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Musical Scales in Tone Sequences
Improve Temporal Accuracy

Min S. Li and Massimiliano Di Luca*

Centre for Computational Neuroscience and Cognitive Robotics, School of Psychology, University of Birmingham,
Birmingham, United Kingdom

Predicting the time of stimulus onset is a key component in perception. Previous
investigations of perceived timing have focused on the effect of stimulus properties
such as rhythm and temporal irregularity, but the influence of non-temporal properties
and their role in predicting stimulus timing has not been exhaustively considered. The
present study aims to understand how a non-temporal pattern in a sequence of regularly
timed stimuli could improve or bias the detection of temporal deviations. We presented
interspersed sequences of 3, 4, 5, and 6 auditory tones where only the timing of the
last stimulus could slightly deviate from isochrony. Participants reported whether the
last tone was ‘earlier’ or ‘later’ relative to the expected regular timing. In two conditions,
the tones composing the sequence were either organized into musical scales or they
were random tones. In one experiment, all sequences ended with the same tone; in
the other experiment, each sequence ended with a different tone. Results indicate
higher discriminability of anisochrony with musical scales and with longer sequences,
irrespective of the knowledge of the final tone. Such an outcome suggests that the
predictability of non-temporal properties, as enabled by the musical scale pattern, can
be a factor in determining the sensitivity of time judgments.

Keywords: tone frequency, expectation, perceived timing, temporal sensitivity, musical scale, isochrony

INTRODUCTION

Perceived timing does not necessarily represent the objective time (e.g., Woodrow, 1935; Allan,
1979), as perception can be influenced by stimulus repetitions, sequence patterns, and expectations
(e.g., Jones, 1976; Hirsh et al., 1990; Rose and Summers, 1995). The simplest form of temporal
pattern, the repeated presentation of identical stimuli separated by identical intervals, has been
shown to lead to increased temporal sensitivity in detecting anisochrony, and such an increase
has been quantitatively captured by several models (Schulze, 1978; Drake and Botte, 1993; Ivry
and Hazeltine, 1995; Miller and McAuley, 2005; ten Hoopen et al., 2011; Li et al., 2016). Similar
perceptual influences of patterns on the precision of discrimination performance occur also
when the pattern is more complex (Barnes and Jones, 2000; McAuley and Jones, 2003). Such
improvements in temporal sensitivity have been interpreted in several ways, including an averaging
process for the perceptual representation of interval durations (Schulze, 1978), the effect of
sensory predictions generated by expectations and conditional probability of future event (Nobre
et al., 2007), or the influence of neuronal oscillation-based predictive timing (Arnal and Giraud,
2012) which relates to the idea that rhythmic sequences entrain low-frequency neural oscillations
enhancing sensory processing of in-phase stimuli (e.g., Jones, 1976; Lakatos et al., 2008; Ng et al.,
2012; Cravo et al., 2013; Horr et al., 2016). So far, a large portion of the literature highlighted
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the perceptual benefits of temporal patterns in temporal
judgments, but there has been also an interest in investigating
how non-temporal patterns affect discrimination of time (e.g.,
Micheyl et al., 1998; Jones, 2009; Okazaki and Ichikawa, 2016).
In this work, we will analyze whether some of these accounts
based on the presence of temporal patterns, hold for sequences
with non-temporal patterns.

From as early as the 19th century, numerous studies proposed
a close relationship between pitch, melody and time (Stumpf,
1890; Divenyi and Danner, 1977; Long, 1977; Hébert and Peretz,
1997) that stem from two observations suggesting that temporal
and tonal properties find a connection point in music. Firstly,
the auditory modality has been traditionally recognized to have
the highest temporal resolution of all senses (Hirsh and Sherrick,
1961), i.e., temporal attributes are most precise in human hearing
than in any other sense. Thus, audition seemed to be the modality
best tailored to process temporal properties, whether they are the
frequency of a tone or its timing in a melody. Secondly, rhythm
in music provides temporal cues which not only lead to temporal
expectancies in complex melodic phases, but such temporal
cues become a fundamental element in the perception of the
musical piece (Cariani, 1999; Large and Palmer, 2002). There are
several examples of the scientific investigation in support of the
connection between temporal and tonal perception. For instance,
Konig (1957) demonstrated a worse pitch discrimination with
longer intervals (up to 5 s). Temporal regularity has been shown
to help with implicit pitch structure learning (Jones et al., 2002;
Selchenkova et al., 2014). Recent research, (for example, Kinney
and Forsythe, 2012) showed positive influences of melody on
various timing tasks, such as interval reproductions. In summary,
the literature hints at an association between time and music
where tone discrimination is facilitated or hindered by temporal
properties of the stimulus. But because the results have been
obtained with a range of different methods, it is difficult to infer
whether the opposite is true, i.e., to what degree the structure
of the sequence in the tonal domain can influence sensitivity
to temporal properties, like the detection of deviations from a
rhythm.

Other than the precision with which temporal judgments
can be performed, recent studies have also been concerned
with the presence of biases in the discrimination of temporal
properties in sequences of stimuli. The perception of intervals
in an isochronous sequence of identical stimuli is affected by
a bias, as sequences need to be accelerated to be perceived
to be isochronous (Di Luca and Rhodes, 2016). In accordance
to this tendency to perceive accelerating sequences as being
isochronous and consequently produce sequences that naturally
speed up (Spence and Parise, 2010; Wackermann et al,
2014), it has been found that the last interval in a sequence
appears shorter than it should, with an effect consistent with
a perceptual acceleration of the last stimulus (Di Luca and
Rhodes, 2016; Li et al, 2016). The presence of such biases
in the perception of temporal properties is, as in the case of
precision just discussed, affected by whether sequences have
an organization, like the one music can provide. It has been
shown, for example, that perceived duration largely depends
on the stimulus context and on the events that occur during

that particular duration of time (Ornstein, 1975; Block, 1978;
Horr and Di Luca, 2015b). Similarly, Clynes and Walker (1986)
found that musical concepts influenced the stability and accuracy
of timing in musical performances. Despite the suggestion
that temporal judgment and motor behavior in time are two
distinct sensory attributes (London, 2011), the perception of
musical time has also been shown to be biased by musical
characteristics (Longuet-Higgins and Lee, 1982; Grisey, 1987).
For instance, Boltz (1989) found the musical endings affected
duration judgments, so that an unexpected tonic ending made
the last interval to appear shorter compared to cases where the
music finished with an expected tone. Such tendency is similar
to what found by Horr and Di Luca (2015a), who showed
that temporal regularity significantly increased the perceived
duration of intervals compared to irregular ones. Interestingly
for this paper, changing the regularity in tone frequency did
not bias perceived duration. Clarke and Krumhansl (1990),
instead, failed to identify a relationship between the perceived
duration of a brief passage of music and the variety of the
musical structure. Such a lack of an influence can be attributed
to the recruitment of a group of trained musical experts to
take part in the experiments. Due to the inconsistent use of
experimental tasks such as perceptual judgments, sensorimotor
synchronization and musical performances, as well as the
difference in the populations tested in previous literature (i.e.,
musicians and non-musicians), it is difficult to draw a clear
picture of the relation between sequence structure and bias in
subjective timing. In particular it is not clear how to interpret
the difference in perceived timing between regular and irregular
sequences, which could be due to a decrease in otherwise biased
timing with a structure or, on the contrary, an unexpected
property of a stimulus is the culprit in creating temporal
biases. Here we attempt to answer this question by studying
how a non-temporal structure affects the accuracy in perceived
timing.

To look into the effect of tones patterns on the precision
of temporal discriminability and perceived timing, we cannot
rely on duration reproduction tasks (Kinney and Forsythe,
2012) because motor variability has the effect of decreasing
measurement precision. Instead, we will employ a temporal
discrimination task that uses the two-alternative forced choice
(2AFC) ‘early or late’ judgment (see Li et al., 2016). To estimate
changes in temporal sensitivity (Hansen and Pearce, 2014) and
biases in perceived timing, we will employ respectively the
Just Noticeable Difference (JND) and the Point of Subjective
Equality (PSE) calculated from each of the participants
distribution of ‘late’ responses. Our experiment intentionally
avoided recruiting musicians, as it has been shown that they
obtain higher levels of performance in behavioral tasks (Repp and
Doggett, 2007; Petrini et al., 2009; Matthews et al., 2016) do not
exhibit perceptual biases (Clarke and Krumhansl, 1990) that can
be explained by different cortical connectivity compared to the
normal population (Lee and Noppeney, 2011).

In addition, to specifically avoid the confounding factors
deriving from rhythm and melody, we analyze the interaction
between sequence type and temporal structure using one of
the simplest forms of tonal structure. That is, we test whether
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the arrangement of tones in a musical scale or in a sequence
of random tones influences the detection of deviations from
isochrony. Knowing whether there is an influence will contribute
to the understanding of predictions and expectations within
a sequence of stimuli on perception, as suggested by recent
computational accounts (i.e., Jazayeri and Shadlen, 2010; Di Luca
and Rhodes, 2016; Shi and Burr, 2016). We will also study
whether knowing which tone is the one to be judged is sufficient
to increase precision, i.e., by allowing participants to expect the
tone and allocate the appropriate attentional resource. To do this,
in Experiment 1, the final tone will vary across trials, whereas in
Experiment 2, the final tone will always be presented with the
same pitch (note A; 440 Hz).

MATERIALS AND METHODS

Participants

A total of 42 non-musician undergraduate students (35 females,
19.6 + 2.4 years), with self-reported normal hearing were
recruited by the Research Participation Scheme of University
of Birmingham. Participants were divided into two groups that
took part either in Experiment 1 or in Experiment 2. They
gave informed consent before taking part and were rewarded
with either course credits or a payment of 6GBP/h. Ethical
guidelines of the Declaration of Helsinki have been followed
and were approved by the Science, Technology, Engineering
and Mathematics (STEM) Ethics Committee of the University of
Birmingham.

Experimental Design

Participants were presented via Soundlab/Electrovision A069
Mono Earpiece headphones (with cup clip) with 3, 4, 5, or 6 60 ms
tones, spaced 700 ms apart, except for the final tone whose time
could deviate by 0, £20, £40, £60, £80, 100, +150, +200 ms.
The length of a trial ranged from 1380 to 4060 ms depending on
the length of the sequence and the anisochrony of the final tone.
The four sequence lengths were randomly intermixed in a block.
At the end of each trial, participants pressed one of two keys
to indicate whether the final tone in the sequence was ‘early’ or
‘late’ compared to the expected regular timing. Participants were
offered the possibility to take a break at three points during the
experiment.

All trial types resulting from the combination of sequence
type (2 values: random and scale), sequence lengths (4 values),
and anisochronies of the final tone (15 values) were repeated
8 times at random resulting in 960 trials per participant. We
analyzed the proportion of ‘late’ responses at each anisochrony
of the final tone, to obtain a distribution for each sequence
length and sequence type. The Spearman-Kérber method (Ulrich
and Miller, 2004) was employed to analyze the data, where
the PSE was obtained by calculating the first order moment
of the monotonized difference (Klein, 2001) between successive
proportions of responses, while the JND was obtained by
calculating the second order moment. The post-hoc tests were
conducted with the JND and PSE values obtained to confirm the
differences between each condition tested.

Experiment 1

For the scale condition, the sequence of tones was one of the
four ascending diatonic scales: F major, C major, D major and E
major, with tone frequencies ranging from 261.63 to 587.3 Hz.
For the random condition, to avoid any sort of tonality, the
frequency of each tone was randomly selected from the range
of those employed in the scale condition. The final tones of the
sequence were varied in all trials (non-fixed final tone condition).
See Figure 1A.

Experiment 2

For the scale condition, the sequence of tones was one of the
four ascending and descending diatonic scales: E Major, C major,
E minor, C minor, ranging from 261.63 to 740 Hz. For the
random condition, the note was randomly selected. To control
the predictability in this particular experiment, the final tone
of sequences was always 440 Hz (fixed final tone condition).
See Figure 1B.

GENERAL RESULTS

From the proportion of response data (Figure 2), we calculated
PSE and JND values. JND values are shown in Figure 3A
for each of the tested conditions. We conducted a three-
way (one between and two within) ANOVA (and in parallel,
a Bayesian mixed ANOVA) with the JND values, where the
two final tone conditions (non-fixed, Experiment 1, and fixed
at 440 Hz, Experiment 2) served as the between factor, two
sequence types (random and scale) as the first within factor,
and four sequence length (3, 4, 5, and 6 tones) as the second
within factor. We did not find a significant difference in JND
due to the final tone conditions [Experiment 1 vs. Experiment
2, F(1,40) = 14, p = 0236, ny = 0.04, BFy = 0.62], as
shown in Figure 3A. Figure 4A shows that sequence type
changed JND by roughly 9% when compared random to scale
sequences [F(1,40) = 10.5, p = 0.002, nf) = 0.21, BFyg = 27.8].
In addition, results demonstrated detectability to anisochrony
changes with different sequence lengths [F(3,120) = 4.3, p = 0.007,
BFo = 1.4], as shown in Figure 4A. No interaction was significant
(allp > 0.2).

To gain further insight on the influence of sequence length
on JNDs, we fitted a two-parameter regression line to the
JND values of each participant, which shows a decrease of
3.2 & 0.9 ms [single sample ¢-test of the slopes of the regression
against 0, #(41) = —3.4, p = 0.001] and an intercept of
100.5 £ 5.3 ms.

We now turn our attention to the PSE values (Figure 3B).
First, we conducted single sample ¢-test on PSE values against
zero (presented in Table 1). The t-test results reported
significant acceleration in perceived timing with the longest
sequences (6 tones) for all four conditions. In addition, the
PSE deviates from 0 for sequences composed of 3 and 5
tones in the non-fixed final tone condition only. Moreover, a
regression line fitted to the PSE values and passing through
the origin showed that the final tone needs to be presented
3.2 £ 0.4 ms more delayed to be perceived to be isochronous

Frontiers in Psychology | www.frontiersin.org

February 2018 | Volume 9 | Article 105


https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

Li and Di Luca

Temporal Judgments in Tone Sequences

A
.. @- ’,."_—%‘ N
QJ . ‘\ ,' \~::>:

@ - - @

y .\
__.——o—-""

-O——""‘./.
B A

~

‘\

440 Hz

440 Hz

. , sequence of 3 stimuli

, sequence of 4 stimuli

, sequence of 5 stimuli

. sequence of 6 stimuli

FIGURE 1 | (A) Sequence type conditions in Experiment 1. The top row in gray depicts two examples of random sequences, while the bottom row in black depicts
two of the four scale sequences. (B) Sequence type conditions in Experiment 2 where sequences always ended with the same tone. The top row depicts two
examples of random sequences, while the bottom row in black depicts two of the four scale sequences.

for each additional tone composing the sequence [t(41) = 5.4,
p < 0.001].

We assessed the influence of the experimental condition
on PSE values with a three-way mixed ANOVA with the
same factors used for the JND analysis. We did not observe
a significant influence of the between factor final tone (fixed
or non-fixed) on the PSE values [F(1,40) = 1.0, p = 0.334,
7112; = 0.02, BFjp = 0.316]. The within factor sequence type
(random or scale) also did not have an influence on PSEs
[F(1,40) = 2.0, p = 0.169, nf, = 0.05, BF;p = 0.330]. In
accordance with the results of the regression, we found that the
timing at which the final tone was perceived to be isochronous
changed across the different sequence lengths [F(3,120) = 4.4,
p = 0.006, BF;p = 5.67]. The effect of sequence length is best
evidenced in Figure 4B, where we collapsed the non-influent
final tone factor. No interaction between factors was present (all
p>0.5).

DISCUSSION

Our data replicated the improvement in sensitivity with longer
sequences that have been reported previously (e.g., Schulze,
1978; ten Hoopen et al., 2011; Li et al., 2016). According to
Schulze (1978), the reason for the performance change has been
linked to the integration of multiple sensory estimates by a
running average, which leads to a more precise and optimal
representation. Recent accounts have framed the sensitivity
improvement in terms of iterative interaction between sensory
signals and temporal expectation, according to the rules of
Bayesian inference (Di Luca and Rhodes, 2016). Such framework
has been previously applied to explain several related phenomena
in duration judgments. One of these was the regression to the
mean interval when participants are presented with a range of
durations during a block of trials (Jazayeri and Shadlen, 2010).
Results were interpreted by advancing the hypothesis that a
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Spearman-Kéarber method to derive the PSE and JND values shown in Figures 3, 4. (A) Shows the scale condition in Experiment 1, which had non-fixed final tone.
(B) Shows the random condition in Experiment 1, which had non-fixed final tone. (C) Shows the scale condition in Experiment 2, which had the final tones always
fixed at 440 Hz. (D) Shows the random condition in Experiment 2, which had the final tones always fixed at 440 Hz. All error bars represent the standard error of the
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temporal prior and a cost function can account for the bias in
the responses toward the mean and by showing how such a
bias depended on the average duration of the range of intervals.
Shi et al. (2013) proposed that an explanation based on the
Bayesian Observer Model parallels information-processing ones,
but such an explanation is normatively based on the reduction
of temporal uncertainty. Our results are qualitatively consistent
with an explanation based on such an uncertainty-reduction
principle, and that the effect appears to be modulated by the
pattern of non-temporal properties.

Our results indicate that temporal discrimination is more
precise with sequences whose tones are arranged in a scale,
rather than having tones arranged in a random sequence, and
that this pattern is present irrespectively of the knowledge of the
final tone. We speculate that equal temperament (scale-step) in
the scale condition functioned as a ‘standard, which effectively
generated musical expectation in the auditory sequence. Such
scaled pattern arranged with simple tonality worked as a ‘physical
attribute’ (Haluska, 2003) to a subjective perceptual experience.
The influence of the regular scale-steps, as compared to atonality,

led to the prediction of the frequency of the next tone and,
in turn, to better coding of sensory information. Our data
suggest that the sensory improvement was present not only in
the pitch domain as demonstrated in the previous findings (i.e.,
Jones and Boltz, 1989; Selchenkova et al., 2014), but also in the
time domain as shown by an increased temporal sensitivity. In
addition to isochrony as shown in previous studies (i.e., Schulze,
1978), equal scale-steps in tonal structure also contribute to
creating expectations, which allow more sensitive predictions
of up-coming sensory events. We hypothesize that the process
underlying such an improvement is akin to the formation of
temporal priors which has been postulated in isochronous and
equal pitch sequences (i.e., Di Luca and Rhodes, 2016). In the
time domain, it has been advanced that the process is based
on the projection of expectations for future stimuli according
to the rules of Bayesian inference, which integrates a priori
knowledge with sensory evidence (Jazayeri and Shadlen, 2010).
If we extend the process to the tone domain, the presence
of a scale allows the prediction of the frequency of the next
tone, which combined with the prediction of the timing of
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lengths. (A) Shows the JND values of scale and random sequences with fixed and non-fixed final tone. (B) Shows the PSE values. Positive PSE values represent an
equal proportion of “early” and “late” responses obtained with tone presented later than expected, which is consistent with an acceleration in the perceived timing of
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values indicating that the final tone should be presented later than expected to be perceived isochronous, and the amount required increases with longer sequences.

Number of stimuli

the next tone, should iteratively improve the allocation of
resources and the precision of sensory judgments (Figure 5). The
current outcomes suggested a broader definition of ‘patterning’
in auditory perception, which should no longer be limited to
the tone structure and temporal rhythms taken alone, but it
should consider that the non-temporal characteristics can have
an impact on temporal judgments (and vice versa). The findings

denoted the direct influence of pattern in tonal structures on time
perception.

In our experiment, in addition to precision, we investigated
temporal accuracy by looking at the timing at which participants
reported the final tone to appear to be isochronous. We find
a general bias to report tones presented later than regular to
be isochronous, replicating previous findings (Li et al., 2016).

Frontiers in Psychology | www.frontiersin.org

February 2018 | Volume 9 | Article 105


https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

Li and Di Luca

Temporal Judgments in Tone Sequences

TABLE 1 | Single-sample Bonferroni corrected t-test on PSE values against zero.

Sequence lengths 3 4 5 6

Experiment 1 (non-fixed final tone) Scale 1(20) = 1.29 1.35 1.70 2.57
p= 0.212 0.193 0.105 *0.018

Random 1(20) = 3.64 1.44 2.22 4.64

p= *0.002 0.164 *0.038 *<0.001

Experiment 2 (fixed final tone) Scale t20) = 0.85 —0.15 0.76 3.63
p= 0.405 0.884 0.447 *0.002

Random t20) = 2.07 1.0 1.25 3.58
p= 0.052 0.150 0.225 *0.002

Asterisks highlight p-values lower than 0.05.

This result is consistent with a perceptual acceleration of stimuli
presented in a sequence (Di Luca and Rhodes, 2016). The finding
can be accounted for by an asymmetric representation of stimuli
in the time domain (for details, see Di Luca and Rhodes, 2016).
The manipulation of sequence length increases the anticipatory
effect, but the tonal patterns seem to have no influence. Rather,
the current PSE outcomes reported an anticipatory behavior in
time, suggesting the influence of an attentional phenomenon
consistent with prior entry (Titchener, 1908). Analogous to the
effects of sensory entrainments (Rohenkohl and Nobre, 2011),
it is a sensory characteristic of acceleration when a stimulust

was attended to, the sensory processing was prioritized and
facilitated. The phenomenon has been discussed and captured
under various conditions, including the increased number of
intervals in a sequence (for a review, see Spence and Parise, 2010;
Lietal., 2016). In terms of the manipulation of various sequence
lengths, longer sequences with more isochronic intervals usually
generate more precise temporal expectations. As the number
of tones in a sequence increases, the chances of a stimulus
being temporally deviant also increased accordingly enhancing
the attention deployed on the next possible timing of upcoming
sensory events resulting in an anticipatory perception.
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FIGURE 5 | Graphic illustrating how predictability could influence temporal sensitivity. The distributions represent the predictability of time of upcoming tones at each
position in an isochronous sequence, where a flat dashed line means no prediction and a narrow peak means great predictability. (A) Shows a progressive increase
in predictability in the tone dimension and in the temporal dimension with an isochronous scale-toned sequence. (B) Shows an increased predictability in the time
domain as the length of sequence increase, however, the random sequence does not lead to successive expectations of tone frequency, thus leading to a lower
overall predictability of stimulus properties, leading to the lower precision in the discrimination of isochrony that we find here.
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However, the fact that our PSE results did not highlight
a different bias due to the tone structure does not appear to
be in line with Dynamic Attending Theory proposed by Jones
(1987) and Jones et al. (2002). Such proposal predicts instead
that non-temporal patterns like music and tone scales, should
lead to a modulation of attention and thus to a change in
facilitation with consequent perceptual bias, that instead we did
not find. A similar attempt to show sensory facilitation has
been published recently, using the original pitch comparison
task. Similar to our results, Bauer et al. (2015) showed that
anticipatory behavior was also not present, possibly because in
their stimuli the melody was ignored, and instead the temporal
information was utilized for sensory expectation. In addition,
they argued that a pitch comparison task may not be the
most replicable and suitable judgment for investigating dynamic
attending in audition. Here we showed that temporal judgments
showed no evidence in the anticipatory attending as well. The
failure of our and Bauer et al.’s 2015 attempts to find a bias in
perceived timing could be also due to the simplicity of music
in the sequences. In support of this possibility, we observe
that Jones (1987) introduced several musical properties that
were classified as dynamic elements that could facilitate the
perceived onset of an auditory tone. This included the melodic
accents, harmony and beat variations. The configuration of these
dynamic characteristics in music were beyond simple patterns
and followed a much more complex musical composition
rule.

The current study exploited simple types of patterns in tones
structure and timing to measure whether time perception is
affected. We succeeded in showing an influence of a simple
tonal pattern on temporal sensitivity, but such a difference
is not associated with a change in bias. Moreover, we find a
change in both precision and accuracy depending on sequence
length. We explain such a pattern of results suggesting a
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