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A primary underlying assumption for researchers using a psychological scale is that
scores are comparable across individuals from different subgroups within the population.
In the absence of invariance, the validity of these scores for inferences about individuals
may be questionable. Factor invariance testing refers to the methodological approach
to assessing whether specific factor model parameters are indeed equivalent across
groups. Though much research has investigated the performance of several techniques
for assessing invariance, very little work has examined how methods perform under
small sample size, and non-normally distributed latent trait conditions. Therefore, the
purpose of this simulation study was to compare invariance assessment Type | error
and power rates between (a) the normal based maximum likelihood estimator, (b) a
skewed-t distribution maximum likelihood estimator, (c) Bayesian estimation, and (d)
the generalized structured component analysis model. The study focused on a 1-factor
model. Results of the study demonstrated that the maximum likelihood estimator
was robust to violations of normality of the latent trait, and that the Bayesian and
generalized component models may be useful in particular situations. Implications of
these findings for research and practice are discussed.

Keywords: invariance, factor analysis, validity, small samples, estimation, Bayesian

INTRODUCTION

The field of psychology relies heavily on the use of tools for measuring constructs as varied
as cognition, mood, personality, and attitude. Scores derived from these instruments are
frequently used to assist in making decisions about whether a child should receive special
educational accommodations, whether a patient may be suffering from depression, what type of
employment an applicant may best be suited for, and whether a college student is motivated
by an internal or external reward structure, among others. The ubiquity of such tools,
coupled with the importance of their use in decision making means that it is crucial that
they provide comparable information for individuals from across the population (American
Educational Research Association et al, 2014). For example, a school psychologist using a
measure of social functioning for children with Autism depends on the comparability of
scores for boys and girls. If this assumption is not tenable, then decisions based on scores
derived from the scale may not have the same meaning for individuals from the two genders,
potentially leading to improper provision (or lack thereof) for some people (Millsap, 2011).
As a result, it is crucial that practitioners and researchers know whether the items on the
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scale are invariant or the same across theoretically interesting
subgroups. In this context, invariance refers to the case when
individual items have the same statistical characteristics (e.g.,
relationship to the latent trait being measured by the scale) for
members of the various subgroups (e.g., boys and girls). Such
investigations help address a component of a fairness argument
(Dorans, 2004).

Given the importance of scales in the social sciences,
and the need to assess whether they are, in fact, invariant
across subgroups in the population, a variety of statistical
tools have been developed for this purpose (Osterlind and
Everson, 2009; Millsap, 2011). Perhaps the most common
approach for invariance testing is based upon the multiple
groups confirmatory factor analysis (MGCFA) model (e.g., Byrne
et al., 1989; Bollen, 2009), which is described below. This
approach involves the fitting of two CFA models to a set of
data. One of these models constrains factor model parameters
to be equal, whereas the other allows some of the parameters
to vary between groups. The statistical fit of the models are
compared using the difference of some index, such as the chi-
square goodness of fit statistic, or the comparative fit index,
or the combination of the two (e.g., Cheung and Rensvold,
2002; French and Finch, 2006). If the fit of the models is
found to differ, the conclusion is reached that one or more
of the unconstrained parameters differs between the groups
of interest (e.g., Byrne et al, 1989). Much of the researcher
investigating the performance of invariance testing methods
has focused on cases in which the group sizes are moderate
to large (100 or more), and where the latent trait is normally
distributed. However, in practice researchers may be faced with
small samples, such as when working with individuals who have
been identified with Autism, or some low incidence population
that may pose unique sampling challenges. In addition, the
latent trait of interest may not be normally distributed. Indeed,
variables such as socio-economic status, depression, anxiety,
academic motivation are likely skewed in the population. For
example, in the general population most individuals may have
relatively low scores on a depression inventory, but a few
individuals will have higher scores, or clinically significant
scores (i.e., more depression), leading to a positively skewed
distribution.

Little work has documented model invariance testing
method accuracy for small sample conditions and/or skewed
latent trait distributions. Thus, the goal of the current
study is to add to the literature by considering several
approaches for invariance assessment in such circumstances.
The remainder of this manuscript is organized as follows:
First, the common factor model is described, and the standard
MGCFA approach to invariance testing briefly reviewed. Next,
alternative methods of assessing invariance are reviewed,
including approaches based on the skewed-t distribution, a
components based model, and Bayesian estimation. The goals
of the study and a description of the simulation study
designed to address these goals appear next. Finally, results
of the simulation study, as well as a brief illustration using
an extant dataset, and then a discussion of the results are
presented.

Common Factor Model and Invariance

At the heart of most psychological measures lies a construct, such
as motivation, anxiety, or reading ability. Such constructs are
assumed to be the primary cause of responses to items on the
scale assessing that construct, in addition to random variability
that is unrelated to the construct. We can express the relationship
between these observed indicators (i.e., the items) and the latent
trait measured using the common factor model, which takes the
following form (Bollen, 2009):

XxX=T+AE+S (1)

Where

x = Vector of observed indicator variables; e.g.items on a
scale or subscale scores

& = Vector of latent traits being measures by x

A = Matrix of factor loadings linking x and &

7 = Vector of intercepts associated with x

8 = Vector of unique errors associated with x

The model in (1) implies the following covariance matrix for
the observed indicators:

T =AUA + 0 @)

Where

% = Covariance matrix of the observed indicators, x

W = Covariance matrix of the latent factors

©® = Covariance matrix of unique error terms, assumed to be
diagonal.

Parameter estimation in Equations (1) and (2) can be
completed via a variety of methods, with perhaps the most
common being maximum likelihood (ML). ML is designed to
find the model parameter estimates (e.g., loadings, intercepts)
that optimize the following function:

Fyp = In|S| — In || + trace [SE '] — p 3)

Where

S =Observed covariance matrix for the indicator variables

¥ =Model implied covariance matrix for the indicator
variables

p =Number of observed indicators.

Thus, ML identifies the parameter estimates that result in
the smallest possible difference between the actual covariance
matrix among the indicators, and the model predicted covariance
matrix. ML is an iterative process, which repeatedly obtains
and updates parameter estimates, until model convergence is
achieved. This is signaled when the value in Equation (3) falls
below a predetermined cutoff value (e.g., 0.000001). ML relies
on an assumption that the observed indicators follow a normal
distribution (Kline, 2016).

Multiple Group Confirmatory Factor
Analysis for Invariance Assessment
Factor invariance (FI) is an assumption underlying the use of
the common factor model in Equation (1). Simply stated, the
presence of FI means that the parameters in Equations (1)
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and (2) are equal across two or more subgroups within the
population (Millsap, 2011). Such subgroups might include males
and females, individuals with a specific medical diagnosis and
those without such a diagnosis, or those in different age cohorts.
Under the broad heading of FI, there exist subtypes of factor
model invariance that are differentiated by invariance of specific
factor model parameters. The weakest type of FI is known as
configural invariance (CI), which rests on the assumption that the
number of latent variables, and the correspondence of observed
indicators to these latent variables is the same for all groups in
the population, but that the values of the parameters themselves
might differ (see Millsap). If CI is present, researchers typically
next investigate metric invariance (MI), which assumes that
the factor loadings (A) are equivalent across groups, implying
that the latent variables are being measured in the same way
for members of the population subgroups under consideration
(Wicherts and Dolan, 2010; Kline, 2016). Said another way, the
relationship between the variable and the factor are equal across
groups. MI assessment is the focus of this study. If MI holds,
researchers next assess equality of the factor model intercepts ()
across groups, as well as that of the unique indicator variances ().
This last type of invariance, known as strict factor invariance (SFL;
Meredith, 1993) thus implies that the factor loadings, intercepts,
and unique variances are all equivalent across groups. Millsap
(2011) indicated that SFI is necessary in order to attribute group
differences in the mean and covariance structure of the observed
indicators to corresponding differences at the latent variable level.
Perhaps the most common methodology for assessing FI
involves the use of a multiple groups CFA (MGCFA) model:

Xg=Tg+ Agk + 3 (4)

The terms in Equation (4) are exactly as described in Equation
(1), with the addition of the g subscript, indicating that
parameters can vary by group. Likewise, the covariance matrix
in Equation (2) is written in the MGCFA context as:

Ty = AgW¥gA, + Oy (5)

such that groups are allowed unique observed covariance
matrices (Xg), factor loadings (Ag), factor covariance matrices
(W), and unique error matrices ().

MGCFA can be used to test each aspect of FI using a series
of nested models in which specific parameters are constrained
to be equal across groups, and then allowed to vary by group.
For example, in order to assess M1, a model is fit to both groups
in which the factor loadings (as well as the intercepts and error
variances) are constrained to be equal across groups. A second
model is then fit in which the loadings are allowed to differ across
groups, but the intercepts and error variances remain constrained
to be equal. The fit of the two models, which are nested, can
then be compared using a difference in chi-square goodness of
fit statistic. This difference in model x? values, which appears in
Equation (6), follows a %2 distribution.

2 _ 2 2
XA = Xloadings constrained ~ Xloadings unconstrained (6)

Where

Xlzu adings constrained = chi - square fit statistic for the model with

constrained loadings

2 _ . —
Xioadings unconstrained = chi - square fit statistic for the model

with unconstrained loadings

The x3 statistic assesses the null hypothesis that the fit of
the two models is equivalent; i.e., the groups have equal factor
loadings in the population. If the x3 test is statistically significant
at a predetermined level of o (e.g., 0.05), the researcher would
conclude that there is not MI in the population. This same
technique can be applied to other fit indices (CFI) to assess
change in fit (e.g., Cheung and Rensvold, 2002) or can be used
in combination with the chi-square difference test.

Maximum Likelihood Based on the

Skewed-t Distribution

As noted above, the ML algorithm used in CFA parameter
estimation is based upon the assumption that the observed
indicator variables are normally distributed. However, in some
instances this may not be a valid assumption about the data.
For example, observed indicator scores, as well as the latent
traits of some psychological or educational phenomena may yield
a skewed distribution, such as on social interaction scores for
individuals with Autism. In such cases, models based on the
standard ML approach may produce biased parameter estimates
(Lin et al., 2013; Asparouhov and Muthén, 2016). In turn,
such parameter estimation bias could negatively influence the
results of invariance testing. We note that skewness in observed
indicators could be a function of skewness in the latent trait, as
well as skewness in the individual indicator variables themselves.
The focus of this study is on skewness that originates only at the
latent trait level.

As a means of addressing skewness in the data, Asparouhov
and Muthén (2016) describe the use of a restricted skewed-t ML
estimator in the context of factor analysis, structural equation
modeling, and mixture modeling parameter estimation. They
note that the skewed-¢ subsumes a number of other distributions,
including the skewed-normal, making it a suitably general
approach for use in a wide array of circumstances. We do not
provide technical details of ML based on the skewed-#, but
would refer the interested reader to the very readable paper by
Asparouhov and Muthén. Nonetheless, a few technical points
with regard to the skewed-t do need to be addressed here. First,
the estimation algorithm assumes that a set of variables comes
from the restricted multivariate skewed-t distribution, which is
characterized by 4 sets of parameters:

i = Vector of means

% = Covariance matrix

8 = Vector of skewness parameters

v = Degrees of freedom parameter.

The skewed-t distribution has P41 more parameters to be
estimated than is the case for the normal distribution, where P is
the number of observed indicators. These additional parameters
include the skewness values for each indicator, and the single
degrees of freedom parameter for the model. In short, the
estimation burden placed on the data by the skewed-f estimator is
greater than that of the normal based approach. These parameters
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are then estimated using an iterative ML approach with the goal
of minimizing the difference between the observed and model
implied covariance matrices, much as with the standard ML
in Equation (3), though the optimization function is different.
Readers who are interested in the derivation and form of this
optimization function are referred to Lin et al. (2013). Invariance
testing based on the skewed-t distribution follows closely with
that described above for the ML assuming a normal distribution.

Generalized Structured Components

Analysis

Generalized Structured Components Analysis (GSCA) is a
latent variable modeling methodology that defines one or more
composite variables from a set of observed indicators. As
described by Hwang and Takane (2004), GSCA defines a latent
variable as a weighted linear composite of the indicators in
a manner very similar to that used by principal components
analysis (PCA). In addition, GSCA can also be viewed as a close
relative of partial least squares (PLS) modeling. However, GSCA
has a global optimization function, which is not true for PLS,
potentially yielding more stable and in some cases less biased
estimates (Hwang and Takane, 2004). The latent variable in
GSCA is expressed as a weighted composite of a set of observed
indicator variables:

Yy =wz (7)

Where

z =data matrix of form NxJ (observations by indicators)

w =JxT matrix of measurement weights (indicators by
composite variables)

The GSCA model can then be written as:

z=ay+e (8)

Where

a =Component loadings

& =Model error

The right side of Equation (8) contains predicted values of the
indicators as a function of the latent component (ay), as well
as an estimate of the error associated with the indicators (e).
Hwang and Takane (2010) found that this estimate of model error
does not completely adjust the component estimate for random
measurement error, but that the inclusion of more indicator
variables does result in the proportion of observed indicator
variance that is associated with this error. In other words, GSCA
approximates the factor model using a weighted composite and
the component loadings linking it to the observed indicators, but
does not estimate it directly, as is the case with the other methods
included in this study. The resulting model parameter estimates
(e.g., component loadings) are therefore more accurate when
more indicators are included in the model. The fitting function
for GSCA is:

fosca = SS(z — ay) 9)

Equation (9) reflects the fact that the GSCA parameter estimates
are found to minimize the sum of squares between values of the

observed indicator variables, and the predicted indicator values
based on the latent component value and loadings. Hwang and
Takane (2004) describe an alternating least squares algorithm for
estimating the model parameters, a and w. In the first step, w
is fixed (initially at 1, but then allowed to vary in subsequent
steps) and a is estimated. In step 2, the estimates of a from step
1 are taken as fixed and values of w are estimated. These steps
are repeated until convergence of the fitting function is achieved.
An important point to note here, particularly in light of the goals
of this study, is that no distributional assumption are made for
either z or y in the estimation of GSCA parameters a and w.

As with any statistical modeling, an important issue when
using GSCA is to determine the extent to which the model fits
the observed data. Several statistics have been proposed for this
purpose, with perhaps the strongest candidate being the adjusted
FIT (AFIT) index (Hwang et al., 2007). This value is calculated as:

1 T do
AFIT=1-[1—- = R?) = 10
(-r(zm)z) o
Where

R? = Variance explained in indicator variable ¢ by the latent
variable structure.

dp = Degrees of freedom for the null model (NJ).

d; = Degrees of freedom for the model being fit to the data
(NJ-G).

G = Number of free parameters.

AFIT expresses the proportion of variability in the observed
variables by the latent model expressed in Equation (8), adjusted
for model complexity. AFIT ranges between 0 and 1, with larger
values indicating better model fit to the data.

Given the GSCA model formulation expressed above,
invariance of parameters across groups can be tested by fitting
two models, and then comparing their fit, much as was the case
with MGCFA, described earlier. The first of the models would
constrain the model parameters (e.g., component loadings) to
be equal across groups, whereas the second model would allow
one or more of these parameters to differ among groups. Model
invariance can then be tested by comparing the AFIT values
of the two models using a dependent samples t-test (Hwang
and Takane, 2015). The null hypothesis of this test is that
the models fit the data equally well; i.e., Hy : AFIT pstrained =
AFIT jyconstrained- A statistically significant t-test would thus lead
us to reject the null hypothesis, and conclude that at least one
of the GSCA model parameters differs between groups. In the
current study, the focus is on measurement invariance, and thus
the unconstrained model will allow component loadings to differ
between groups, whereas the constrained model will force or
constrain them to be equal between the groups.

Invariance Testing Using Bayesian

Estimation

The final invariance testing approach we examined was based
on the Bayeisan estimation paradigm. Muthén and Asparouhov
(2012) described an approach to fitting structural equation
models that used the Gibbs sampler in the context of markov
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chain monte carlo (MCMC) estimation. They demonstrated
that MCMC estimation may be particularly useful for complex
models, and for situations involving small samples. In addition,
unlike the standard ML estimator, MCMC provides greater
flexibility with respect to the distributions of the latent trait
and the observed indicators. For example, the researcher who
suspects that either set of variables (latent or observed) follows
a skewed distribution can express this through the prior
distributions set on each. Indeed, it is possible to use unique
prior distributions for each indicator and each latent variable,
thereby allowing the researcher to specifically tailor the analysis
to the data at hand. Furthermore, if the prior and posterior
distributions do not match (are not conjugate), the resulting
posterior distribution is typically still unbiased (Kaplan, 2014).
This robustness to the use of either non-informative or improper
prior distributions means that the Bayesian estimator may prove
particularly useful in contexts where the population latent and
observed variables distributions are not known.

In order to understand the application of the Bayesian
estimation approach to invariance testing, let us consider the
2 group case. We would like to assess whether factor loadings
are equal between them. For each loading, a difference can be
calculated between values for the groups. These differences are
parameters to be estimated by the MCMC algorithm, such that
each will have a prior and a posterior distribution. In the current
study, a non-informative prior based on the normal distribution
with a mean of 0 and a variance of 1,000 was used. For
assessing invariance of a single factor loading, the 95% credibility
interval of the posterior distribution of the difference in loadings
between the groups can be used. When 0 falls within the interval
invariance between the groups is said to hold, whereas if 0 falls
outside of the interval then we conclude that the loading differs
between the groups. If invariance assessment is carried out for
multiple loadings, then some correction to the width of the
interval may be desirable. It is important to note that alternative
prior distributions to the one used in this explanation (and in the
study) could be employed, with no loss of generality.

Goals of the Current Study

The purpose of this simulation study was to compare the Type
I error and power rates of multiple approaches to invariance
assessment in the context of small samples and skewed latent
traits, including MGCFA with standard ML estimation, ML
estimation based on the skewed-t distribution, GSCA, and
Bayesian estimation. More specifically, this study was designed to
extend upon prior work on invariance assessment in the context
of a skewed latent trait, and investigation of invariance testing
with small sample sizes. Investigation of the combination of non-
normal latent trait distributions and small sample sizes was a
primary focus of the current study. Previous research with the
skewed-t estimator has relied primarily on existing samples with
102 being the smallest. Given that the literature (e.g., Brown,
2016) suggests factor model parameter estimation using the
standard maximum likelihood approach is more robust with
larger sample sizes, coupled with the relative paucity of research
focused on varying sample sizes for the skewed-t estimator, it
was felt that the current study should focus on both latent trait

distribution and sample size. Latent trait distributions included
normal, and two levels of skewness, whereas sample sizes per
group ranged from 25 to 1,000. Study details appear below.

Based upon work reviewed above, it was hypothesized that
when a skewed latent trait appears in conjunction with a small
sample size, the estimator based upon the skewed-t will provide
the best control of the Type I error rate, followed by the Bayesian
estimator. It is anticipated that the ML estimator will yield
inflated Type I error rates in this combination of conditions.
Insuflicient prior research is available for hypotheses regarding
the GSCA method to be developed. With respect to power, it
is hypothesized that of the methods that were able to control
the Type I error rate at the nominal level, the skewed-t and
Bayesian estimators will yield comparable power levels. Again,
there is insufficient prior research for hypotheses regarding the
power of GSCA in this context. The third hypothesis is that for
larger sample sizes the ML estimator will provide better control
over the Type I error rate in the skewed latent trait conditions,
though these rates will still exceed those of the skewed-t and
Bayes estimators. Finally, there will be a positive relationship
between inflated Type I error rates and degrees of skewness for
all methods.

METHODOLOGY

The research goals outlined above were addressed using a Monte
Carlo simulation study with 1,000 replications per combination
of study conditions. Data were generated from a single factor
model conforming to Equation (1), with factor loadings for the
individual indicator variables were set to 1, with the exception
of cases when non-invariance was simulated, as is described
below. The indicator variable error terms were generated from
the N (0,1) distribution, and the intercepts were set to 0 for all
indicators. The indicators themselves were generated from the
N (0,1) distribution. Across all conditions, data for 2 groups
was simulated. Non-invariance was simulated for factor loadings
only (i.e., only MI was examined in the study). The conditions
manipulated in this study were completely crossed, with the
exception that the skewed-t estimator was not used with the
normally distributed latent trait.

Distribution of the Latent Trait

Three conditions were used for the distribution of the latent
factor, including the normal, the skewed normal with skewness of
2, and the skewed normal with skewness of 4. These values were
selected in order to provide a range of distributions for which the
estimators could be assessed. The normal distribution was used in
order to serve as a baseline, given that the ML estimator has been
shown to control the Type I error rate and to yield high power in
this case, when the sample size per group is 200 or more (French
and Finch, 2006). The two skewed distribution conditions were
used in order to assess the performance of the various methods
when the ML assumption of a normally distributed latent trait has
been violated, to both a mild (skewness = 2) and a more severe
(skewness = 4) degree. The skewed-t estimator has been shown
to be effective with skewed data in other modeling contexts,
such as regression (Asparouhov and Muthén, 2016), but there
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has been little published work regarding its performance in the
context of factor invariance assessment. The skewed variables
were simulated using a method based upon that described in
Azzalini and Capitanio (2014). The interested reader is referred
to this monograph for details of how the method works.

Number of Indicator Variables

Two conditions for the number of indicators were used: 10 and
20. These values were selected to reflect a short and long scale.
Some conditions were simulated with 30 indicators, and the
results were nearly identical to the 20 indicator case in terms of
the outcome variables of Type I error and power rates. Given this
similarity for 20 and 30 indicators, it was determined that results
for both need not be included in the manuscript.

Percent and Magnitude of Non-invariant

Loadings

The percentages of non-invariant indicators used in the study
were 0, 10, 20, and 30%. Thus, for example, in the 10 indicator
20% non-invariant indicators condition 2 indicators were
simulated to have different factor loadings between the groups,
whereas for the 20 indicator 20% non-invariant indicators case,
4 variables were simulated to have different factor loadings.
When non-invariance was simulated, the magnitude of loading
differences was 0.5. Non-invariance was induced by simulating
the group 1 loading for the non-invariant variable to be 1, and
the group 2 loading to be 0.5.

Sample Size per Group

The sample sizes per group were simulated to be 25, 50, 75, 100,
200, 500, and 1,000. These group sizes were simulated to range
from what might be considered very small in practice (25 or 50)
to large (500) and very large (1,000) per group. These sample size
conditions were intended to test the methods in fairly extreme
small sample size conditions, and in cases where prior work has
demonstrated ML to work well.

Estimation Methods

The estimation methods used in the current study were ML
under the assumption of normality, ML based on the skewed-t
distribution, Bayes, and GSCA. The standard ML estimator
was used in the study because it is typically the default
for researchers conducting invariance analysis for continuous
indicator variables. In addition, ML based on the skewed-t
distribution was included in the study because it has been
shown to provide accurate parameter estimates with skewed data
(Asparouhov and Muthén, 2016). The Bayesian estimator was
included because it has also been suggested for use when variables
do not follow the normal distribution, and for small sample sizes
(e.g., Muthén and Asparouhov, 2012; Kaplan, 2014). GSCA was
included because prior work has demonstrated that it has positive
potential for accurately fitting latent variable models with small
sample sizes, nor does it rest on an assumption of normality
(Hwang and Takane, 2004, 2010). Despite this positive literature,
there has not been extensive prior work investigating the
performance of GSCA in the context of invariance assessment,
including with small samples and non-normal latent traits. Thus,

the current study was designed to extend knowledge about the
performance of this method under a broader array of conditions
than has been investigated previously.

With regard to the Bayesian estimator, a Gibbs sampler was
used, with a total of 50,000 samples after a burn-in period of
10,000 samples. The thinning rate was 10, yielding a posterior
distribution of 5,000 data points. These estimation settings
were used in the simulation study based upon initial work
with combinations of conditions described above, for which
parameter estimation convergence was achieved for exemplars
of the conditions included in the study. Convergence rates were
monitored for all simulation conditions. The prior distribution
used for the factor loadings and intercepts was N (0, infinity),
whereas the prior for the error variances was the inverse Gamma
(—1,0).

Finally, the skewed-t estimator was not used in conjunction
with the normally distributed latent trait, because in practice
a researcher who assessed the distributional assumption of
normality and found it to hold would be very unlikely to employ
an estimator that is specifically designed for skewed latent traits.
The other estimators are not so specifically tied to use with
skewed data, and therefore were employed across distributional
conditions.

Study Outcomes

There were two outcomes of interest: Type I error and power
rates. Type I error was considered to be under control if it ranged
between 0.025 and 0.075 (Bradley, 1978). In order to identify
which manipulated terms, or interactions of these terms, were
associated with Type I error and power rates, analysis of variance
(ANOVA) was used. For each combination of conditions, the
proportion of the 1,000 replications for which a statistically
significant difference between the groups was calculated. These
values were used as the dependent variable in the ANOVA,
whereas the manipulated study factors and their interactions
were the independent terms in the model (e.g., Harwell et al,
1996). A term was identified for further investigation if its
ANOVA result was statistically significant, and the n? effect size
was 0.1 or greater. This value was used because it corresponds
to the term accounting for at least 10% of the variance in Type I
error or power rates. In addition to the primary outcomes of Type
I error and power rates, the convergence rates of the methods
were also examined.

RESULTS

Convergence Rates

When the latent trait was normally distributed, the Bayesian,
MLE, and GSCA estimators all had convergence rates of 100%
for group sample sizes of 50 or more. When the group sample
size was 25, Bayes and GSCA also had convergence rates of
100%. However, in this smallest sample size condition, MLE had
a convergence rate of 72%. When the latent trait was skewed,
convergence rates for the normal MLE, GSCA and Bayes were
very similar to what was found for the normally distributed latent
trait. Namely, for samples per group of 50 or more, convergence
was 100% across conditions, and for 25 per group the normal

Frontiers in Psychology | www.frontiersin.org

March 2018 | Volume 9 | Article 332


https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles

Finch et al.

Invariance Small Samples Skewed Traits

MLE convergence rate was 67%, while remaining at 100% for
Bayes and GSCA. Convergence rates for the skewed-t MLE
estimator followed a very different pattern, however. Figure 1
displays the convergence rates for the skewed-t MLE by sample
size per group. The convergence rate was below 100% except for
group sample sizes of 500 and 1,000. For 200 subjects per group,
the convergence rate of the skewed-t MLE was approximately
75%, and declined to 20% for 25 subjects per group.

Normal Latent Trait Distribution: Type |

Error Rate

Because the skewed-t estimator was not used with the normally
distributed latent trait condition, results for this distribution are
analyzed and presented separately from the skewed distribution
settings. The ANOVA identified the interaction of sample size per
group by the number of indicators by the estimation method as
being statistically significantly related to Type I error rate when

Convergence Rate
o O O O O
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FIGURE 1 | Convergence rates of MLE with Skewed-t distribution.
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TABLE 1 | Power by proportion of non-invariant indicator variables.

Proportion non-invariant (%) Power
10 0.627
20 0.755
30 0.979
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FIGURE 3 | Power by estimation method and sample size for normally
distributed latent trait.
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FIGURE 4 | Power by estimation method and number of indicators for
normally distributed latent trait.

the latent trait was normally distributed [F(j, gy = 3.767, p =
0.034, n* = 0.85]. All other terms were either not statistically
significant, were subsumed in this interaction, or did not have
an effect size value in excess of 0.1. Figure 2 contains the Type I
error rate by the sample size per group, the number of indicators,
and estimation method. For 10 indicators, Type I error rates
for ML were slightly elevated in the 25 per group sample size
condition, but in control for the remainder of the conditions.
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FIGURE 5 | Type | error rate by estimation method, number of indicators, and
sample size per group: skewed latent trait.

The Bayes estimator yielded Type I error rates that were at the
nominal 0.05 level for all sample size conditions, except for N
= 25 per group, in which case it was 0.015. The GSCA Type I
error rate in the 10 indicators condition was elevated above the
0.05 level for samples less than 200 per group. With regard to
the 20 indicators condition, both the ML and Bayes estimators
consistently maintained the nominal Type I error rate at 0.05. As
in the 10 indicator condition, GSCA yielded Type I error rates
above the nominal level for samples of 25 per group. However,
for group sample sizes of 50 or more, the Type I error rate for the
GSCA estimator never exceeded 0.07.

Normal Latent Trait Distribution: Power

The ANOVA for power as the outcome identified three terms
as being statistically significant, including the interactions of
estimation method by number of indicators [Fp 24y =
22.937, p = 0.001, n* = 0.657], estimation method by sample
size [F(1, 24) = 27.024, p < 0.001, n* = 0.932], and the
main effect for percent of non-invariant loadings [F(;, 12) =
4.618, p = 0.033, n> = 0.435]. Figure 3 displays the power
rates by sample size and estimation method for the normally
distributed latent trait condition. As anticipated, each of the
methods yielded higher power rates for larger sample sizes per
group. The Bayesian approach had the lowest power rates for
samples of fewer than 200 per group, but exhibited comparable
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power to MLE and GSCA for group sizes of 200 or more. MLE
had slightly higher power rates compared to GSCA for samples
of 200 or fewer per group, whereas for samples of 500 and
1,000 power for the three methods was between 0.98 and 1.00.
Figure 4 includes power rates for detecting non-invariance of
factor loadings by estimation method and number of indicator
variables. Power rates for both ML and the Bayesian estimator
were higher for 20 indicators than for 10, whereas the power rates
of GSCA were largely unaffected by the number of indicators.
The mean power rates by the percent of non-invariant indicators
appear in Table 1. As would be expected, power increased
concomitantly with increases in the proportion of non-invariant
indicators. Given the lack of a statistically significant interaction,
it can be concluded that this relationship between the proportion
of non-invariant indicators and power was equivalent across
estimation methods.

Skewed Latent Trait Distribution: Type |

Error Rate

Two interaction terms were statistically significantly related to
the Type I error rate when the latent trait was skewed: estimation
method by number of indicators by sample size per group
[Fas, 15 = 8791, p = 0.007, n* = 0.901], and estimation
method by degree of skewness [F3 15 = 18307, p <
0.001, n? = 0.948]. Figure 5 includes the Type I error rates by
the estimation method, number of indicators, degree of skewness,
and sample size per group. A reference line has been placed at
the nominal 0.05 Type I error level. These results show that for
the 25 per group sample size condition, the MLE based on the
Skewed-t distribution had an elevated error rate for both 10 and
20 indicators. In addition, for the 20 indicators condition, the
GSCA estimator also displayed an inflated Type I error rate. In all
other combinations of estimation method, number of indicators,
and sample size per group conditions the Type I error rate was
under control when the latent trait was skewed. Figure 6 displays
the Type I error rate by the estimation method and skewness of
the latent trait. When the skewness was 2, all methods yielded
Type I error rates that were in control, whereas for skewness of 4,
GSCA yielded an inflated Type I error rate.

Skewed Latent Trait Distribution: Power

The ANOVA for the power rates for a skewed latent trait
identified two statistically significant interactions, with n? in
excess of 0.1: estimation method by latent trait distribution by
sample size per group, by percent of non-invariant indicators
[Fus, 15 = 11.023, p < 0001, n> = 0.395], and
estimation method by number of indicators [F(3 156 =
6.729,p < 0.001, n? = 0.115]. Figure 7 contains power results
by estimation method, sample size per group, percent of non-
invariant indicators, and level of latent trait skewness. Panel 1
includes results for latent trait skewness of 2. Given the Type
I error inflation for GSCA and the skewed-¢ estimator with a
sample size of 25 per group, power results for this method with
small samples must be interpreted with great caution. When
skewness was 2, power for all methods except the MLE based on
the skewed-t distribution was well above 0.8 across sample size
conditions. For the smallest sample size per group, the Bayesian
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FIGURE 6 | Type | error rate by estimation method and skewness of the latent
trait.

method displayed somewhat lower power than did MLE. For the
more severe skewness level of 4, power for all estimation methods
was generally lower than was the case for skewness of 2, when
group sizes were 200 or less. In addition, power for the skewed-
t MLE estimator was higher than that of the other methods for
the smallest group size condition, and comparable to that of the
normal based MLE across all other conditions. Power for the
Bayesian estimator was substantially lower than that of either
MLE approach for samples of 25 and 50, and power for GSCA
was lower than that of the MLE estimators for samples of fewer
than 200. Finally, when the latent trait skewness was 4, power
increased for all methods concomitantly with increased in the
percent of non-invariant indicator variables.

Figure 8 includes power rates by estimation method
and the number of indicator variables. These results show
that the number of indicators was not related to power
rates for the Bayesian, normal MLE, or GSCA estimators.
However, the skewed-t MLE yielded higher power when there
were 20 indicators, as opposed to 10. It is important to note
that power was approximately 0.07 higher for the skewed-¢
MLE with 20 indicators. Furthermore, when there were 10
indicators the skewed-t estimator yielded the lowest power,
whereas for 20 indicators its power was comparable to that
of the normal based MLE, and higher than either Bayes or
GSCA.

DISCUSSION

The purpose of this study was to compare the performance of MI
assessment using several CFA estimation methods in conditions
for which their performance might be questionable, namely with
small samples and skewed latent traits. Conditions with larger
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FIGURE 7 | Power by estimation method, sample size per group, percent of non-invariant indicator variables, and latent trait skewness.

samples and normally distributed latent traits were also included
in the study to serve as points of comparison when the standard
method using normal based ML and the chi-square difference
test has been shown to work well. Based upon prior work,

several hypotheses were posited regarding the performance of
the various methods. The first hypothesis was that the skewed-
t estimator would control the Type I error rate with a skewed
latent trait and small sample size. In fact, the skewed-t estimator
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FIGURE 8 | Power by estimation method by number of indicators: skewed
latent trait.

did control the Type I error rate for group sizes in excess of 25
per group. Contrary to our second hypothesis, however, normal
based ML did not yield inflated Type I error rates. Next, we
hypothesized that the skewed-t estimator would yield power
comparable to that of the Bayesian approach when the latent trait
was skewed. Results revealed that for the more severely skewed
condition, the skewed-t estimator actually yielded higher power
rates compared to Bayes, but that for the less skewed condition
power for Bayes was higher compared to the skewed-t. In keeping
with the third hypothesis, normal based ML was able to control
the Type I error rate when the latent trait was skewed for larger
sample size conditions; i.e., it was robust to non-normality with
larger sample sizes. The last hypothesis, which stated a positive
relationship between Type I error rates degrees of skewness was
only supported for GSCA.

In summary, our results revealed that invariance testing based
on the normal based ML estimator is generally very robust
to sample size and latent trait distribution. This supports the
robustness of ML under mild violations of assumptions. When
the latent trait was normally distributed, ML maintained the
nominal Type I error rate except for the case with 25 individuals
per group, and 10 indicator variables. In addition, the normal
based ML estimator yielded the highest power for correctly
detecting a lack of MI, when the latent trait was normally
distributed, across all sample size conditions. When the latent
trait was skewed, ML was also able to control the Type I error
rate at the nominal level, even when alternatives such as the
skewed-t and GSCA estimators, could not for small sample sizes.
With respect to power, the normal based ML performed well
when compared to the other methods, yielding rates that were
comparable to or greater than those of alternative methods.

From these results some implications for practice can be
drawn. First, when the sample size per group is 50 or more,

normal based ML is a useful estimator when the interest is in
MI assessment, regardless of whether the latent trait is normally
distributed or skewed to the extent that was simulated in this
study. This approach largely maintained Type I error control,
and yielded power rates that were comparable to or higher than
those of the other methods. When the sample size per group
was 25, ML had convergence rates of less than 100%, whereas
GSCA and the Bayesian estimator maintained convergence rates
of 100% across all sample size conditions. This could be a major
advantage when working with low incidence populations or
intervention studies with limited resources. In addition, unlike
GSCA the Bayesian estimator maintained the nominal Type-I
error rate across all conditions simulated in this study. On the
other hand, the Bayesian estimator had much lower power at
the smaller sample sizes than did the other approaches. Thus, a
second implication for practice is that for sample sizes of 25 per
group, researchers must make the choice from among 3 imperfect
options. Perhaps first, the ML estimator should be tried, and if
convergence is attained then the MI assessment results using this
method are preferable, given its control over the Type I error rate
and relatively high power. If convergence is not reached by the
ML estimator, then the researcher must choose between using
a method that will maintain the Type I error rate but at the
cost of lower power (Bayes) or a method that has higher power
but has an inflated Type I error rate (GSCA). Essentially, the
researcher will need to decide whether the more serious error is
to identify factor model parameter differences, in this case factor
loadings, among groups when such differences are not present,
or to miss finding such differences when they are present. Finally,
invariance testing based on the skewed-t ML estimator must be
more thoroughly explored and developed before it can be used
in practice. Our results suggest that this estimation approach has
very low convergence rates for small sample sizes, likely because
of the additional parameters that must be estimated compared
to the other methods. In addition, when convergence rates are
reached, performance of this approach did not excel that of the
normal based ML estimator. Thus, recommending this estimator
for these conditions is not supported at this time. One last issue
regarding invariance testing and small sample sizes should be
addressed at this point. In practice, researchers engaging in such
testing are typically expecting the hypothesized model to be
invariant across groups. In other words, they are anticipating
that the factor structure found to hold for one group will
hold for another. Such invariance is important from an applied
perspective as it is necessary in order for scores from the scale
to be seen as carrying the same meaning for individuals from
different subpopulations. Results of the current study indicate
that the power for detecting a lack of invariance is fairly low for all
methods when samples are very small (e.g., 25). Given the typical
goal of invariance analyses to demonstrate that a given model
structure holds across groups, this low power for small samples
presents researchers with a potential conundrum, namely is a
finding of statistical non-significant difference between groups
the result of invariance holding, or of a lack of power for the
procedures being used? The obvious answer to this conundrum
is the development of invariance testing methods with relatively
high power for small sample sizes. The results of this study would
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suggest that though some methods do exhibit more power than
others when samples are small, there remains work to be done in
developing approaches that have truly high power rates for very
small samples.

Directions for Future Research

We anticipate that these results aid understanding in the area
of MI assessment when sample sizes are small and latent
traits are skewed. Our results suggest several directions for
future research. First, a wider array of skewness conditions
should be simulated, and kurtosis should be manipulated
to deepen the understanding of the performance of these
estimation procedures under such situations. Second, more
complex models should be examined. We only investigated
performance of the methods using a simple 1-factor model
to gain a baseline of results to inform and encourage future
work. Thus, future work should consider MI assessment when
multiple factors are present, and when structural elements
relating latent variables are present in the model. In addition,
work should assess the performance of these methods in testing
for higher levels of model invariance, including for intercepts and
random errors. It should also be noted that the current study
examined performance of the various estimation techniques
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