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The test for item level cluster bias examines the improvement in model fit that results from

freeing an item’s between level residual variance from a baseline model with equal within

and between level factor loadings and between level residual variances fixed at zero. A

potential problem is that this approach may include a misspecified unrestricted model

if any non-invariance is present, but the log-likelihood difference test requires that the

unrestricted model is correctly specified. A free baseline approach where the unrestricted

model includes only the restrictions needed for model identification should lead to better

decision accuracy, but no studies have examined this yet. We ran a Monte Carlo study to

investigate this issue. When the referent item is unbiased, compared to the free baseline

approach, the constrained baseline approach led to similar true positive (power) rates

but much higher false positive (Type I error) rates. The free baseline approach should

be preferred when the referent indicator is unbiased. When the referent assumption is

violated, the false positive rate was unacceptably high for both free and constrained

baseline approaches, and the true positive rate was poor regardless of whether the free

or constrained baseline approach was used. Neither the free or constrained baseline

approach can be recommended when the referent indicator is biased. We recommend

paying close attention to ensuring the referent indicator is unbiased in tests of cluster

bias. All Mplus input and output files, R, and short Python scripts used to execute this

simulation study are uploaded to an open access repository.

Keywords: multilevel confirmatory factor analysis, cluster bias, measurement invariance, isomorphism, homology,

Monte Carlo

INTRODUCTION

Measurement invariance can be demonstrated for a measurement instrument if the instrument
functions equivalently, in a probabilistic sense, over subpopulations. In other words, measurement
invariance exists if two individuals with equal standing on the construct being assessed, but sampled
from different subpopulations, have the same expected test score. This has been explained by
numerous methodologists now including Drasgow (1982, 1984), Mellenbergh (1989), Meredith
(1993), Millsap (2012), and Vandenberg and Lance (2000). These authors have all shown that
without demonstrating measurement invariance, conclusions about differences in latent means are
dubious. More recent papers by Chen (2008) and Guenole and Brown (2014) have shown that,
in addition, a lack of invariance leads to biased estimates of relationships between latent variables
across groups, if the lack of invariance (or non-invariance) is not appropriately modeled.
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The goal of this article is to present a Monte Carlo study
that compares the effectiveness of two strategies for examining
invariance simultaneously over many groups (i.e., cluster bias) in
the context of multilevel confirmatory factor analysis (multilevel
CFA). In the remainder of this article, we first present a brief
literature review and theoretical framework for invariance testing
in a multilevel CFA context. Following this overview, we describe
the goals of the simulation study, the simulation conditions
and rationale for their selection, and the simulation results. We
then discuss the practical implications of this article for applied
researchers in our discussion section.

LITERATURE REVIEW AND THEORETICAL
FRAMEWORK

Methods for detecting items that violate measurement invariance
are well developed. Tests for continuous indicator models are
primarily based on confirmatory factor analysis (CFA). CFA tests
involve first examining configural invariance, or whether the
same number of latent dimensions are present in the data for each
group. The configural invariance tests are followed by examining
factor loadings of items across groups for equivalence. If the
factor loadings are not equivalent across groups, the test items
are said to violate metric or weak factorial invariance in a CFA
framework.

If the factor loadings are equivalent, but intercepts are not
equivalent, the items are said to violate scalar or strong invariance
in CFA. Finally, equivalence of item error variances is also studied
in CFA. If error variances are equal across groups, the items
are said to show strict invariance. Chan (1998) has described
the assumption of equivalent error variance as an unrealistic
expectation in many applied situations. For a recent special issue
on the topic of measurement invariance from the structural
equation modeling perspective, see van de Schoot et al. (2015).
When there are just two subpopulations of interest, say male
and female in the context of CFA, measurement invariance is
often examined using multiple indicator multiple causes models
(Joreskog and Goldberger, 1975; Kim et al., 2012b; MIMIC:
Chun et al., 2016), restricted factor analysis (Oort, 1998; RFA:
Barendse et al., 2010), or multiple group models based on mean
and covariance structures analysis (Sorbom, 1974; MACS: Byrne
et al., 1989; Cheung and Rensvold, 1999). In these approaches
the groups are fixed, and the method does not treat the groups
across which invariance is examined to be a sample from a
population.

Research attention has started to focus on situations where
there are a large number of groups across which researchers wish
to examine invariance. Examples might include invariance of
a values questionnaire across cultures (e.g., Cheng et al., 2014;
Cieciuch et al., 2017; Jang et al., 2017) or the invariance of
a measurement instrument across classrooms in schools (e.g.,
Muthén, 1991). In cases like this, if there are a large number
of groups, the usual multi-group approach can be cumbersome.
Instead, measurement invariance can be examined with meta-
analytic approaches (e.g., Cheung et al., 2006), recently developed
fixed mode of variation approaches (i.e., approaches that do not

attempt to make inferences beyond the groups in the analysis)
like alignment optimization (Asparouhov and Muthén, 2014;
Cieciuch et al., 2014), or multilevel confirmatory factor analysis
(multilevel CFA: Muthén, 1994; Rabe-Hesketh et al., 2004).
Multilevel CFA, the focus of this article, treats the grouping
variable as a random mode of variation. In other words, it views
the groups as a sample of groups from a larger population of
groups (Muthén, 1994; Kim et al., 2012a; Jak et al., 2013; Ryu,
2014).

With two-level data, invariance can be examined at level-1 or
level-2, but is more commonly studied at level-2, as described
by Muthén et al. (1997), for example. Level-2 bias detection
is the focus of the simulations to be presented in this article.
Early papers by Muthén (1994) and Rabe-Hesketh et al. (2004)
established the prerequisites for measurement invariance in
multilevel measurement models, and a series of recent papers by
Jak and her colleagues (Jak et al., 2013, 2014; Jak and Oort, 2015)
further outlined the logic for tests of multilevel measurement
invariance, or cluster bias. In two-level CFA the covariance
matrix is decomposed as:

6total = 6between + 6within. (1)

If there is no measurement bias at level-2 the following models
will fit the data for p observed and k latent variables:

6between = 38between3
′ (2)

6within = 38within3
′

+ 2within (3)

where 8 between and 8 within are k × k latent variable covariance
matrices, 3 is a p × k matrix of factor loadings, and 2 within is a
diagonal p× pmatrix of residual variances. Cluster bias is related
to the concept of isomorphism, which refers to equal factor
loadings across levels. Isomorphism has important consequences
for conclusions about the similarity of relationships between
variables across levels, which in turn is referred to as homology
(Tay et al., 2014; Guenole, 2016). However, absence of cluster bias
is a stronger assumption than isomorphism, because cluster bias
refers to non-zero residual variance at level-2, in a model where
isomorphism holds.

In practice, the Jak et al. (2013) procedure for testing
multilevel invariance unfolds as follows. First, configural
invariance is examined. The configural invariance model holds
where the pattern of factor loading coefficients is consistent
across the within and between levels of the multilevel CFA
model. Next, the cluster invariance model is fit to the data where
factor loadings and intercepts are equivalent across clusters.
The data support a cluster invariance or strong invariance
model when the factor loadings are equivalent across levels and
level-2 item residual variances are not significantly different
from zero. Jak and Oort (2015) noted that the result of bias
in factor loadings and intercepts manifests as level-2 residual
variance when factor loadings are constrained across levels, and
the test for cluster bias does not differentiate the source for
the bias (i.e., whether it is intercept or factor loading non-
invariance across level-2 clusters), rather, it simply tests for the
presence of measurement bias. If the level-2 residual variances
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are significantly different from zero, the bias could be in factor
loadings and/or intercepts. In this article, we focus attention
on uniform bias which we simulate by incorporating the direct
effect of a level-2 violator, described more in the methodology
section.

In the sections that follow, we contrast free and constrained
baseline approaches to testing measurement bias. Importantly,
the free vs. constrained distinction in the context of item level
testing is distinct from scale level testing for cluster bias where
the configural model is contrasted with the scalar invariance
model. The item level procedures we investigate here are likely
to be followed by researchers if they find that cluster invariance is
violated.

Constrained Baseline Approaches to
Measurement Invariance Testing
An item level approach to cluster bias based on Jak et al.’s
(2013) procedure can be considered a constrained (of “fixed”)
baseline approach. This is because it begins by fixing all
parameters to be tested to be either equal across levels in
the case of factor loadings or zero in the case of between
level residual variances. In this approach, the overall fit of
the fully constrained model is first evaluated. The alternative
model then frees the level-2 residual variances for the studied
item(s). An evaluation of the improvement in model fit from
freeing the item parameters is then made, using a test such
as the likelihood ratio difference test or one of its variations.
Statistical significance indicates that the model with constraints
fits significantly worse than the model without constraints, and
the item exhibits measurement bias. Conversely, statistical non-
significance indicates that the model with constraints does not fit
significantly worse than the model without constraints, and the
item does not exhibit measurement bias. Stark et al. (2006) noted
that constrained baseline procedures are the typical approach
used by researchers coming from an item response modeling
tradition.

Free Baseline Approaches to Measurement
Invariance Testing
An alternative approach to the constrained baseline strategy
begins with a free baseline where minimal constraints are
imposed. In this approach, the minimally identifiable model is
estimated as the baseline model. The alternative model then
constrains the parameters of the items being tested across
groups (one factor loading and one residual variance), but leaves
parameters for all other items free across groups. An evaluation of
the difference in fit between the constrained and unconstrained
models is then made using a test such as the likelihood ratio
test. Statistical non-significance indicates that fixing the item
parameters equal across groups does not yield a statistically
significant decrement in model fit, and that the item does not
exhibit bias. Statistical significance indicates that the item does
exhibit measurement bias across groups. Stark et al. (2006)
noted that free baseline procedures are the typical approach
used by researchers coming from a structural equation modeling
tradition.

Competing Rationales for Constrained and
Free Baseline Approaches
Readers should note that while the free vs. constrained baseline
issue has not been examined in the context of multilevel
measurement invariance, numerous related examples exist in
the traditional two-group case under the label of iterative bias
detection. These include applied instances (e.g., Navas-Ara and
Gómez-Benito, 2002) as well as Monte Carlo studies (e.g., Oort,
1998; Barendse et al., 2012). In the iterative approach, results of
previous item tests are incorporated into the baseline model for
testing of subsequent items. In the method adopted in this article,
we always revert to the original free or constrained baseline for
tests of subsequent items.

Researchers have offered different rationales for examining
invariance with free and constrained baseline approaches.
Constrained baseline approaches might be a reasonable approach
if the majority of items are believed to be invariant, perhaps
based on past research. Furthermore, Jak andOort (2015) showed
with simulations that a constrained baseline approach leads to
reasonably accurate conclusions under some circumstances when
examining cluster bias. A constrained baseline might also be
defended on the basis that more stable parameter estimates are
achieved when the linking required to establish a commonmetric
is based on more than one item (Stark et al., 2006).

Nevertheless, there may be an impact on subsequent tests
of model fit if the unrestricted model is misspecified. To
calculate the log-likelihood ratio test two models are estimated,
an unrestricted model M0, and a restricted model, M1. The log-
likelihood statistic is calculated by comparing the log-likelihoods
of the two models: LRT = −2 x (ℓ0 − ℓ1). The LRT statistic is
distributed as χ2 with degrees of freedom equal to the difference
in the number of estimated parameters between the models, but
this is only so if the unrestricted model is correctly specified. If
it is not, it could see a reduction in statistical power to detect
bias when it exists, and increased Type I errors where non-
biased items are identified as biased. From a logical perspective,
the cautious and strongest theoretical approach seems to be to
use the free baseline procedure. Indeed, simulation studies in
the two-group context have revealed greater accuracy for the
free baseline approach across dominance and unfolding item
response models (Stark et al., 2006; Wang et al., 2013; Chun et al.,
2016). Comparing the free and constrained baseline approaches
with Monte Carlo methods in a multi-level CFA context is
the central goal of this article. Importantly, while the general
procedures of free and constrained approaches to invariance
testing are not new, the two procedures we examine have never
been evaluated before in the context of testing cluster bias.
There are also other possible approaches to free and constrained
baseline testing that this article does not address. We return to
these alternative approaches in our discussion.

We broadly follow the recommendations of Paxton et al.
(2001). Our hypotheses were as follows:

H1. A free baseline approach will provide greater decision
accuracy in terms of true positive rates and false
positive rates in comparison to the constrained baseline
approach.
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H2. The improved performance of the free baseline approach
will be even more observable in terms of true positive rates
and false positive rates with factors expected to increase
decision accuracy (i.e., higher ICC, larger L1 and L2 sample
sizes, more non-invariant items, and higher magnitude
bias).

We were interested in the performance of free and constrained
baseline approaches where the referent item was free of bias and
when it was biased, since in practice this important assumption
may be easily violated. We did not have a hypothesis for the
biased referent indicator section in our design and therefore treat
this part of the analysis as exploratory.

METHOD

Design Features
The simulation conditions for the most part follow the set up
described by Jak et al. (2014), which provide a strong basis
on which to evaluate the performance of cluster bias detection
in multilevel CFA. In addition, we verified the appropriateness
of these conditions by a review of existing simulation studies
addressing multilevel CFA questions. In the sections that follow,
we describe the simulation set up for the current study.

Fixed Features of Simulation Design
Test length was set at five items. Five items have been commonly
used in measurement model simulation studies, and this number
of items is very common in survey research where there is not
sufficient room for longer scales.

Continuous indicators were simulated. Continuous item
indicator factor models are common in survey work where
research shows that so long as the number of scale points in a
Likert scale model is greater than five, continuous factor models
perform well.

Replications were set at 500 replications per cell which is
consistent with the number of replications used in past studies
and is expected to be a sufficient number of replications to
achieve reliable results.

Missing data patterns were not included in our simulation, and
so the impact of missing data patterns in multilevel measurement
invariance falls outside the scope of our simulation.

Level-2 violators were simulated to introduce non-invariance
in our simulations. The effect of the level-2 violator is to increase
the variance for the biased item. We subsequently examined
items for bias with tests of cluster bias.

Experimental Conditions
Level 1 Samples Sizes (Three Levels)
Level-1 sample sizes (L1N) were set at 2, 5, and 25, mirroring
the simulation conditions presented since cluster samples sizes
of two are common in dyad research, five are common in
small group research, and 25 is common in educational and
organizational research.

Level 2 Sample Sizes (Two Levels)
Level-2 sample sizes (L2N) were set at 50 or 100. These cluster
sizes can be considered moderate and large, and were chosen

because results of simulations inmultilevel CFA contexts byMaas
and Hox (2005) show sample sizes in this range are required for
estimation accuracy.

Intraclass Correlations (ICCs) (Three Levels)
Based on a review of ICCs in simulation studies including Maas
and Hox (2005), the ICCs were set 0.10, 0.20, and 0.30. While
smaller ICCs have been investigated by some researchers (e.g.,
Depaoli and Clifton examined ICCs of 0.02), larger ICCs are
both common in applied settings and less likely to result in
inadmissible solutions.

Number of Biased Items (Three Levels)
We included conditions with 0, 1, and 2 biased items. This
allowed examining the impact of the severity of baseline
misspecification on decision accuracy. The no bias condition was
included simply as a simulation baseline to check the basal Type
I error, following Kim et al. (2012b).

Size of Bias (Three Levels)
We incorporated three levels of bias: no bias, small bias, and
large bias. We set the bias to be one and five percent of the total
variance of the indicator for small and large bias respectively.
We did this using the methodology of increasing the variance of
the biased item by allowing a direct effect of a level-2 violator
variable, described below under data generation. This approach
has been used in past simulation studies, including Barendse
et al. (2012). Again, the no bias condition was included only as
a simulation baseline check.

Biased or Unbiased Anchor Item (Two Levels)
We examined the performance of the free and constrained
baseline models when the anchor item was biased and when it
was unbiased. Note that for levels of bias with 2 biased items
under the biased anchor item this meant there were, in fact, 3
biased items: 2 biased items with a biased anchor item. The size
of the bias in the anchor item was set to match the size of the item
bias in the remaining item(s), i.e., 1 or 5% bias.

Summary of Factorial Design
Our design included the baseline check conditions of three
L1N × two L2N × three intraclass correlation levels x one
combination of biased items and levels of bias (i.e., zero bias) =
18 conditions; along with three L1N× two L2N× three intraclass
correlation levels x four combinations of bias items and levels of
bias (i.e., one or two bias items with either small, or large bias) x
two anchor item levels (biased and unbiased) = 144 conditions.
Each condition was analyzed using two detection strategies (i.e.,
both the free and the constrained baseline strategies).

Data Generation
All simulated data were generated as continuous multivariate
normal using Mplus version 8 (Muthén and Muthén, 1998-
2017). All input scripts, outputs scripts, and python scripts used
to extract model summary statistics are available at the following
figshare link: https://figshare.com/s/23427e33be46d406b5d0.
The base model from which all simulation models can be derived
is presented in Figure 1. In the unbiased referent indicator
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FIGURE 1 | Multilevel CFA base model for the most biased condition (biased

referent 2, and two further biased items 4 and 5). V is a level 2 violator that

causes bias in the affected indicators by increasing there variance by either 1

and 5%. The variance of the within factor was set at 1 and the between was

varied to adjust the ICC. Loading on within and between were set at 1 for all

items. θs are errors where w and b represent within and between, respectively,

and 1, 1 indicates the first indicator of the factor, etc.

conditions, bias was simulated on items 2 and 4. In the biased
referent indicator conditions, bias was simulated on items 2, 4,
and 5.

Model Identification
Unbiased Anchor
To identify the metric of the latent factors in the free baseline
approach we fixed the first factor loading of each factor on within
and between levels at one. This item was not biased. The baseline
model in the constrained approach was identified by fixing the
factor loading of the first indicator of each item at 1 and having
all remaining within and between level factor loadings equal and
all level two residual variances set at zero—thus violating the
assumption of an unbiased referent indicator.

Biased Anchor
To identify the metric of the factors in the free baseline approach
we fixed the second factor loading of each factor on within and
between levels at one. This item was a biased item. All remaining
factor loadings and residual variances were freely estimated. To
identify themetric of the latent factors in the constrained baseline
condition, we again fixed the within and between level factor
loadings of item 2, which was biased, at 1. All remaining item
factor loadings were constrained equal across levels and all level-2
residual variances were fixed at 0.

Estimation
We estimated all models using robust maximum likelihood
estimation (MLR).

Testing for Cluster Bias From Constrained
and Unconstrained Baselines
To test the invariance of items in the free baseline condition,
we examined the significance of the difference in −2 × the

log-likelihood of the restrictedmodel and the unrestrictedmodel.
In the restricted model the within and between level factor
loadings were equal and the residual variances for the tested
item was zero, respectively. In the unrestricted model the factor
loadings and residual variance for the tested item were free.
This yields a test statistic that is χ2 distributed with 2 degrees
of freedom. To test for bias of items under the constrained
baseline, the starting model was the reduced model where all
factor loadings were fixed equal and level-2 residual variances
were zero; the unrestricted model freed the within and between
level factor loadings for the tested item along with its between
level residual variances. The test statistic was compared against a
χ2 distribution with two degrees of freedom.

This restricted baseline approach differs from the Jak
et al. (2014) procedure in that their approach evaluates
the improvement in fit from moving from the model with
constrained factor loadings for an item with its residual variance
at zero to the same model but with only the residual variance
freed. However, for comparability with the free baseline approach
outlined, here we examine the improvement in fit that results
from freeing both the item residual variance and the across level
factor loading constraint simultaneously.

A correction is sometimes applied to calculate the differences
in χ2 between nested models because differences in −2 × log-
likelihood values are not χ2 distributed under the maximum
likelihood estimator with robust standard errors (Satorra and
Bentler, 2001). However, Jak andOort (2015, p. 440), citing Cham
et al. (2012) recommended using the uncorrected difference
in −2 × log-likelihood between the nested models because
in the context of difference testing a procedure with the
correction does not perform better than an approach without
the correction. They reported that their log-likelihood differences
were sometimes negative, and they considered these non-
significant. A strictly positive χ2 difference test has been
developed for the situations where the negative values occur, and
it has been suggested as potentially being relevant in other cases
such as small samples. However, recommendations to date are
unclear with regard to whether this strictly positive variation
ought to be applied in all cases. For this reason, we used unscaled
−2× log-likelihood difference tests.

True Positive Rates and False Negative
Rates
True positives rates were calculated as the proportion of
simulation runs within each condition where biased items were
correctly identified as biased with the two degree of freedom log-
likelihood difference test. False positive rates were calculated as
the proportion of simulation runs within each condition where
unbiased items were incorrectly identified as exhibiting bias
with the two degree of freedom log-likelihood difference test.
Power corresponds to the true positive rate, while Type I error
corresponds to the false positive rate.

When estimating many multilevel models with small
variances and low L1N, numerous estimation challenges are
likely to emerge, particularly in these models. These include runs
where (a) the software does not complete a replication, (b) the
software makes estimation adjustments due to the estimation
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hitting saddle points, (c) models converge to inadmissible
solutions, and (d) negative log-likelihood difference values result.
In instances when either model required for a log-likelihood
difference did not converge, the result was not counted as a true
positive or a false positive, but the proportion of true positives
and false positives observed for the cell is still expressed as a
proportion of the 500 intended runs.

We observe differences in reporting practices with regard
to whether runs with adjustments due to saddle points and
inadmissible solutions are summarized over or omitted in Monte
Carlo results for measurement invariance. In this study, if the
software converged to an inadmissible solution, and when an
adjustment was made due to hitting a saddle point, the log-
likelihood difference test was still conducted and summarized in
the same way as for log-likelihood difference tests for admissible
solutions. In addition, as with the study reported by Jak et al.
(2013), on numerous occasions the log-likelihood difference was
negative. In the Jak et al. (2013) study, the authors counted these
to be non-significant differences, however, in the present study
we considered these to be inconclusive and did not count them
in our analyses as constituting a true positive or a false positive
occurrence.

RESULTS

Simulation Baseline Check
Under the constrained baseline approach with no biased items
the false positive rate (based on testing item 2 for bias) and the
true positive rate (based on testing item 3 for bias) are both
false positive rates, because there is no bias. The detection rate
should be around the nominal significance level of 0.05 across
all experimental conditions, because the baseline model and the
comparisonmodels are always correctly specified. Table 1 reveals
that the false positive rate based on testing item 2 for bias in
the constrained baseline condition was always slightly lower than
0.05. The false positive rate based on testing item 3 for bias
was also slightly lower than 0.05 across all conditions. Similarly,
under the free baseline approach, the false positive rate (based
on testing item 2 for bias) and the true positive rate (based on
testing item 3 for bias) both constitute false positive rates. These
are expected to be around 0.05 across all experimental conditions.
Table 1 shows that the false positive rate based on testing item 2
for bias was always slightly lower than 0.05, and the false positive
rate based on testing item 3 for bias was also always slightly lower
than the expected 0.05.

Negative Log-Likelihood Difference Tests
In the simulation baseline conditions, and in all conditions
that follow, the occurrences of negative log-likelihood difference
tests were substantially higher under the constrained baseline
detection strategy, and precise frequencies can be observed in
Table 2 through Table 5.

Unbiased Referent Item Results
Summary of True Positive and False Positive Rates
True positive (power) and false positive (Type I error) rates
are summarized in Tables 2, 3. For the unbiased anchor

conditions, the overall true positive rate for the free baseline
approach was 0.44, while the overall true positive rate for the
constrained baseline approach was similar at 0.42. The overall
false positive rate for the free baseline approach was 0.04, while
the overall false positive rate for the constrained baseline was
unacceptably high at 0.14. This is because in contrast to the
baseline check condition where the baseline model was always
correctly specified and the fixed baseline approach performed
well in terms of false positives, in these conditions the baseline
model was always misspecified and the false positives are too
high. We now further explore factors associated with variability
in these true positive and false positive rates with ANOVA
models.

True Positive Rates (Power)
In an ANOVA model for the unbiased anchor condition where
the true positive rate was predicted by all independent variables
the significant independent variables at p < 0.05 were Level-2N
(η2L2N = 0.031), Level-1N (η2L1N = 0.566), the number of biased
items (η2

no. biased items
= 0.011) and the size of the bias (η2

size bias

= 0.175). Non-significant effects included ICC (η2ICC = 0.003),
and free vs. fixed (η2

free v fixed
= 0.001, where the free baseline

was coded 0 and the constrained baseline was coded 1). It is
important not to over-interpret small but statistically significant
effects, so here we consider effect sizes in relation to Cohen (1988)
criteria. The only effects that met Cohen’s (1988) criterion for
being at least a moderate effect (0.058) were Level-1N and the
size of bias. Next, an examination of all two-way interactions
indicated that the interaction between the ICC and the number
of biased items was significant at p< 0.05 (η2

ICC × no. biased items
=

0.008), although by Cohen’s benchmark this effect is small. There
were no interactions involving the free vs. fixed baseline variable
manipulation.

False Positive (Type I Error) Rates
In an ANOVA model for the unbiased anchor condition where
the false positive rate was predicted by all independent variables
the significant independent variables at p <0.05 were L1N (η2L1N
= 0.097), number of biased items (η2

no. biased items
= 0.071),

size of bias (η2
size bias

= 0.036), and whether a free or fixed

baseline was used (η2
free v fixed

= 0.072). These effects are all
moderate by Cohen’s (1988) criteria, aside from the effect of the
size of the bias, which was small. We next explored all two-
way interactions. This indicated that the following interactions
were significant at p < 0.05: L1N × number of biased items
(η2

L1N × no. biased items
= 0.067), L1N× size of bias (η2

L1N × size bias

= 0.072), L1N× free vs. fixed baseline (η2
L1N × free v fixed

= 0.100),

number of biased items × size of bias (η2
no. biased items × size bias

= 0.022), number of biased items × free vs. fixed baseline
(η2

no. biased items × free v fixed
= 0.055), and size of bias × free vs.

fixed baseline (η2
size bias × free v fixed

=0.032). Interaction effect
sizes that were at least moderate by Cohen’s standard, therefore,
include L1N× number of biased items, L1N× size of bias, L1N×

free vs. fixed baseline (η2
L1N × free v fixed

= 0.100). The interaction
for the number of biased items × free vs. fixed baseline was also
very close to being a moderate effect size.
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TABLE 1 | True positive rates and false positive rates for unbiased anchor with no bias.

Free baseline Fixed baseline

Cell L2N L1N ICC Items Size (%) NLD FP-2 NLD FP-3 NLD FP-2 NLD FP-3

1 50 2 0.10 0 0 21 0.03 13 0.02 225 0.02 229 0.02

31 50 2 0.20 0 0 20 0.02 18 0.03 243 0.02 226 0.02

61 50 2 0.30 0 0 17 0.03 10 0.03 232 0.02 237 0.02

6 50 5 0.10 0 0 49 0.02 21 0.02 253 0.01 239 0.01

36 50 5 0.20 0 0 20 0.03 31 0.02 193 0.02 213 0.03

66 50 5 0.30 0 0 24 0.01 27 0.02 211 0.01 215 0.02

11 50 25 0.10 0 0 38 0.02 34 0.02 130 0.01 121 0.03

41 50 25 0.20 0 0 33 0.03 28 0.01 105 0.04 122 0.01

71 50 25 0.30 0 0 32 0.03 23 0.02 109 0.03 104 0.01

16 100 2 0.10 0 0 26 0.03 26 0.03 277 0.01 268 0.02

46 100 2 0.20 0 0 37 0.04 19 0.03 248 0.02 258 0.02

76 100 2 0.30 0 0 36 0.03 41 0.02 215 0.02 241 0.01

21 100 5 0.10 0 0 20 0.03 29 0.04 186 0.02 208 0.03

51 100 5 0.20 0 0 22 0.02 24 0.02 202 0.02 172 0.02

81 100 5 0.30 0 0 22 0.02 34 0.03 214 0.02 203 0.03

26 100 25 0.10 0 0 31 0.02 39 0.02 107 0.01 126 0.02

56 100 25 0.20 0 0 32 0.02 34 0.03 108 0.03 127 0.03

86 100 25 0.30 0 0 26 0.02 32 0.03 102 0.02 123 0.02

L2N, level-2 sample size; L1N, level −1 sample size; ICC, intraclass correlation; Items, number of biased items; NLD, count of negative log-likelihood difference test results; FP-2, false

positive rate for item 2; FP-3, false positive rate for item 3.

We explored the interactions involving the free vs. fixed
baseline manipulation, our focal independent variable, further
with graphical plots. Figure 2 depicts the interaction between
L1N and free vs. fixed baseline on the false positive rate. This
figure reveals that moving from the lowest L1N size to the highest
L1N size for the free baseline model results in no notable change
in the false positive rate. On the other hand, moving from the
lowest L1N size to the highest L1N size with a fixed baseline leads
to a substantial jump in the false positive rate. Figure 3 depicts
the interaction between the number of biased items and the free
vs. fixed baseline strategy. This figure reveals that with 1 biased
item present, the free and fixed baseline approaches perform
similarly in terms of controlling the Type I error rate.

However, in the presence of two biased items, the free baseline
approach performs considerably better at controlling the Type I
error rate. The final interaction involving our focal independent
variable was for free vs. fixed and the size of the bias. This
interaction is plotted in Figure 4. It reveals that when the size of
the bias is small, the free and fixed baseline approaches perform
similarly, albeit with a lower Type I error rate for the free baseline
approach. When the size of the bias is large, the free baseline
approach continues to control the Type I error rate appropriately.
The Type I error rate for the fixed baseline approach, however,
rises to an unacceptable level.

Biased Referent Item Results
Summary of True Positive and False Positive Rates
True positive (power) and false positive (Type I error) rates for
the biased referent indicator are summarized inTables 4, 5. These
tables indicate that the false positive rate is poorly controlled

when the anchor item is biased, regardless of whether a free
baseline or a fixed baseline approach is adopted. The overall
false positive rates under the free and fixed baseline approach
were both unacceptable when the anchor item was biased, at
0.25 and 0.29 respectively. In this biased anchor condition,
the overall true positive rate under the free baseline approach
was 0.16, while it was higher at 0.28 under the fixed baseline
approach. Comparison of the relative advantages of the free
and fixed baseline across conditions is not meaningful given the
unacceptably high false positive rates and poor power across both
approaches. We do not explore this issue further here, instead
we return to the topic of identifying an unbiased item in the
discussion section below.

DISCUSSION

Breakthroughs in measurement invariance methods have made
techniques available for testing measurement invariance across
high numbers of groups with relatively small within group
sample sizes. This is an important development, because until
now the idea of testing whether different groups interpret survey
questions similarly has been limited to a small number of
groups with large sample sizes. Yet, the failure to adequately
establish a common interpretation across groups is known to
cause problems for interpretations of differences in latent means
and relationships between latent variables. Themethod studied in
this article to test measurement invariance, continuous indicator
multilevel confirmatory factor analysis, is ideal for studying
measurement invariance (i.e., cluster bias) across many groups.
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TABLE 2 | True positive and false positive rates for unbiased anchor with one biased item.

Free baseline Fixed baseline

Cell L2N L1N ICC Items Size (%) NLD TP NLD FP NLD TP NLD FP

2 50 2 0.10 1 1 12 0.04 19 0.04 207 0.02 200 0.03

3 50 2 0.10 1 5 4 0.14 21 0.06 216 0.01 216 0.01

32 50 2 0.20 1 1 25 0.05 15 0.05 198 0.02 220 0.02

33 50 2 0.20 1 5 7 0.09 20 0.04 84 0.07 253 0.02

62 50 2 0.30 1 1 18 0.06 17 0.05 208 0.04 221 0.02

63 50 2 0.30 1 5 2 0.13 27 0.04 75 0.12 240 0.02

7 50 5 0.10 1 1 11 0.07 20 0.02 137 0.07 225 0.02

8 50 5 0.10 1 5 1 0.47 16 0.04 11 0.51 169 0.04

37 50 5 0.20 1 1 13 0.06 20 0.02 130 0.07 188 0.02

38 50 5 0.20 1 5 1 0.59 21 0.02 5 0.60 193 0.02

67 50 5 0.30 1 1 12 0.06 36 0.02 98 0.08 189 0.03

68 50 5 0.30 1 5 0 0.66 15 0.02 3 0.69 198 0.03

12 50 25 0.10 1 1 2 0.57 25 0.01 4 0.60 99 0.03

13 50 25 0.10 1 5 0 1.00 16 0.02 0 1.00 56 0.07

42 50 25 0.20 1 1 0 0.68 21 0.02 4 0.71 84 0.02

43 50 25 0.20 1 5 0 1.00 21 0.02 0 1.00 59 0.08

72 50 25 0.30 1 1 1 0.75 33 0.02 1 0.78 111 0.03

73 50 25 0.30 1 5 0 1.00 26 0.02 0 1.00 59 0.10

17 100 2 0.10 1 1 21 0.07 27 0.06 203 0.02 244 0.01

18 100 2 0.10 1 5 10 0.18 28 0.04 72 0.16 254 0.02

47 100 2 0.20 1 1 18 0.03 31 0.04 190 0.03 245 0.03

48 100 2 0.20 1 5 5 0.20 30 0.04 44 0.18 227 0.02

77 100 2 0.30 1 1 17 0.03 20 0.04 209 0.02 212 0.03

78 100 2 0.30 1 5 8 0.23 39 0.01 47 0.24 235 0.02

22 100 5 0.10 1 1 15 0.09 24 0.03 102 0.10 170 0.01

23 100 5 0.10 1 5 0 0.84 27 0.03 0 0.87 175 0.04

52 100 5 0.20 1 1 7 0.11 23 0.02 64 0.10 186 0.02

53 100 5 0.20 1 5 0 0.89 25 0.03 0 0.92 170 0.03

82 100 5 0.30 1 1 8 0.10 20 0.03 67 0.10 197 0.02

83 100 5 0.30 1 5 0 0.94 30 0.04 0 0.96 146 0.04

27 100 25 0.10 1 1 1 0.87 28 0.04 1 0.89 91 0.04

28 100 25 0.10 1 5 0 1.00 31 0.02 0 1.00 36 0.15

57 100 25 0.20 1 1 0 0.94 29 0.02 0 0.95 97 0.05

58 100 25 0.20 1 5 0 1.00 23 0.02 0 1.00 40 0.18

87 100 25 0.30 1 1 0 0.98 30 0.03 0 0.99 86 0.04

88 100 25 0.30 1 5 0 1.00 29 0.02 0 1.00 37 0.18

L2N, level-2 sample size; L1N, level −1 sample size; ICC, intraclass correlation; Items, number of biased items; NLD, count of negative log-likelihood difference test results; TP, true

positive rate; FP, false positive rate.

So far, it has been implemented using a constrained baseline
approach, where the starting model has all factor loadings equal
across levels and all level-2 residual variances fixed at 0. However,
the growing literature on free baseline approaches suggests that a
free baseline approach might have greater decision accuracy for
bias detection. This article examined whether this is also the case
for multilevel confirmatory factor analysis tests of measurement
invariance. Indeed, support for a free baseline approach in a
multilevel CFA setting was observed.

Overall, the power for the free baseline approach when the
referent indicator was unbiased was 0.44. This was similar, albeit

slightly higher, than the power for the constrained baseline
approach under these conditions at 0.42. The real difference
between the two methods when the referent indicator was
unbiased was observed in the false positive rates. The overall
false positive rate for the unbiased referent indicator under the
free baseline was 0.04, which is acceptable. The false positive
rate for the constrained baseline approach was unacceptably
high at 0.14. When the referent indicator is unbiased, the free
baseline approach should be preferred. Our first hypothesis, that
a free (as opposed to a constrained or “fixed”) baseline approach
would have an accuracy advantage in terms of true positive
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TABLE 3 | True positive and false positive rates for unbiased anchor with two biased items.

Free baseline Fixed baseline

Cell L2N L1N ICC Items Size (%) NLD FP NLD FP NLD FP NLD FP

4 50 2 0.10 2 1 12 0.05 13 0.03 206 0.03 239 0.01

5 50 2 0.10 2 5 5 0.16 21 0.04 186 0.06 193 0.02

34 50 2 0.20 2 1 25 0.05 14 0.04 235 0.03 227 0.02

35 50 2 0.20 2 5 10 0.19 14 0.04 157 0.08 181 0.03

64 50 2 0.30 2 1 13 0.05 20 0.03 197 0.04 193 0.03

65 50 2 0.30 2 5 8 0.18 13 0.06 115 0.06 174 0.04

9 50 5 0.10 2 1 14 0.05 21 0.03 159 0.03 194 0.02

10 50 5 0.10 2 5 4 0.46 17 0.02 42 0.23 113 0.07

39 50 5 0.20 2 1 11 0.05 19 0.02 158 0.03 184 0.03

40 50 5 0.20 2 5 5 0.39 13 0.03 34 0.30 85 0.07

69 50 5 0.30 2 1 16 0.07 18 0.03 138 0.05 176 0.03

70 50 5 0.30 2 5 3 0.39 19 0.03 20 0.32 104 0.08

14 50 25 0.10 2 1 7 0.27 17 0.03 20 0.28 65 0.07

15 50 25 0.10 2 5 0 1.00 18 0.09 0 1.00 1 0.81

44 50 25 0.20 2 1 5 0.33 15 0.02 15 0.32 61 0.08

45 50 25 0.20 2 5 0 1.00 15 0.04 0 1.00 1 0.85

74 50 25 0.30 2 1 1 0.39 15 0.05 7 0.40 47 0.13

75 50 25 0.30 2 5 0 1.00 14 0.02 0 1.00 0 0.89

19 100 2 0.10 2 1 26 0.05 23 0.04 215 0.02 224 0.02

20 100 2 0.10 2 5 11 0.27 30 0.04 133 0.07 203 0.03

49 100 2 0.20 2 1 20 0.05 21 0.04 204 0.03 233 0.02

50 100 2 0.20 2 5 13 0.28 31 0.07 121 0.09 187 0.06

79 100 2 0.30 2 1 28 0.05 22 0.03 206 0.05 236 0.03

80 100 2 0.30 2 5 9 0.24 36 0.05 91 0.11 196 0.04

24 100 5 0.10 2 1 17 0.07 34 0.03 2 0.87 1 0.86

25 100 5 0.10 2 5 0 0.79 21 0.03 7 0.53 72 0.13

54 100 5 0.20 2 1 19 0.05 29 0.03 126 0.06 159 0.04

55 100 5 0.20 2 5 1 0.65 23 0.05 5 0.54 64 0.16

84 100 5 0.30 2 1 77 0.83 31 0.03 118 0.09 160 0.05

85 100 5 0.30 2 5 0 0.72 15 0.09 0 0.69 44 0.20

29 100 25 0.10 2 1 1 0.47 12 0.06 7 0.49 29 0.14

30 100 25 0.10 2 5 0 1.00 17 0.08 0 1.00 0 1.00

59 100 25 0.20 2 1 1 0.62 18 0.06 4 0.64 36 0.18

60 100 25 0.20 2 5 0 1.00 13 0.04 0 1.00 0 0.99

89 100 25 0.30 2 1 0 0.71 14 0.06 0 0.70 20 0.23

90 100 25 0.30 2 5 0 1.00 19 0.05 0 1.00 0 0.99

L2N, level-2 sample size; L1N, level −1 sample size; ICC, intraclass correlation; Items, number of biased items; NLD, count of negative log-likelihood difference test results; TP, true

positive rate; FP, false positive rate.

(power) and false positive (Type I error) was partially supported.
While the free vs. fixed distinction was unrelated to the true
positive rate, the free vs. fixed distinction was related to the false
positive rate. Hypothesis 2 proposed that the improved decision
accuracy under the free baseline approachwould be greater under
conditions that should lead to greater power and lower Type I
error, such as increased ICC, level-2 sample size, level-1 sample
size, number of biased items and bias magnitude. Indeed, several
moderation effects were observed.

Exploration of the interaction between free vs. fixed baseline
approach and L1N revealed that the constrained approach led

to increased false positive rates at increased L1N. This is a
theoretically interpretable result. The increased L1N is expected
to magnify the power to detect the misspecified larger model
under the constrained baseline approach, a misspecification
that contravenes the assumption of the log-likelihood difference
test and that is not present under the free baseline approach.
The interaction between the free vs. fixed approach and the
number of biased items also indicated that as the number of
biased items increased from 1 to 2 items, the false positive
rate increased. Once again, this can be considered theoretically
consistent, because under the constrained baseline approach
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FIGURE 2 | Interaction plot for the effect of level-1 sample size and the free

vs. fixed baseline choice on the false positive rate when the referent indicator is

unbiased. FRFI, free vs. fixed, where 0 is free and 1 is fixed; FP, false positive

rate; L1N, level 1 sample size; where 2, 5, and 25 are the level 1 sample sizes

studied.

FIGURE 3 | Interaction plot for the effect of number of biased items and the

free vs. fixed baseline choice on the false positive rate when the referent

indicator is unbiased. FRFI, free vs. fixed, where 0 is free and 1 is fixed; FP,

false positive rate; Biased items, number of biased items where 1 = 1 biased

item and 2 = 2 biased items.

the inclusion of an additional misspecified item increases the
degree of misspecification in the unrestricted model, and a
correctly specified unrestricted model is required for the log-
likelihood difference test. The final interaction between the free
vs. fixed approach and the size of the bias indicated that as
the bias increased so did the false positive rate when moving
to the constrained baseline condition. Since increasing the size
of the bias makes the misspecification more readily detectable,
the violation of the assumption of the test procedure is once
again more salient. Perhaps trumping all of these considerations,

FIGURE 4 | Interaction plot for size if item bias and free vs. fixed baseline

approach on the false positive rate when the referent indicator is unbiased.

FRFI, free vs. fixed, where 0 is free and 1 is fixed; FP, false positive rate; Bias

size, size of the bias, where 1% = 1% bias and 5% = 5% bias.

however, is the very high rate of negative log-likelihood difference
test results under the constrained baseline set up. For all these
reasons, the free baseline approach has more support when the
anchor item is unbiased.

The measurement invariance literature has witnessed
considerable research into the impact of violating the assumption
of an unbiased indicator. This is because in practice, the
assumption of an unbiased reference indicator might be easily
violated. Therefore, we also examined what happens when the
unbiased referent assumption is violated, since this assumption
in practice can be difficult to check. Overall, when the referent
indicator is biased, we saw that the false positive rate was
unacceptably high regardless of whether a free or constrained
baseline approach was used. The false positive rate for the free
baseline approach was 0.25, and it was 0.29 for the fixed baseline
approach. Moreover, the power was mediocre regardless of
whether a free baseline approach or a fixed baseline approach
was used. The power was 0.16 for the free baseline and 0.28
for the fixed baseline. These values make comparison of the
advantages of one method over the other meaningless when the
anchor item is biased. Instead, attention needs to be devoted
to ensuring the referent item is unbiased. One approach that
may be worthwhile considering is to first begin with the fully
constrained model, and then examine modification indices to
determine the item that is most likely to be unbiased. Once the
unbiased item is identified, analyses can proceed according to
the free baseline approach.

Researchers analyzing real data will need to make a series
of decisions prior to the analysis and decisions during the
analysis that will impact their ability to detect cluster bias. In
terms of design considerations, this study reveals when the
anchor item is unbiased, if the number of level-2 clusters is
sufficiently large, increasing the level-1 sample size increases
decision accuracy more than increasing level-2 sample size.
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TABLE 4 | True positive and false positive rates for biased anchor with one additional biased item.

Free baseline Fixed baseline

Cell L2N L1N ICC Items Size (%) NLD TP NLD FP NLD TP NLD FP

91 50 2 0.10 1 1 9 0.03 8 0.04 206 0.03 217 0.01

92 50 2 0.10 1 5 6 0.07 9 0.10 160 0.07 203 0.03

103 50 2 0.20 1 1 19 0.05 20 0.03 202 0.00 233 0.00

104 50 2 0.20 1 5 7 0.10 7 0.15 164 0.07 215 0.04

115 50 2 0.30 1 1 18 0.06 24 0.04 201 0.03 228 0.03

116 50 2 0.30 1 5 17 0.13 11 0.15 139 0.07 166 0.06

93 50 5 0.10 1 1 20 0.03 21 0.04 175 0.03 195 0.03

94 50 5 0.10 1 5 17 0.03 6 0.37 50 0.26 106 0.06

105 50 5 0.20 1 1 19 0.03 18 0.03 151 0.05 158 0.02

106 50 5 0.20 1 5 13 0.12 13 0.24 32 0.28 116 0.11

117 50 5 0.30 1 1 25 0.03 17 0.05 147 0.04 183 0.03

118 50 5 0.30 1 5 5 0.20 14 0.15 14 0.37 93 0.11

95 50 25 0.10 1 1 12 0.17 8 0.09 15 0.31 43 0.12

96 50 25 0.10 1 5 61 0.62 7 0.20 0 1.00 0 0.81

107 50 25 0.20 1 1 1 0.28 7 0.07 13 0.35 47 0.10

108 50 25 0.20 1 5 0 0.97 11 0.09 0 1.00 0 0.88

119 50 25 0.30 1 1 3 0.33 14 0.06 5 0.38 41 0.11

120 50 25 0.30 1 5 0 1.00 13 0.07 0 1.00 0 0.89

97 100 2 0.10 1 1 20 0.04 25 0.05 239 0.01 217 0.01

98 100 2 0.10 1 5 11 0.10 11 0.19 137 0.07 227 0.02

109 100 2 0.20 1 1 24 0.04 18 0.07 243 0.03 216 0.03

110 100 2 0.20 1 5 12 0.16 8 0.22 115 0.10 168 0.03

121 100 2 0.30 1 1 34 0.04 30 0.04 196 0.04 229 0.03

122 100 2 0.30 1 5 15 0.18 12 0.21 78 0.12 162 0.06

99 100 5 0.10 1 1 28 0.03 24 0.04 150 0.04 184 0.03

100 100 5 0.10 1 5 17 0.03 2 0.56 14 0.47 51 0.14

111 100 5 0.20 1 1 24 0.02 20 0.04 129 0.06 140 0.03

112 100 5 0.20 1 5 8 0.26 13 0.27 7 0.56 49 0.17

123 100 5 0.30 1 1 20 0.06 26 0.05 94 0.08 141 0.04

124 100 5 0.30 1 5 2 0.43 11 0.14 2 0.65 54 0.19

101 100 25 0.10 1 1 3 0.41 12 0.10 4 0.52 40 0.18

102 100 25 0.10 1 5 48 0.76 10 0.21 0 1.00 0 0.99

113 100 25 0.20 1 1 2 0.55 12 0.08 1 0.61 26 0.17

114 100 25 0.20 1 5 0 1.00 4 0.10 0 1.00 0 0.99

125 100 25 0.30 1 1 1 0.68 18 0.06 1 0.73 29 0.18

126 100 25 0.30 1 5 0 1.00 16 0.07 0 1.00 0 0.99

L2N, level-2 sample size; L1N, level −1 sample size; ICC, intraclass correlation; Items, number of biased items; NLD, count of negative log-likelihood difference test results; TP, true

positive rate; FP, false positive rate.

In addition, the ICC sizes studied had a negligible impact on
decision accuracy. This is fortunate, sample sizes may be more
under the researcher’s control than ICCs. This conclusion, of
course, is conditional on an item being identified as unbiased for
identification.

The limitations of this study relate primarily to the inability
to be exhaustive in the simulation conditions, for instance,
with a wider range of L2N. Our results also only focus on
continuous variable measurement models, and conclusions may
not apply for ordered categorical items where the free baseline
model used here may not converge (early experimentation has

indicated that the level-2 residual variances need to be fixed at
zero for models to converge). Moreover, following this study
there are still important questions to investigate. There are
numerous other constrained baseline approaches that might be
considered, and this study does not speak to these methods.
For example, alternative constrained baseline methods may well
perform better than the constrained baseline approach used here.
These could include iterative freeing of residual variances based
on modification indices, simultaneous freeing of all residual
variances followed by determining significance with standard
errors, or freeing residual variances one by one, and leaving
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TABLE 5 | True positive and false positive rates for biased anchor with two additional biased item.

Free baseline Fixed baseline

Cell L2N L1N ICC Items Size (%) NLD TP NLD FP NLD TP NLD FP

127 50 2 0.10 2 1 19 0.03 13 0.06 325 0.29 324 0.30

128 50 2 0.10 2 5 14 0.03 9 0.16 181 0.01 156 0.04

139 50 2 0.20 2 1 15 0.04 18 0.06 236 0.03 203 0.03

140 50 2 0.20 2 5 16 0.05 9 0.14 216 0.03 152 0.05

151 50 2 0.30 2 1 21 0.04 11 0.04 231 0.02 204 0.01

152 50 2 0.30 2 5 137 0.28 134 0.31 197 0.03 127 0.07

129 50 5 0.10 2 1 14 0.03 16 0.04 193 0.03 189 0.03

130 50 5 0.10 2 5 9 0.02 1 0.55 121 0.07 27 0.33

141 50 5 0.20 2 1 19 0.03 18 0.05 164 0.02 159 0.04

142 50 5 0.20 2 5 27 0.02 2 0.44 102 0.09 18 0.35

153 50 5 0.30 2 1 30 0.03 13 0.04 159 0.04 123 0.03

154 50 5 0.30 2 5 23 0.01 1 0.42 112 0.06 29 0.37

131 50 25 0.10 2 1 17 0.04 3 0.30 64 0.09 18 0.26

132 50 25 0.10 2 5 16 0.02 0 1.00 0 0.79 0 1.00

143 50 25 0.20 2 1 19 0.04 3 0.32 58 0.09 14 0.31

144 50 25 0.20 2 5 5 0.04 0 1.00 0 0.79 0 1.00

155 50 25 0.30 2 1 15 0.04 2 0.44 43 0.13 8 0.44

156 50 25 0.30 2 5 7 0.02 0 1.00 0 0.85 0 1.00

133 100 2 0.10 2 1 25 0.05 23 0.04 230 0.02 226 0.02

134 100 2 0.10 2 5 16 0.06 5 0.29 230 0.02 146 0.07

145 100 2 0.20 2 1 29 0.04 24 0.03 235 0.03 218 0.02

146 100 2 0.20 2 5 22 0.09 12 0.29 191 0.03 91 0.11

157 100 2 0.30 2 1 39 0.03 23 0.04 243 0.04 222 0.02

158 100 2 0.30 2 5 31 0.11 7 0.25 197 0.04 87 0.12

135 100 5 0.10 2 1 28 0.02 16 0.05 168 0.03 150 0.04

136 100 5 0.10 2 5 21 0.03 0 0.82 70 0.15 8 0.60

147 100 5 0.20 2 1 26 0.02 14 0.05 175 0.02 112 0.06

148 100 5 0.20 2 5 21 0.04 0 0.73 63 0.16 3 0.63

159 100 5 0.30 2 1 20 0.04 18 0.07 157 0.04 106 0.05

160 100 5 0.30 2 5 11 0.04 0 0.79 52 0.15 0 0.70

137 100 25 0.10 2 1 16 0.04 0 0.55 43 0.15 4 0.53

138 100 25 0.10 2 5 12 0.03 0 1.00 0 0.98 0 1.00

149 100 25 0.20 2 1 19 0.05 1 0.63 27 0.19 2 0.63

150 100 25 0.20 2 5 15 0.03 15 0.03 0 0.98 0 1.00

161 100 25 0.30 2 1 16 0.04 0 0.76 28 0.18 2 0.76

162 100 25 0.30 2 5 18 0.02 0 1.00 0 1.00 0 1.00

L2N, level-2 sample size; L1N, level −1 sample size; ICC, intraclass correlation; Items, number of biased items; NLD, count of negative log-likelihood difference test results; TP, true

positive rate; FP, false positive rate.

the residual variance free for the item with the largest chi-
square difference. Another avenue for research could be to
examine whether the power of the cluster bias test increases when
the likelihood ratio test distribution is adjusted to account for
the level-2 residual variance test examining the boundary of the
admissible parameter space (Stoel et al., 2006).

In summary, this study supports the free baseline approach
whenmodel assumptions are met. These might include situations
where well developed psychometric instruments have been
independently used in many different countries, and we know

for instance, that similar items have corresponding high factor
loadings in the different countries from independent research. In
these instances, the lower false positive rate for the free baseline
approach should lead to its adoption over the constrained
baseline approach.
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