010; Depaoli, 2013; Li and
Harring, 2016). Of note is that class separation is one of major
factors associated with the correct enumeration of latent classes
(Henson et al., 2007; Tofighi and Enders, 2008; Chen et al., 2010).

The combination of two simulation factors, that is, (a)
noninvariance in measurement parameters and (b) mean
differences in the intercept and slope factors yielded two types
of population heterogeneity. When there was no factor mean
difference, measurement noninvariance was the only source of
population heterogeneity that differentiated two latent classes.
When there were factor mean differences, two sources of
population heterogeneity, that is, measurement noninvariance
and factor mean differences separated two latent classes. In
the latter, the latent class with higher item factor loadings had
higher factor means under the factor loading noninvariance
conditions; the latent class with higher item intercepts had higher
factor means under the intercept noninvariance conditions. By
generating data in this way (positive pairing), we expected that
the factor mean differences between latent classes would be
overestimated when the invariance was assumed because the
ignored noninvariance could make the factor mean of the higher
class even higher (the factor mean of the lower class even lower).
This was illustrated in Appendix (Supplementary Material).

When two latent classes were disproportionately formed, the
mixing proportion was 80 and 20%. The latent class with higher
factor means and/or measurement parameters was associated
with a large sample size (i.e., 80%) when two latent classes were
unbalanced. For each condition, 500 replications were generated
using Mplus version 7.3 (Muthén and Muthén, 2014).

Fitted Models and Simulation Outcomes

In Study 1, the fitted model was a growth mixture model in which
measurement noninvariance could not be modeled although
the data were generated with measurement noninvariance. The
mean composite scores were used as observed indicators of the
growth mixture model ignoring noninvariance of items. It should
be noted that equal weights were applied for all items when
composite scores were created although factor loadings were
different across items in the population. A linear growth was
modeled with factor loadings of the intercept factor all fixed
at 1 and those of the slope factor specified at 0, 1, 2, and 3
for four occasions. Because there were two latent classes in the
population, models with one, two, and three latent classes were
evaluated and a best fitting model was selected on the basis of the
selected fit index (i.e., AIC, BIC, saBIC, and HBIC). Note that a
latent class with a cell proportion <0.05 was ruled out because the
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number of observations in a class (e.g., less than five observations
with N = 100) was too small (e.g., Feldman et al., 2009). For
example, even though the ICs supported three classes, if one of
them constituted <5% of total observations, this replication was
counted as two classes. The class enumeration was recorded for
each replication and the enumeration rates for one-, two-, and
three-class models were computed by simulation conditions and
fit indexes. The enumeration rate of two classes, for example, was
computed by dividing the number of replications that supported
a two-class model by the total number of replications.

When no factor mean difference was simulated in the growth
model (precisely speaking, the second-order part of SOGMM),
one class was considered as a correct number of classes.
However, we hypothesized that two classes would emerge due
to ignored measurement noninvariance between two classes as
observed in Kim and Willson (2014a; that is, a factor mean
difference was detected when there was no factor mean difference
between two groups). When two classes were generated with
different factor means in the intercept and slope factors, two
classes were expected to be detected correctly. However, in
either scenario (one class or two classes), we hypothesized
that the parameter estimates of GMM would be biased due
to ignored measurement noninvariance in the measurement
model. Specifically, we examined the bias in the means of
the intercept and slope factors. The bias was estimated as the
average difference between the estimated factor mean and the
generated population factor mean across replications. If the
population parameter was not zero, we also estimated relative
bias which is the ratio of the estimated bias to the population
parameter. Relative bias >0.05 is typically considered substantial
in the simulation studies (Hoogland and Boomsma, 1998).
Standardized bias was not considered because it is possibly
affected by sample size (the larger sample size, the smaller
standardized bias holding raw bias constant). Although, the
values of raw bias are less interpretable, raw bias would suffice to
show the impact of measurement noninvariance on the estimates
of GMM. GMM was fitted with Mplus version 7.3 (Muthén and
Muthén, 2014).

Results

Class Enumeration

The class enumeration rates of AIC, BIC, saBIC, and HBIC for the
balanced conditions are presented in Table 1. The enumeration
rates for the unbalanced conditions are similar and, thus, not
presented here. The top panel of Table 1 showed the enumeration
rates of GMM when there was no heterogeneity in the intercept
and slope factor means. Thus, one class was considered as a
correct number of classes. However, because GMM used mean
composite scores ignoring measurement noninvariance between
two latent classes, we hypothesized that two classes would
emerge. Unexpectedly, one class was generally selected, which
might indicate that GMM was not very sensitive to the ignored
measurement noninvariance. The BIC and HBIC identified one
class as a best fit model almost always regardless of simulation
factors. The saBIC also selected one class, but less frequently
as sample size decreased (e.g., 0.97 with N = 1,000 and 0.28
with N = 100 when small noninvariance was simulated in factor

loadings). The AIC was not affected by simulation factors much:
the enumeration rates for a one-class model were around 0.60
across simulation conditions.

The bottom panel of Table 1 showed the enumeration rates of
GMM when differences in the intercept and slope factor means
were simulated between two classes in addition to measurement
noninvariance. The model with two latent classes was expected
to be selected. However, the BIC and HBIC still selected one
class more frequently showing its insensitivity to population
heterogeneity when sample size was not large. Only when sample
size reached 1,000 and the size of noninvariance was large, two
classes were mostly identified. We could observe the impact of
the unmodeled measurement noninvariance on the enumeration
rates of BIC and HBIC. Specifically, the enumeration accuracy
of BIC and HBIC depended on the size and location of
noninvariance. When factor loadings were noninvariant, both
selected two classes more frequently compared to the intercept
noninvariance conditions. As the size of noninvariance increased,
the correct enumeration rates also increased. This possibly
implies that the ignored measurement noninvariance created
larger class separation by adding its unmodeled effect to the
factor mean differences in GMM. This impact of measurement
noninvariance was not observed with the AIC and saBIC. In
general, the correct enumeration rates of the saBIC were higher
than those of the AIC, BIC, and HBIC. The HBIC outperformed
the BIC, but it sometimes over-identified latent classes (i.e.,
three classes). For all four information criteria, it was prominent
that the enumeration accuracy was associated with sample size
(the larger, the more accurate). We also examined the class
proportion when two classes were selected. The class proportion
was generally consistent to the population proportion (that is, 50
and 50% for the balanced conditions and 20% and 80% for the
unbalanced conditions).

Bias and Relative Bias

Bias and relative bias were examined with the replications in
which the number of classes was correctly identified (see Table 2).
It should be noted that the raw bias of the intercept and
slope factor means is presented for no factor mean difference
conditions because the intercept factor mean is zero (i.e., relative
bias cannot be computed). For factor mean difference conditions
the relative bias of the differences is presented (the intercept
factor mean difference = 1.4; the slope factor mean difference
= 0.4). Across conditions, three patterns emerged. First, only
the factor means associated with the ignored noninvariance
were biased whereas the factor means not associated with the
ignored noninvariance were unbiased with raw and relative bias
close to zero. Specifically, when noninvariance was simulated
in the factor loadings of the first-order measurement model
but ignored in GMM, the slope factor means showed notable
bias while the intercept factor means remained unbiased; when
noninvariance was simulated in the intercepts of the first-order
measurement model but ignored in GMM, the intercept factor
means were biased while the slope factor means were unbiased.
Second, the magnitude of bias was directly related to the
magnitude of ignored measurement noninvariance irrespective
of sample size. This pattern was clearly observed in the raw
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TABLE 1 | The class enumeration rates of growth mixture modeling for the balanced conditions.

DIF location DIF size Sample size AlC BIC saBIC HBIC
Number of latent classes
1 2 3 1 22 1 2 3 1 22
NO FACTOR MEAN DIFFERENCE
Loading Small 50/50 0.56 0.28 0.16 0.99 0.01 0.28 0.41 0.30 0.89 0.092
100/100 0.65 0.23 0.11 0.99 0.01 0.71 0.19 0.10 0.97 0.022
200/200 0.68 0.24 0.08 1.00 0.00 0.91 0.08 0.02 0.99 0.01
500/500 0.72 0.23 0.05 1.00 - 0.97 0.03 0.00 0.99 0.01
Large 50/50 0.55 0.29 0.16 0.99 0.01 0.28 0.42 0.31 0.90 0.082
100/100 0.64 0.27 0.09 1.00 0.00 0.69 0.23 0.08 0.96 0.032
200/200 0.67 0.25 0.08 1.00 - 0.89 0.09 0.02 0.99 0.01
500/500 0.68 0.27 0.05 1.00 0.00 0.95 0.05 0.00 0.99 0.01
Intercept Small 50/50 0.57 0.26 0.17 0.99 0.01 0.30 0.39 0.31 0.89 0.092
100/100 0.64 0.25 0.11 0.99 0.01 0.69 0.23 0.08 0.97 0.028
200/200 0.69 0.25 0.06 1.00 0.00 0.90 0.08 0.02 0.99 0.01
500/500 0.74 0.22 0.04 1.00 - 0.97 0.02 0.00 1.00 0.00
Large 50/50 0.59 0.24 0.17 0.99 0.01 0.31 0.37 0.32 0.90 0.092
100/100 0.63 0.26 0.11 0.99 0.01 0.68 0.23 0.09 0.97 0.032
200/200 0.68 0.26 0.06 1.00 0.00 0.90 0.08 0.02 0.99 0.01
500/500 0.75 0.20 0.05 1.00 - 0.97 0.03 - 1.00 0.00
FACTOR MEAN DIFFERENCE
Loading Small 50/50 0.36 0.40 0.24 0.94 0.06° 0.17 0.44 0.39 0.80 0.162
100/100 0.19 0.63 0.18 0.91 0.09 0.22 0.63 0.16 0.80 0.182
200/200 0.08 0.75 0.17 0.78 0.22 0.21 0.72 0.07 0.63 0.372
500/500 0.00 0.80 0.20 0.21 0.79 0.02 0.94 0.04 0.12 0.872
Large 50/50 0.25 0.48 0.27 0.87 0.122 0.09 0.48 0.43 0.70 0.242
100/100 0.10 0.65 0.25 0.79 0.212 0.13 0.65 0.22 0.60 0.372
200/200 0.01 0.67 0.32 0.42 0.572 0.03 0.79 0.18 0.29 0.682
500/500 - 0.52 0.48 0.00 0.982 - 0.78 0.22 0.00 0.902
Intercept Small 50/50 0.40 0.40 0.20 0.94 0.06 0.20 0.45 0.35 0.82 0.162
100/100 0.31 0.55 0.13 0.93 0.07 0.35 0.53 0.11 0.84 0.16
200/200 0.13 0.71 0.17 0.83 0.17 0.28 0.67 0.05 0.73 0.27
500/500 0.00 0.90 0.09 0.35 0.65 0.04 0.94 0.02 0.23 0.77
Large 50/50 0.32 0.46 0.22 0.92 0.082 0.12 0.49 0.39 0.78 0.202
100/100 0.23 0.58 0.19 0.88 0.12 0.27 0.57 0.15 0.78 0.222
200/200 0.06 0.80 0.15 0.74 0.26 0.17 0.78 0.05 0.61 0.39°
500/500 - 0.87 0.13 0.18 0.82 0.01 0.96 0.03 0.10 0.902

The hypothesized correct enumeration rates are in bold. DIF, Differential item functioning or measurement noninvariance; AIC, Akaike information criterion; BIC, Bayesian information
criterion; saBIC, sample-size adjusted BIC; HBIC, hierarchical BIC. Due to rounding 0.00 means one or two replications out of 500.
aWe compared one-, two-, and three-class models, and the three-class model was selected with a small proportion.

bias under no factor mean difference conditions. When the
magnitude of noninvariance was doubled, the magnitude of
bias in factor means was also doubled. For example, for the
balanced conditions with ignored intercept noninvariance, the
raw bias in the intercept factor means was about 0.05 when
small noninvariance was ignored and about 0.10 when large
noninvariance was ignored. Third, the direction of bias also
reflected the direction of ignored measurement noninvariance.
Under the no factor mean difference conditions, two factor
loadings were simulated lower in one class, which probably led
to negative bias in the slope factor means whereas two intercepts
were simulated higher in one class, which conceivably resulted in

positive bias in the intercept factor means. Under the factor mean
difference conditions, noninvariance, regardless of its location,
was simulated in favor of the class with higher factor means
(positive pairing; the latent class with higher item factor loadings
had higher factor means under the factor loading noninvariance
conditions; the latent class with higher item intercepts had higher
factor means under the intercept noninvariance conditions).
As hypothesized and illustrated in Appendix (Supplementary
Material), the corresponding factor mean differences were mostly
positively biased because the factor mean of the class with a
higher factor mean tended to be overestimated and that of the
class with a lower factor mean tended to be underestimated.
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TABLE 2 | The bias and relative bias of the intercept and slope factor means in
growth mixture modeling.

DIF DIF  Sample No difference Difference
location size size (Raw bias) (Relative bias)
Intercept  Slope Intercept  Slope

d d
Loading Small  50/50 0.006 -0.034 —0.003 -0.210
100/100 0.004 —0.034 0.002 0.035
200/200 0.005 —0.033 —0.003 0.125
500/500 0.002 -0.033 0.009 0.165
Large  50/50 0.006 —0.067 0.001 0.182
100/100 0.004 —0.067 0.010 0.317
200/200 0.004 —0.066 0.019 0.345
500/500 0.002 —0.066 0.017 0.360
Intercept ~ Small  50/50 0.057 0.000 0.054 -0.510
100/100 0.055 —0.001 0.083 -0.155
200/200 0.055 0.001 0.089 —0.053
500/500 0.051 0.000 0.071 0.001
Large  50/50 0.107 0.000 0.110 —0.108
100/100 0.105 —0.001 0.165 —0.028
200/200 0.105 0.001 0.151 —0.020
500/500 0.101 0.000 0.145 —0.008
Loading Small  80/20 0.006 —-0.014 0.007 —0.245
160/40 0.004 —-0.014 0.017 0.006
320/80 0.005 -0.013 —0.009 0.114
800/200 0.002 —-0.013 —0.035 0.113
Large  80/20 0.006 —0.027 —0.058 —0.080
160/40 0.004 -0.027 -0.015 0.138
320/80 0.004 —0.026 —0.044 0.237
800/200 0.002 —0.026 —0.065 0.238
Intercept ~ Small  80/20 0.087 —0.001 0.081 -0.270
160/40 0.085 —0.001 0.118 —0.043
320/80 0.085 0.001 0.094 0.015
800/200 0.081 0.000 0.072 0.000
Large  80/20 0.167 —0.001 0.159 —0.220
160/40 0.165 —0.001 0.184 —0.023
320/80 0.165 0.001 0.155 —0.003
800/200 0.161 0.000 0.142 0.004

DIF, Differential item functioning or measurement non-invariance; No difference, no factor
mean difference; Difference, factor mean difference; Intercept, intercept factor mean;
Slope, slope factor mean; Intercept d, intercept factor mean difference; Slope d, slope
factor mean difference.

Compared to the balanced conditions, the parameter estimates
in the unbalanced conditions were more biased when intercepts
were not invariant, but less biased when factor loadings were not
invariant.

STUDY 2: SECOND-ORDER GROWTH
MIXTURE MODELING

Method

Fitted Models and Simulation Outcomes

The data generated in Study 1 were fitted to the second-
order growth mixture models that allow heterogeneity in the

measurement parameters at the first-order measurement model.
The second-order part was specified identical to the GMM
in Study 1. Instead of using observed mean composite scores
for the indictors of the intercept and slope factors, a latent
factor on which six items loaded was included at each occasion
as shown in Figure2. As in Study 1, we fitted one-, two-,
and three-class models and decided the number of classes
based on the fit criteria (lowest information criterion) applying
the minimum class proportion 0.05 rule. Because two latent
classes were generated in the population and SOGMM was a
correctly specified model, two classes were expected to be selected
across all simulation conditions. In addition, bias or relative
bias in parameter estimates was evaluated. The parameters of
interest included the differences between classes in the intercept
and slope factor means and the size of noninvariance in the
factor loadings and intercepts of two noninvariant items. The
size of noninvariance was averaged across two items. It was
hypothesized that SOGMM would yielded unbiased estimates of
these parameters. Mplus version 7.3 (Muthén and Muthén, 2014)
was used for SOGMM.

Results

Class Enumeration

The class enumeration rates of AIC, BIC, saBIC, and HBIC are
presented in Tables 3, 4. Because population heterogeneity was
simulated between two classes either in measurement parameters
only (no factor mean difference conditions in Table 3) or
in both measurement and structural parameters (factor mean
difference conditions in Table 4), we hypothesized that SOGMM
would identify two latent classes correctly. However, the correct
enumeration rates varied depending on the fit criteria and
simulation factors. First, when there were differences in both
measurement and structural parameters with substantial factor
mean differences, the BIC and HBIC almost always endorsed two
classes correctly. However, when measurement noninvariance
was the only source of population heterogeneity (i.e., lower
class separation), the correct enumeration rates of BIC and
HBIC deteriorated notably as sample size decreased and the
noninvariance size was small. For example, the BIC was totally
insensitive to the small noninvariance in the intercepts and
selected one class across all replications. Under these conditions,
the outperformance of HBIC over BIC was observed. On the
other hand, the performance of saBIC was related more with
sample size but less with the magnitude of noninvariance
and class separation. Thus, as sample size increased, the
correct enumeration rates of saBIC reached 100% with a few
exceptions in the small intercept noninvariance only conditions.
Interestingly, no salient difference was observed between small
and large noninvariance conditions and also between no factor
mean difference and factor mean difference conditions. For the
AIC, the impact of sample size was observed only when the
class separation was low (i.e., small noninvariance conditions
without factor mean differences). When the class separation
was sufficiently large (i.e., large noninvariance conditions even
without factor mean differences), the overall performance of AIC
was less affected by other simulation factors showing consistent
enumeration rates. Of note is that as classes were separated more
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TABLE 3 | The class enumeration rates of second-order growth mixture modeling under the no factor mean difference conditions.

DIF location DIF size Sample size AIC BIC saBIC HBIC
Number of latent classes
1 2 3 1 23 1 2 3 1 2b
Loading Small 50/50 0.18 0.77 0.05 0.99 0.01 0.03 0.80 0.17 0.63 0.37
100/100 0.03 0.90 0.07 0.90 0.10 0.03 0.92 0.05 0.52 0.48
200/200 - 0.93 0.07 0.36 0.64 0.00 0.99 0.01 0.10 0.90
500/500 - 0.94 0.06 - 1.00 - 1.00 - - 1.00
Large 50/50 - 0.90 0.10 - 1.00 - 0.74 0.26 - 0.98°
100/100 - 0.90 0.10 - 1.00 - 0.93 0.07 - 1.00
200/200 - 0.94 0.06 - 1.00 - 0.99 0.01 - 1.00
500/500 - 0.95 0.05 - 1.00 - 1.00 - - 1.00
Intercept Small 50/50 0.65 0.31 0.04 1.00 - 0.22 0.66 0.12 0.84 0.15°
100/100 0.59 0.39 0.02 1.00 - 0.66 0.33 0.01 0.92 0.08
200/200 0.46 0.51 0.03 1.00 - 0.83 0.16 0.00 0.96 0.04
500/500 0.08 0.87 0.04 1.00 0.00 0.70 0.30 - 0.95 0.05
Large 50/50 0.02 0.88 0.09 0.80 0.20 0.00 0.78 0.22 0.29 0.69°
100/100 - 0.92 0.08 0.27 0.73 - 0.95 0.05 0.06 0.94
200/200 - 0.95 0.05 0.00 1.00 - 0.99 0.01 - 1.00
500/500 - 0.97 0.03 - 1.00 - 1.00 - - 1.00
Loading Small 80/20 0.46 0.51 0.03 1.00 0.00 0.12 0.75 - 0.77 0.23
160/40 0.25 0.71 0.04 1.00 0.00 0.31 0.67 - 0.79 0.21
320/80 0.06 0.89 0.05 0.95 0.05 0.21 0.78 0.01 0.54 0.46
800/200 0.00 0.95 0.05 0.32 0.68 0.01 0.99 - 0.03 0.97
Large 80/20 - 0.93 0.07 0.08 0.92 - 0.75 0.25 0.01 0.99°
160/40 - 0.93 0.07 - 1.00 - 0.95 0.05 - 1.00°
320/80 - 0.92 0.08 - 1.00 - 1.00 0.00 - 1.00°
800/200 - 0.96 0.04 - 1.00 - 1.00 - - 1.00
Intercept Small 80/20 0.72 0.25 0.03 1.00 - 0.23 0.64 0.13 0.85 0.15°
160/40 0.70 0.29 0.01 1.00 - 0.77 0.23 0.01 0.93 0.07
320/80 0.68 0.31 0.01 1.00 - 0.94 0.06 - 0.94 0.06
800/200 0.47 0.50 0.03 1.00 - 0.97 0.03 - 0.97 0.03
Large 80/20 0.18 0.76 0.07 0.97 0.03 0.04 0.78 0.18 0.59 0.41°
160/40 0.02 0.92 0.06 0.88 0.12 0.02 0.92 0.05 0.33 0.67°
320/80 - 0.94 0.06 0.33 0.67 - 0.99 0.01 0.03 0.97
800/200 - 0.97 0.03 - 1.00 - 1.00 - - 1.00

The hypothesized correct enumeration rates are in bold. DIF, Differential item functioning or measurement noninvariance; AlC, Akaike information criterion; BIC, Bayesian information
criterion; saBIC, sample-size adjusted BIC; HBIC, hierarchical BIC. Due to rounding 0.00 means one or two replications out of 500.
a\We compared one-, two-, and three-class models, but the number is not shown when the enumeration rates are zero across all conditions.

bThe three-class model was selected with a small proportion.

including factor mean differences, the AIC tended to over-extract
latent classes more frequently.

The impact of mixing proportion (balanced and unbalanced)
was not very noticeable and inconsistent across simulation
conditions. For example, the unbalanced conditions showed
slightly lower correct enumeration rates of BIC when there
was only measurement noninvariance at the measurement
model. It is possibly related to the bias in noninvariance
size. That is, noninvariance size was underestimated more
in the unbalanced conditions (see bias and relative bias
below). However, although not very noticeable, the opposite
pattern was observed in the conditions of both measurement

noninvariance and factor mean difference conditions. Overall,
accurate class enumeration (and relatedly accurate parameter
estimation) appeared more challenging when one class had
a notably small sample size under low class separation, but
when sample size and class separation became larger with
both measurement noninvariance and factor mean difference,
the impact of a small class was not observed. However, it
should be replicated in future research. When two classes were
identified, the mixing proportions were generally well recovered
with about 50%, 50% for balanced conditions and about 80%,
20% for unbalanced conditions save the unbalanced conditions
under small measurement noninvariance in which the mixing
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TABLE 4 | The class enumeration rates of second-order growth mixture modeling under the factor mean difference conditions.

DIF location DIF size Sample size AlC BIC saBIC HBIC
Number of latent classes
2 3 1 22 2 3 1 2
Loading Small 50/50 0.80 0.20 0.00 1.00 0.44 0.56 - 0.98°
100/100 0.82 0.18 - 1.00 0.88 0.12 - 1.00°
200/200 0.84 0.16 - 1.00 0.98 0.02 - 1.00
500/500 0.95 0.05 - 1.00 1.00 - - 1.00
Large 50/50 0.84 0.16 - 1.00 0.48 0.52 - 0.96°
100/100 0.85 0.15 - 1.00 0.89 0.11 - 0.99°
200/200 0.89 0.11 = 1.00 0.99 0.01 = 1.00
500/500 0.91 0.09 - 1.00 1.00 - - 1.00
Intercept Small 50/50 0.77° 0.21 0.59 0.41 0.43° 0.56 0.09 0.89°
100/100 0.78° 0.22 0.02 0.98 0.84P 0.15 0.00 1.00
200/200 0.81° 0.19 0.00 1.00 0.98" 0.02 0.00 1.00
500/500 0.94 0.06 - 1.00 1.00 - - 1.00
Large 50/50 0.77 0.23 0.01 0.99 0.40 0.60 0.00 0.98°
100/100 0.81 0.19 - 1.00 0.86 0.14 - 1.00°
200/200 0.85 0.15 - 1.00 0.99 0.01 - 1.00
500/500 0.97 0.03 - 1.00 1.00 - - 1.00
Loading Small 80/20 0.80P 0.19 0.00 1.00 0.52° 0.47 0.00 0.99°
160/40 0.85 0.15 - 1.00 0.88 0.12 - 1.00°
320/80 0.83 017 = 1.00 0.99 0.01 = 1.00
800/200 0.93 0.07 - 1.00 1.00 - 1.00
Large 80/20 0.82 0.18 - 1.00 0.51 0.49 - 0.99°
160/40 0.86 0.14 - 1.00 0.89 0.11 - 1.00°
320/80 0.86 0.14 - 1.00 0.99 0.01 - 1.00
800/200 0.92 0.08 - 1.00 1.00 . - 1.00
Intercept Small 80/20 0.77° 017 0.06 0.94 0.48" 0.50 0.06 0.94°
160/40 0.80° 017 0.05 0.95 0.84° 0.12 0.04 .96
320/80 0.84> 0.15 0.01 0.99 0.98° 0.02 0.01 .99
800/200 0.88 0.12 - 1.00 1.00 - - 1.00
Large 80/20 0.80 0.20 0.00 1.00 0.45 0.55 0.00 0.99°
160/40 0.84 0.16 - 1.00 0.88 0.12 - 1.00°
320/80 0.87 0.13 - 1.00 0.99 0.01 - 1.00
800/200 0.88 0.12 - 1.00 1.00 - - 1.00

The hypothesized correct enumeration rates are in bold. DIF, Differential item functioning or measurement noninvariance; AlC, Akaike information criterion; BIC, Bayesian information
criterion; saBIC, sample-size adjusted BIC; HBIC, hierarchical BIC. Due to rounding 0.00 means one or two replications out of 500.
a\We compared one-, two-, and three-class models, but the three-class model was not selected across all conditions.

bThe one-class model was selected with a small proportion.
©The three-class model was selected with a small proportion.

proportions turned out to be close to 50%, 50% as sample size
became smaller.

Bias and Relative Bias

We examined the bias or relative bias of parameter estimates in
terms of the size of noninvariance and factor mean differences
when two latent classes were correctly identified. Because
SOGMM was correctly specified, all parameter estimates were
expected to be unbiased. As expected, the relative bias of factor
loading and intercept noninvariance was negligible in most
conditions when there were differences in both measurement

parameters and factor means between classes. On the contrary,
when measurement noninvariance was the only sources of
population heterogeneity between classes, the noninvariance
size was underestimated consistently across conditions as
shown in Table5 (left panel). The relative bias ranged from
—0.788 to —0.010. The variability of relative bias was in
general associated with sample size (the larger, the smaller),
mixing proportion (smaller with the balanced proportions), and
noninvariance size (smaller with large noninvariance). Note that
under these conditions growth parameters were still unbiased.
It appeared that the class specific measurement parameters
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TABLE 5 | The bias and relative bias of the parameter estimates in second-order growth mixture modeling.

DIF location DIF size Sample size No difference Difference No difference Difference
Raw bias Rel. bias Raw bias Rel. bias

DIF DIF Intercept Slope Intercept d Slope d

Loading Small 50/50 —0.600 0.022 —0.039 0.121 —0.008 —0.020
100/100 -0.515 0.008 —0.021 0.053 0.007 —0.013

200/200 —0.403 —0.005 —0.005 0.027 0.000 —0.005

500/500 —0.190 0.000 —0.003 0.007 —0.001 —0.005

Large 50/50 —0.425 0.000 —0.020 0.027 —0.009 —0.023

100/100 —0.321 0.000 —0.009 0.012 0.001 —0.003

200/200 —0.184 —0.003 —0.002 0.008 0.000 0.000

500/500 -0.018 0.003 —0.001 0.000 0.001 0.000

Intercept Small 50/50 -0.157 —0.077 -0.129 0.230 —0.034 —0.095
100/100 -0.327 0.000 —0.111 0.141 -0.018 -0.018

200/200 —0.267 0.005 —0.060 0.095 —0.001 —0.005

500/500 -0.173 0.000 —0.006 0.028 0.002 0.009

Large 50/50 —0.310 —0.004 —0.026 0.049 0.002 0.010

100/100 —0.231 —0.006 —0.012 0.014 0.000 0.000

200/200 —0.091 —0.003 —0.001 0.005 0.004 0.000

500/500 —0.010 0.008 0.004 0.001 —0.002 0.001

Loading Small 80/20 -0.788 0.007 -0.105 0.210 0.013 —0.080
160/40 -0.713 0.032 —0.041 0.119 0.002 -0.015

320/80 —0.493 0.015 0.014 0.059 0.002 —0.003

800/200 —0.240 —0.003 —0.004 0.012 0.002 —0.003

Large 80/20 —0.456 0.003 -0.019 0.028 0.003 —0.005

160/40 —0.450 0.006 -0.017 0.021 0.002 0.006

320/80 —0.408 0.003 0.005 0.016 0.001 0.003

800/200 -0.375 0.000 —0.003 0.005 0.001 0.001

Intercept Small 80/20 —0.357 —0.142 —0.180 0.251 0.016 —0.143
160/40 —0.395 —0.030 -0.122 0.210 —0.004 —0.005

320/80 -0.317 —0.020 —0.100 0.154 0.004 0.006

800/200 -0.328 —0.005 -0.074 0.073 0.001 —0.008

Large 80/20 —0.463 —0.018 —0.091 0.100 0.012 —0.065

160/40 —0.339 —0.003 —0.033 0.029 0.003 —0.013

320/80 —0.304 —0.014 —0.003 0.013 0.004 —0.003

800/200 —0.144 —0.003 0.001 0.003 0.001 —0.003

DIF, Differential item functioning or measurement non-invariance; No difference, no factor mean difference; Difference, factor mean difference; Rel. bias, relative bias; Intercept, intercept
factor mean; Slope, slope factor mean; Intercept d, intercept factor mean difference; Slope d, slope factor mean difference.

(i.e., noninvariance) in the first order model were in general less
accurately estimated than the class specific growth parameters
(i.e., structural parameters) in the second order model when class
separation was low. The estimation of the first (i.e., noninvariance
size) improved with a larger sample and bigger separation.
With respect to mixing proportions, the estimation could be
less accurate with a disproportionately smaller class size in the
unbalanced conditions when the total sample size was small (e.g.,
20 when total N = 100)!. The underestimation of noninvariance

't should be noted that the accuracy of class membership assignment appeared
not related to the underestimation of noninvariance size because (a) the growth
parameters were unbiased under the same conditions, and (b) we did not
observe an apparent association between the assignment accuracy and bias. For

size was possibly related to the lower enumeration rates under
the measurement noninvariance only conditions (no factor mean
difference) because in these conditions noninvariance was the
only source of heterogeneity that separated two classes.

The right panel of Table 5 presents the bias or relative bias
of factor mean difference estimates between classes. Of note
is that the bias or relative bias was estimated for the factor
mean differences (not for the factor means). When there were
factor mean differences, the estimated differences were generally
unbiased regardless of simulation factors. The relative bias of

example, under the unbalanced conditions in which the underestimation was
larger, the assignment accuracy was even slightly higher compared to the balanced
conditions.
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the factor mean differences between classes was <0.05 across
conditions except the smallest sample size conditions (N = 100;
see the two columns of the last panel in Table 5). When there
was no factor mean difference and two classes were different only
due to measurement noninvariance, the estimated factor means
generally showed no difference between classes (i.e., no bias) with
large sample, but when sample size was small, bigger size of raw
bias was observed (See the two columns of the middle panel in
Table 5).

DISCUSSION

When researchers run GMM, it is a common practice to use
composite scores of repeated measures to model the baseline
performance and growth over time. This could be problematic
when the measure does not have desirable psychometric
properties because GMM does not allow evaluating measurement
models. In this study we addressed one of these issues—
measurement noninvariance. When there was measurement
noninvariance between unknown groups, we investigated the
impact of the ignored noninvariance on the performance of
GMM, particularly, the accuracy of class enumeration and the
parameter recovery. In addition, we examined the performance
of SOGMM that incorporates measurement models and allows
measurement noninvariance between latent classes.

First, we hypothesized that due to unmodeled noninvariance
in items GMM would incorrectly identify two latent classes
showing differences in factor means between classes when there
was no difference in factor means. In Study 1, this hypothesis was
not supported because the BIC and HBIC mostly selected a one-
class model as a best-fitting model. However, this finding should
not be interpreted as no impact of the ignored measurement
noninvariance on the GMM class enumeration. Rather, it might
indicate that overall, GMM is not very sensitive to a small
degree of population heterogeneity. This was confirmed in the
conditions with both measurement noninvariance and factor
mean differences. Although the generated class separation (MD
or mahalanobis distance = 2) in the factor mean differences
was considered large, the BIC, for example, supported one class
more often when sample size was 400 or less. Under these
conditions the enumeration rates of BIC were associated with
the location and size of noninvariance, which implies that the
ignored measurement noninvariance affected the performance of
GMM,, specifically, the enumeration accuracy of BIC and HBIC.

Second, as hypothesized, the parameter estimates of GMM,
namely, the intercept and slope factor means were biased
regardless of simulation factors. The location, size, and direction
of bias were directly related to the location, size, and direction
of unmodeled measurement noninvariance. That is, we observed
positive bias in the intercept factor when positive noninvariance
in the item intercepts were ignored and negative bias in the slope
factor when negative noninvariance in the item factor loadings
were ignored. When the size of noninvariance was doubled,
the size of bias was also doubled. This finding is consistent
to what Kim and Willson (2014a) found with multiple group
LGM. Because GMM yields biased parameter estimates even if
the number of latent classes is correctly detected, GMM is not
recommended in the presence of measurement noninvariance.

Third, with respect to SOGMM, our hypothesis about high
accuracy of class enumeration of SOGMM was partly supported
in Study 2 because class enumeration rates largely depended on
class separation and sample size. When the class separation was
large under the conditions of both measurement noninvariance
and factor mean differences, the correct enumeration rates of
BIC were almost 100% even with a very small sample size
(i.e., 100). However, when the class separation was low (small
noninvariance only) and sample size was small (400 or less),
the correct enumeration rates of BIC dropped substantially
(e.g., 0%). A previous simulation study (Lubke and Neale,
2008) that investigated the class enumeration rates in detecting
measurement noninvariance also found that more parsimonious
models (e.g., one-class model) were favored indicating no
measurement noninvariance. The overall insensitivity of ICs to
the presence of small measurement noninvariance between latent
classes can be explained as relatively low class separation that
measurement noninvariance created. The small noninvariance in
the intercepts corresponded to MD = 1, which is considered as
small class separation in the literature. It is widely recognized
that class separation is greatly related to the accuracy of class
enumeration (e.g., Henson et al., 2007; Tofighi and Enders, 2008;
Chen et al., 2010).

Fourth, the hypothesis that SOGMM would yield unbiased
estimates was also partly correct. As hypothesized, the intercept
and slope factor means of SOGMM were generally unbiased.
When sample size was very small, we observed some biased
estimates of these parameters. On the other hand, the size
of noninvariance in the intercepts and factor loadings
were generally underestimated. This underestimation of
noninvariance size might make it more difficult for ICs to detect
the difference and be partly related to the low class enumeration
accuracy when measurement noninvariance was the only source
of population heterogeneity between classes.

With respect to information criteria, the findings in this study
generally conform to those of previous studies. The BIC showed
excellent performance in identifying the number of classes when
class separation was large and sample size was large (Nylund
et al., 2007; Lubke and Neale, 2008; Li et al., 2009). When both
class separation was low and sample size was small, the BIC
tended to under-extract latent classes (Kim et al., 2016). The
HBIC showed similar or slightly better performance than the
BIC. The outperformance of HBIC was prominent when sample
size and class separation were small, which is consistent to the
findings of previous studies (e.g., Zhao et al., 2015). It should be
noted that the over-extraction of latent classes was also observed
with the HBIC, which is possibly due to under-penalization
of model complexity compared to the BIC although the over-
extraction was not very serious in this study. The saBIC showed
more consistent performance across simulation conditions, but
its accuracy was lower compared to BIC and HBIC when these
two ICs worked reasonably. The AIC seemed least affected by
simulation factors usually showing consistent enumeration rates
across simulation conditions and most sensitive to population
heterogeneity in the extreme conditions (i.e., smallest sample
size in this study under low class separation; e.g., Lukociené
and Vermunt, 2010; Lukociené et al., 2010; Kim et al., 2016),
but the performance of AIC was generally not optimal and
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also tended to over-extract latent classes (e.g., Bozdogan, 1987;
Nylund et al., 2007; Tein et al., 2013). As explained in previous
studies (Henson et al., 2007; Kim et al., 2015, 2016), the BIC
uses the natural logarithm of sample size multiplied by the
number of free parameters (k) to penalize for model complexity.
The penalty of BIC on additionally estimated parameters (i.e.,
additional latent class) is more severe than that of AIC (2*k).
Thus, when class separation is low, a complex model with more
parameters from additional latent classes may not be favored
with the BIC due to too severe penalty on model complexity
relative to small differences between latent classes. Under these
circumstances, the AIC as well as HBIC generally outperformed
the BIC. Also the AIC is not supposed to be affected by sample
size as much as the other ICs that include sample size in their
computations.

Taken all together, when sample size is large (over 400 or
1,000 in this study) or class separation is expected to be large,
the BIC or HBIC is recommended in GMM. When sample size
is 400 or less and class separation is expected to be low, the
saBIC seems a better choice in GMM. In SOGMM, if class
separation is substantially large (MD = 2 or larger), the BIC
or HBIC can be considered for class enumeration regardless of
sample size. However, similar to GMM, when class separation is
expected to be low and sample size is 400 or less, the saBIC is
more recommended than the BIC and HBIC in determining the
number of latent classes. The AIC could be a choice only when
sample size is extremely small (100), but the mixture modeling is
not recommended with this small sample.

Based on the findings in this study, it can be said that overall,
GMM and SOGMM require large sample to correctly identify
the number of classes and yield unbiased parameter estimates
(Tueller and Lubke, 2010; Depaoli, 2013; Li and Harring, 2016).
Vermunt (2010) noted that sample size 500 can be considered
small for correct class enumeration especially under poor class
separation, which was observed in this study particularly with the
BIC. Even when the model is correctly specified as demonstrated
in Study 2 with SOGMM, latent classes are not expected to be
properly detected with small samples. Even when the number
of latent classes is correctly identified, the parameter estimates
could be substantially biased. Therefore, researchers interested in
GMM or SOGMM should consider a large sample. This study
also confirmed that class separation and sample size are generally
major factors related to the class enumeration accuracy, which
was consistently shown in the mixture modeling literature (e.g.,
Dias, 2004; Henson et al., 2007; Lubke and Neale, 2008; Tofighi
and Enders, 2008; Chen et al., 2010).

We recommend SOGMM over GMM whenever possible
for two major reasons. First, across all simulation conditions
SOGMM produced unbiased estimates of growth trajectory
parameters which are generally the focal interest of growth
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