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Category learning performance is influenced by both the nature of the category’s

structure and the way category features are processed during learning. Shepard

(1964, 1987) showed that stimuli can have structures with features that are statistically

uncorrelated (separable) or statistically correlated (integral) within categories. Humans

find it much easier to learn categories having separable features, especially when

attention to only a subset of relevant features is required, and harder to learn categories

having integral features, which require consideration of all of the available features and

integration of all the relevant category features satisfying the category rule (Garner,

1974). In contrast to humans, a single hidden layer backpropagation (BP) neural

network has been shown to learn both separable and integral categories equally easily,

independent of the category rule (Kruschke, 1993). This “failure” to replicate human

category performance appeared to be strong evidence that connectionist networks were

incapable of modeling human attentional bias. We tested the presumed limitations of

attentional bias in networks in two ways: (1) by having networks learn categories with

exemplars that have high feature complexity in contrast to the low dimensional stimuli

previously used, and (2) by investigating whether a Deep Learning (DL) network, which

has demonstrated humanlike performance in many different kinds of tasks (language

translation, autonomous driving, etc.), would display human-like attentional bias during

category learning. We were able to show a number of interesting results. First, we

replicated the failure of BP to differentially process integral and separable category

structures when low dimensional stimuli are used (Garner, 1974; Kruschke, 1993).

Second, we show that using the same low dimensional stimuli, Deep Learning (DL),

unlike BP but similar to humans, learns separable category structures more quickly

than integral category structures. Third, we show that even BP can exhibit human

like learning differences between integral and separable category structures when

high dimensional stimuli (face exemplars) are used. We conclude, after visualizing the

hidden unit representations, that DL appears to extend initial learning due to feature

development thereby reducing destructive feature competition by incrementally refining

feature detectors throughout later layers until a tipping point (in terms of error) is reached

resulting in rapid asymptotic learning.
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INTRODUCTION

Categorization is a fundamental cognitive process that imposes
order on an otherwise overwhelming perceptual experience
through an attentional bias toward stimulus features. The

ease with which stimuli are categorized is determined by the
complexity of the category structure and how it interacts
with attentional bias (Shepard et al., 1961). Shepard (1964,
1987) has shown that stimulus structures can be broadly
classified into those in which features are independent or weakly
correlated (separable structure) and those in which feature
dimensions are functionally dependent or highly correlated
(integral structure). He further argued that the inter-stimulus
distance between exemplars within a category varies as a function
of the distance metric. Specifically Shepard (1987), showed
through MDS, that separable structures are judged to be more
similar using an L1 metric (meaning distance is measured on
each dimension separately) while integral structures are judged
more similar using an L2 metric (meaning distance on each
dimension measured jointly). This allows us to vary stimulus
structure (integral, separable) independently of category rule
(filtration, condensation) To the extent that the learner need
attend to only a subset of features (defined as a “filtration
rule”), the category learning is less complex than requiring
an integral feature structure where many more features must
be attended and integrated (defined as a “condensation rule”).
This type of rule is fundamentally conjunctive, in that you
must attend to both features to correctly assign exemplars to
categories.

Not surprisingly, humans find it much easier to learn a

category that has a separable feature structure with a filtration
rule than one which has an integral feature structure with a
condensation rule (Posner, 1964; Garner, 1974; Kemler and
Smith, 1978; Kruschke, 1993) although filtration rules always
show an advantage over condensation rules. The other two
possible structures are even more difficult to learn due to
the mismatch between the stimulus feature structure with the
category rule (separable/condensation and integral/filtration).
Different pairings of stimulus feature structure (separable,
integral) and category rule (filtration, condensation) produce
different learning responses and allow testing of attentional bias.
In the present study, we paired a separable structure with a
filtration rule, and an integral structure with a condensation
rule to test the effect of attentional bias in networks during
category learning. Inasmuch as these pairings constitute the
largest expected difference in learning rate, they provide the
most diagnostic cases (Gottwald and Garner, 1975; Kruschke,
1993), the other two cases mentioned before would tend to have
similar learning rates, and generally fall between the two other
cases.

Interestingly, when single hidden layer backpropagation (BP)

neural networks (e.g., Rumelhart et al., 1986) were first used
in categorization studies, the BP network was found to learn
categories with an integral feature structure with a condensation
rule as easily as it did categories having a separable feature
structure with a filtration rule (this was independent of the
different input encodings that were tried, but see footnote 1
for more details; Hanson and Gluck, 1991; Kruschke, 1993;

Kurtz, 2007). That is, the BP network failed to categorize in
the way humans do. This result shed doubt on the usefulness
of the BP neural network and neural networks more generally
as an adequate model for human attentional bias. This result
consequently caused researchers to turn to various modifications
of BP networks in the form of pre-defined attentional bias.

It is possible to make BP category learning more human-like
by building in attentional bias (Kruschke, 1993) or increasing
feature competition (Hanson and Gluck, 1991). For example,
Kruschke (1993) introduced a BP network called ALCOVE
that had adaptable attention strengths (weights) on the
input dimensions. This network could reproduce the human
like differential learning speed of the filtration/separable-
condensation/integral outcome, but could do so only by having
the explicit attention strengths built in. More recently in the
spirit of ALCOVE, Love et al. (2004) developed the SUSTAIN
model (Supervised and Unsupervised STratified Adaptive
Incremental Network) which had a built-in selective attention
mechanism based on receptive field tuning. Finally, Kurtz (2007,
2015) proposed a BP model called DIVergent Autoencoder
(DIVA), which performed task-driven recoding of inputs into a
distributed representational space as a means of solving N-way
classification tasks. Another modification of BPs by Hanson
and Gluck (1991) replaced the standard radial feature space
(Gaussian) with a heavy tailed density (Cauchy) hidden unit
kernel, producing a “greedy spotlight” effect that forced more
local competition between hidden units. In effect, this approach
extended the configural cue model by Gluck and Bower (1988),
which implemented an implicit hypothesis search through
potential (the power-set) feature combinations based feature
competition between all possible features sets. To be precise,
the implicit hypothesis testing was in the sense of the dynamics
of learning and the incremental structure the network was
constructing as new data samples updated weights. In a similar
vein, the Hanson and Gluck model induced a hypothesis search
by using a hidden unit receptive field that was less compact
and more global than that used in the Kruschke ALCOVE
model. This tactic in turn made the acquisition of category rules
slower, decreasing the rate of learning, especially in the integral
stimulus/condensation rule condition where more features (and
more feature competition occurred) were required to learn the
category rule.

Although the various models just described contributed
significantly to the modeling of human category learning, all
were dependent on built-in specifications to achieve human-
like classification. BP models alone cannot differentially learn
or distribute attention without adding some sort of designed
perceptual bias (e.g., feature weights, localized kernels), which
are not directly related to the learning rule itself. In effect, these
models augmented the BP network’s ability to learn, but did not
fundamentally change the way it learned.

The recent advent of deep learning (DL) neural networks
(Hinton et al., 2006; LeCun et al., 2015) has been revolutionary
in furthering the application of artificial intelligence to a wide
variety of contexts that include language translation, game
playing, and self-driving vehicles. The unparalleled success of DL
neural networks begs the question of how, in the present context,
“human-like” DL categorization might be.
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The answer to this question may lie in the concept of “feature
binding” (Treisman, 1998). Feature binding refers to the way
features are selected and integrated to create a meaningful unit.
Thus, an attentional bias toward processing a subset of relevant
features, or one biased toward integrating all relevant features,
produces distinct ways of feature binding during category
learning. The architecture of the basic single hidden layer BP
network involves a single set of linear projections that are
sensitive to stimulus covariation (and modulated through a non-
linear activation function), but may not necessarily encourage
feature binding. In contrast, the DL neural network architecture
promotes progressive refinement of feature detectors through
compression and recursion so that at each layer the feature
detectors are more complex than those at earlier layers (Hinton
et al., 2006; LeCun et al., 2015). It is possible that this successive
processing of stimuli in DL hidden layers impose constraints
that are more consistent with human attentional biases during
categorization.

If network architecture is the limiting factor in binding and
hypothesis testing, then an unmodified BP network would never
be able to reproduce human categorization performance under
any conditions as it is restricted to using a parallel, combinatorial
code. Alternatively, attentional bias toward a subset of relevant
features, rather than toward the integration of all available
features, may depend on the complexity of the category structure
itself. Specifically, less complex category structures involving
separable features may encourage attention to a subset of relevant
features during category learning, whereas category structures
involving integral features may be inherently too complex to
accommodate any attentional bias other than one in which all
available features are considered. In this case, the unmodified BP
network may perform more like humans during categorization.

To explore these possibilities, we compared the performance
of BP and DL networks to that of humans learning categories
that had either a separable or an integral feature structure. In
one condition we used the Kruschke stimuli (1993) with which
unmodified BP networks fail to show learning differences, and in
a second condition we used computer generated realistic human
faces.We then inspected the internal representation of the hidden
units of the BP and DL networks to determine how input was
abstracted during learning and to characterize the nature of the
feature binding.

METHODS

Two types of stimuli were used in the evaluation of category
learning by humans, a BP network, and a DL network. One set of
stimuli were based on those used by Kruschke (1993; originally
defined by Garner, 1974) in a study that illustrated the failure of a
BP network to replicate the learning performance of humans. The
other type consisted of computer generated realistic faces. These
two stimulus sets were selected to compare low dimensionality
(Kruschke) and high dimensionality (faces) stimuli.

For both kinds of stimuli, categories having a separable feature
structure and categories having an integral feature structure
were created through category rule assignment. For example, the
category “red objects” is defined by the rule “all members must

be red” and other features (e.g., size, texture, etc.) are irrelevant.
Alternatively, the category “dangerous objects” is considerably
more complex inasmuch as multiple features (e.g., sharpness,
size, weight, etc.) must be taken into consideration. A small sharp
pin is less dangerous than a large, sharp hunting knife. In this way
the category rule determines where attention should be allocated
most effectively during learning.

Following this logic, we were able to create low dimensional
stimuli (separable) defined by a category rule involving a subset
of features (filtration) and high dimensional stimuli (integral)
defined by a category rule requiring the integration of all relevant
features (condensation). We used these two extremes (filtration-
separable, FS) and (condensation-integral, CI) in the current
study inasmuch as performance on the other two possible
conditions (filtration-integral, FI) and (condensation-separable,
CS) are known to fall between the FS and CI conditions,
and consequently provides similar diagnostic information on
attentional bias.

Stimuli
Low Dimensional
These stimuli were adopted from Kruschke’s (1993) study and
consisted of eight rectangles with an internal segmenting line.
Two features were relevant to the category structure: (1) the
height of the rectangle (four heights were used), and (2)
the position of the line segment within the rectangle (four
positions) (see Figure 1). Kruschke provided some evidence that
the stimulus set he constructed could possess both separable
or integral structure. Following Shepard (1987), he measured a
separable set (say line length) with both L1 (dimensions taken
independently) and L2 metrics (dimensions taken jointly), in this
case the inter-stimulus similarity was higher with L1 compared
to L2. When the same stimulus are grouped with a condensation
rule, the inter-stimulus similarity was higher with L2 than to L1.
In this way Kruschke could impose one of the category tasks and
at the same time induce a separable or integral feature structure as
we describe in more detail next. This allowed the manipulation of
attentional bias toward a single relevant feature (the position of
the line segment or the height of the rectangle) in the filtration
task, or on the conjunction of the two features (line segment
position and rectangle length) in the condensation task, resulting
in eight distinct stimuli to be learned. Visually, these stimuli were
chosen to be a symmetric circular structure in the 2D length-
position feature space to be classified with either a vertical (or
horizontal) separating line for filtration type rules or a diagonal
separating line for condensation type rules.

High Dimensional
Realistic, computer generated human faces, which are naturally
high in dimensionality, were used. Two distinct prototypes were
randomly generated using the same parameter settings (i.e., race,
gender, age, etc.) in the 3D face-modeling software FaceGen
Modeler Core 3.14 by Singular Inversions Inc. Each prototype
was chosen to be within a standard deviation of one another
(based on 12 generating parameters—gender, age, skin-tone, etc.)
ensuring that there would be exemplar overlap and potential for
correlation within a category set depending on included exemplar
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FIGURE 1 | Renditions of the original stimuli from Kruschke (1993) (A) a sample of 4 stimuli in the low dimensional categorization (B) the filtration rule applied to the 8

stimuli as indicated in the 2-d feature space. (C) The condensation rule applied to the 8 stimuli as indicated in the 2-d feature space.

faces. In effect, the goal was to generate families of faces from
each prototype that could have overlapping features, so that they
could be correlated within categories and between categories
similar to Kruschke stimulus construction.Moderate correlations
of exemplars within a category (integral structure) could
be simultaneously created with moderate between correlation
(condensation rule). While high correlation of exemplars within
a category (separable structure) could be created with a low
correlation between categories. We describe the procedure in
more detail next.

We generated 20 random samples around each prototype
with the “randomness” function in the software set to 0.5,
which controls for how different the random variations will be
from the selected prototype. Each one of the resulting 40 faces
separate feature vectors had shared “family resemblance” with
either Prototype1 or Prototype2. From the 40 faces 10 were
randomly selected from each prototype set, creating 20 unique
face stimuli to be sorted by each category rule (C or F). The
original prototypes were excluded from any further analysis or
stimulus use.

Forty undergraduate students at Rutgers University (Newark
campus) provided similarity judgments between 1–7 for all
possible 190 pairs [(20 × 19)/2] of faces generated by each
prototype. Five participants were excluded for consistently
responding with either 1 or 7, resulting in 16 subjects’ similarity
judgments for Prototype 1 and 19 subjects’ similarity judgments
for Prototype 2. Based on these similarity judgments we
performed non-metric multidimensional scaling, producing a
five dimensional psychological space, accounting for more than
90% of the original variance in the similarity judgments.

The five coordinates of the face stimuli in the derived
psychological space were then used to create separable and
integral stimulus sets based on low and high perceptual space
distances respectively, by correlating (Pearson r) coordinates
within each stimulus set. Faces for the integral category set
were sampled from both prototypes, effectively increasing
the dimensionality of the final integral category set, which
at the same time had a relatively lower within category
variance (r-within = 0.65) than between category variance
(r-between = 0.42). This procedure creates a condensation
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category “rule” at the same time (see Figure 2A) since the shared
dimensionality of the categories increases. Separable stimulus sets
were constructed by sampling the same sets of ten faces from each
separate prototype, thus decreasing the dimensionality within
each category (r-within = 0.89) while increasing the perceptual
distance between the two categories (r-between = 0.32) and
creating a filtration rule on a low dimensional, highly correlated
set per category (Figure 2B). For each category set, we used the
exact same 20 stimuli from both prototypes selected to be used
in the integral and separable stimulus sets. In effect, both the
separable and integral category sets had the identical sample of
20 faces that were sorted into categories that in effect, induce
separable and integral sets simply by manipulating the degree of
correlation between the faces within and between each category.

Tasks
Learning occurred under one of two conditions based on the
category rule; one encouraging attention toward a small subset
of relevant features (filtration task) and the other requiring the
attention to, and integration of, a large number of the available
stimulus features (condensation task). These tasks were drawn
from those used in the Kruschke (1993) study in which attention
was differentially oriented toward features.

Subjects and Procedure
Independent of the 40 subjects used for similarity scaling
another 55 undergraduate students at Rutgers University in
Newark participated in the experiments for course credit. We
recruited for the low-dimensional task 20 subjects, while for the
high dimensional task, another 31 subjects. In both tasks all
participants were seated at a computer in a quiet room and first
completed a warm-up task. The known categories of cats and
dogs were used to familiarize the participants with the category
learning procedure. Participants were told that they would be
shown a series of eight pictures for 2 s each and would have to
categorize the pictures by pressing either the right or the left
arrow key. They were also told that in the beginning of the task

they would not know what the categories were and on which
arrow key they would be located on, but that the feedback after
each trial would facilitate their learning. This procedure was the
same for both Lo and Hi dimensional stimuli.

For the Hi-dimensional stimuli condition subjects were
randomly assigned to either the FS (N = 16) or the CI condition
(N = 15) using the high dimensional naturalistic stimuli. Before
starting the experimental task, participants were given up to
4min to study the distribution of all faces. The faces were
arranged in a randomized order and participants could move
on to start the experimental task by pressing any key. For
the experimental filtration-condensation task participants saw
10 randomized repetitions of the 20 faces (2 s per face; 200
trials), which they had to categorize into the unknown categories
of category A and category B by pressing the right and left
arrow keys. Feedback about their answers was provided after
each trial and at the end of the experiment a screen appeared
informing the participant of their percentage of accurate answers.
All participants but 2 of the subjects finished the lo-dimensional
experiments with over 75% accuracy and those were excluded
leaving 11 in the FS group while 9 in the CI group. Four
participants were excluded from the hi-dimensional task due to
insufficient learning (below 50% cumulative accuracy). The same
exact procedures were used with the Lo-dimensional stimuli.

Neural Network Modeling
To model the same filtration-condensation task as described for
the human behavioral data, we used a simple fully connected
feed-forward network with a single hidden layer (BP), as well
as a fully connected feed-forward deep learning network with
three hidden layers (DL). The goal was to observe the differences
in learning dynamics and representational properties of the two
networks with differing depths in architecture. Therefore, the
BP and DL networks were kept as simple and similar to each
other as possible, while only manipulating the depth of the
architecture by increasing the number of hidden layers and also
incrementally increasing the bottleneck with increasing layer

FIGURE 2 | The final high dimensional (A) filtration separable (FS) and (B) condensation integral (CI) sets with the categorization lines indicated in red.
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to encourage feature extraction. Both networks used sigmoidal
activation functions and the backpropagation learning algorithm.
All modeling was done in R using the MXNet platform.

Low Dimensional Stimuli
Kruschke (1993) chose 8 symmetric exemplars that varied in
rectangle height and line position within the particular rectangle
(see Figure 1), The stimuli were represented using two sets
for four binary-valued units; one set for the four possible line
positions and one set for the four possible rectangle heights. One
additional pair of binary-valued units was used for the category
label1.

All stimuli were randomized and presented over 50 trials
to the BP and 2000 (to equate the learning error equally
asymptotically) to the DL networks, using initial randomization
with weights randomly initialized between 1 and −1 with mean
zero. Weights were updated either in 10 or 100 (this was
constant for DL or BP within each case) epoch batches for
stability. Results of a grid search confirmed the best number of
hidden units for the BP network to be > 10 however, in order
replicate Kruschke’s original result we used the same number of
hidden units (BP = 8-8-2) and for the DL network used the
same number of 1st layer hidden units and added a small 2nd
layer (DL = 8-8-3-2). Both networks performed the filtration-
condensation task with the same learning parameters (learning
rate = 0.1; momentum = 0.01, no dropout), using a sigmoidal
activation function on all layers but the output layer, which used
softmax in order to make the decision more similar to the human
category decision (rather than forcing 100% certainty).

High Dimensional Stimuli
The same face stimuli used to collect the human behavioral
data were down sampled, turned into feature vectors, and used
as input (50 × 50 pixels, gray-scaled with values representing
original color shading) for input to the BP and DL networks
described above. Stimuli were randomized and presented to both
types of networks with binary pairs as target values indicating
category membership.

Networks were initially randomized with weights and biases,
uniformly distributed between −1 and 1 with mean zero. The
number of hidden units were selected in a grid search to
maximize the fit to the accuracy data for the BP network
(2500-250-2) and the DL network (2500-100-25-9-2). Again,
both networks performed the filtration and condensation tasks
with the same learning parameters for FS and CI (learning
rate = 0.4; momentum = 0.01; dropout = 0.0002) these values
were chose with a series of experiments, moderate learning rate
was important for rapid learning even with small smoothing due
to momentum and almost no dropout (however setting dropout
to zero produced erratic results; this may have to do with the

1In the original Kruschke study the input encoding was based on the height of the

rectangle and the position of the line within the rectangle. Although height and

position are inherently continuous, the eight pairs of values were chosen using the

same values per dimension, effectively making the feature values binary. We used

an 8 bit binary (16 values) encoding which was potentially more expressive and

nonetheless the results were identical to the original two dimensional encoding,

which we also replicated.

difficulty of the hi-D classification task compared to the lo-
dimensional task), and the network had a sigmoidal activation
function on all layers but the output layer, which used softmax.

RESULTS

Behavioral Results
Low Dimensional Stimuli
Learning curves for participants’ accuracy over trials was
generated for each condition to facilitate direct comparison
of the speed and asymptote of learning across the FS
(filtration-separable) and CI (condensation-integral) conditions.
Cumulative accuracies were computed over all participants
in the FS and CI conditions for the 200 trials and average
binned in time every four trials creating 50 averaged plotted
trials. Figure 3 shows that the behavioral results for humans
learning to classify the Kruschke stimuli in the FS and the
CI condition replicates the filtration-condensation phenomenon
and the Kruschke (1993) results. Although participants initially
have to hypothesize (subjects were debriefed after the session and
asked about how they solved the task and what they thought the
categories were) about which features are relevant, the filtration
rule uses a single feature and can therefore be learned relatively
quickly. In contrast, the learning curve of the CI task achieves
asymptote at a slower rate, based on participants having to do
more hypothesis testing to identify the stimuli with correlated
features needed to “condense” or abstract the category rule
(diagonal set in Figure 1A). We describe the learning curves in
more detail in the curve fitting sections.

High Dimensional Stimuli
Learning curves for participants’ accuracy over trials in the FS
and CI conditions were generated in the same way as described
for the low dimensional stimuli. Replicating the performance

FIGURE 3 | Human behavioral results for the 2D binary Kruschke (1993)

stimuli for the FS and the CI conditions. Data fit with Equation 2: neg-exp (red

FS and green CI). Data are binned (every 4 trials) and plotted at midpoints of

each bin.
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with low dimensional stimuli, the FS condition produced faster
learning than the CI condition (see Figure 4). These results
confirm that the prototypes of our naturalistic stimuli can be
differentiated successfully and that selective attention is a source
of the differential speed of learning. The curves in the plots are
discussed in the following modeling section.

Modeling Results
Low Dimensional Stimuli
Displaying the average of 10 replications for each network,
Figure 5 presents the learning curves of the BP and DL networks
learning to categorize the Kruschke (1993) stimuli. Figure 5A
shows that the BP network once again learned the FS and CI
conditions at the same rate, replicating the failure of BP to show
attentional modulation. The DL network however does show the
differential learning speed with the FS condition being faster
than the CI condition in Figure 5B. Note that, likely due to the
stimulus encoding, the actual human learning is quite different
from the neural network modeling. It would be possible to fine
tune each networkmodel independently to bring them into closer
correspondence, but that would require different number of
hidden units and parameter values. The DL network in particular
was hampered by using small number of hidden units, as other
experiments showed much faster learning with DL initialized
with larger number of hidden units.

High Dimensional Stimuli
The learning curves (averaged over 100 independent runs and
batched at 10 trials each—consequently there were 250 learning
trials per network) for the BP and DL networks in the FS and
CI conditions using the high dimensional stimuli are shown
in Figure 6. The DL network exhibits the differential learning
speed between the filtration and condensation conditions as

FIGURE 4 | The human behavioral result for the FS and CI conditions using

the high dimensional naturalistic stimuli. Best fitting functions, hyperbolic

exponential functions, (red FS, green CI). Data are binned (every 4 trials) and

plotted at the midpoints of each bin.

it had using low dimensional stimuli. However, in contrast
to the performance of the BP network when processing
low dimensional stimuli, the BP network now successfully
replicates human learning performance when given the analog
high dimensional stimuli. Thus, consistent with our second
hypothesis, it appears that increasing the complexity of category
structure beyond simple binary feature values slows learning by
the BP network in the CI condition and makes its learning rate
consistent with that of humans and the DL network.

Fit to Learning Curves
In order to identify potential functions that might fit the accuracy
over trials we compared the learning curves for BP and DL
simulations across the various stimulus sets and conditions. From
a qualitative point of view there is a salient difference in the
learning curves with the low-D stimuli for both models in that
they exhibit a long latent period (performance near chance)
before beginning to rise, unlike the learning curves for the human
participants with either type of stimuli and unlike both models
with the Hi-D natural stimuli. In all of these cases, accuracy starts
to rise above chance from the very first trial, and the slopes of
the learning curves decrease monotonically in all of these cases.
Because this is more of a curve fitting exercise we are considering
number of different common functions used for learning curves.
To examine the differences in shape and asymptote, we used two
common learning curve functions (Mazur and Hastie, 1978) to
determine the best fitting function, accounting for the highest
percentage of variance as well as a more general Gompertz type
model (where T = trials, a = shape factor, and b = scale factor)
which is known to fit a variety of shapes2.

(1) Accuracy= 1/(1+exp(b∗(1−exp(−a∗T)))) “gompertz”
(2) Accuracy= b∗(exp(−0.5−a∗T)/(exp(−0.5−a∗T)+1))

“exponential-hyperbolic or logistic”
(3) Accuracy= b∗(1−exp(−0.5−a∗T)) “negative exponential”

Again this is not an attempt to construct a mechanistic or
predictive model, but rather a systematic characterization of
shape and form. In the case of BP (simulations both FS and CI
conditions) learning curves, a near perfect fit was found with a
(3) negative exponential function and for DL (simulations mainly
with FS conditions) with an (2) exponential-hyperbolic function
(logistic) (Figure 6) for the Hi-dimensional or “naturalistic”
stimuli. Both functions accounted for more than 99% of the
variance (see Table 1). Equation 1, the Gompertz was similar in
fit to the negative exponential and accounted for less variance
(average 89%) for the DL simulation learning curve. The different
functions, characteristic of BP and DL learning dynamics
underlying DL learning patterns, may reflect the different
dynamics of each algorithm (see Saxe et al., 2014). Fitting these
same functions (intercept was fixed to 0.5 where required, for
the classification task and the asymptote was allowed to vary as
a function of a scale and shape parameter see Table 1 below)
to the human behavioral data for the Lo-dimensional FS task
(Figure 3), and FS was best fit with the negative-exponential
(Equation 3) while the CI task showed to be indeterminate

2This form was suggested by J. McClelland.

Frontiers in Psychology | www.frontiersin.org 7 April 2018 | Volume 9 | Article 374

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Hanson et al. Attentional Bias in Deep Learning

FIGURE 5 | Modeling of the FS (green) and CI (red) conditions with the low dimensional Kruschke (1993) stimuli for BP (A) and DL (B) over 10 repetitions.

FIGURE 6 | Modeling of the FS and CI conditions with the high dimensional naturalistic stimuli for BP (A) and DL (B) averaged over 100 runs. Best fitting functions

were the negative exponential functions for BP and the hyperbolic exponential functions for DL (overlaid in red). These are binned averages over blocks of 100, there

were a total of 250 weight updates.

and fit equally well with the negative-exponential and the exp-
hyperbolic (Equation 2). The fit to the Hi-dimensional FS
task (Figure 4) also favored the exponential-hyperbolic function
(Equation 2) accounted for 93% of the variance, while the
negative-exponential function (Equation 3) only accounted for
84% of the variance also confirmed by log-likelihoods (where
difference in R∧2 was insignificant, Log-likelihoods-with higher
sensitivity- were compared). The Gompertz model (Equation 1)
provided adequate fits to the Lo-dimensional data compared to
the negative exponential, and similarly to the Hi-dimensional
data (90% in hi-dimensional) but never exceeded the fits of the
other two models.

Hidden Unit Representation
We conducted an analysis of the internal representations of the
hidden units at all layers of the network. These hidden unit
representations at the weight layer illustrate howBP andDL differ
in processing category exemplars.

Once learning was complete, we plotted the weights at
each layer of the network with a heat map (see Figure 7),
where lighter colors represent increasingly stronger weights
(white = strongest). The weights of the hidden units in the
BP network show a diversity of values for face structures (e.g.,
eyes, mouth, forehead) which are then used to predict category
membership in the subsequent output layer.

Looking very similar to the first layer of the BP network, the
first layer of the DL network shows a diversity of weightings on
face structures. However, in successive layers, DL appears to use
a progressively finer decision structure that ultimately produces
a weighted prototype of the two categories. For example, the
second layer uses first layer output to construct more complex
abstractions, or feature hybridization, based on re-weighting
features from first layer. At the third layer, a specific category
prototype (that was not trained on) appears that allows a final
filtering of the input and a decision on the category value of the
input.
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TABLE 1 | Model fits to subject and simulation learning.

Fits to data Human data Model Hi-D Model Hi-D

Data type Lo-D Hi-D BP simulation DL simulation

Model Cond. FS CI FS CI FS CI FS CI

Neg exp R∧2 96* 90 84 98 99 99 99.2 99.7

LL 95.9 89.5 72.7 120 77.7* 85.5* 67.0 88

Param scale, 0.02 0.010.24 0.05 0.005 0.04 0.02 0.06 0.04

shape 0.46 0.61 0.48 0.99 0.42 0.50 0.44

Hyp-exp

(logistic)

R∧2 92 89 93** 98 98.7 92.0 99.8 99.3

LL 89.0 83.9 97.7 121 69.3 65.6 70.7* 85

Param scale, 0.02 0.03 0.03 0.01 0.04 0.02 0.08 0.04

shape 1.04 1.35 1.08 1.16 1.00 1.09 1.00 1.05

Gompertz R∧2 86 87 89 94 97 97 98 94

LL 74.5 76.5 82.4 96.1 58.8 50.3 67.6 39.8

Param scale, 0.01 0.005 0.007 0.008 0.02 0.006 0.05 0.01

shape 0.62 0.42 0.84 0.29 0.52 0.58 0.49 0.68

*0.1, **0.05. Bold entries indicates a statistically significant value above all others in that column.

DISCUSSION

The complexity of category structure, and attentional bias toward
stimulus features are well known factors in category learning
performance. An early demonstration (Shepard et al., 1961) used
six types of categories in which the feature combination defining
each category followed various boolean rules. These category
rules varied from simple conjunction (linearly separable) to
complex disjunctions (non-linearly separable). Learning rate
decreased dramatically as category rule complexity increased.
Analysis of subject errors and sequential performance indicated
that when rule complexity demanded attentional binding
over two or more features, learning rate decreased. The
Garner/Kruschke condensation/filtration task is in some ways a
variant of the Shepard et al. (1961) study.

In general, then, categories having a separable feature
structure are learned much more easily than those having
an integral feature structure. This effect of category structure
is enhanced when attention is appropriately directed toward
stimulus features. Specifically, attention toward a subset of
features relevant to the category rule increases the rate of learning
for categories with a separable structure, as does attention
toward the integration of available features in the case where
the category structure is integral. What has not been known
is why single hidden layer BP networks, unlike humans or DL
networks, are able to learn categories with an integral structure
as easily as those with a separable structure. We believe we can
provide a reasonable account of why the learning performance of
unmodified BP networks is inconsistent with that of humans and
DL networks, and moreover, why DL networks are so successful
at learning across a wide and diverse range of categorization
tasks.

We approached the problem of why the unmodified BP
network seemed unable to modulate attention toward stimulus
features by examining the roles played by category structure
and attentional bias during category learning. We explored two

possible hypotheses. One hypothesis focused on the limitations
of the BP network architecture to differentiate separable and
integral category structures. Specifically, we believed that the
unmodified single hidden layer BP network cannot accommodate
the feature binding and feature competition (Hanson and Gluck,
1991) that are necessary to respond differentially to differences in
category structure complexity. A second hypothesis focused on
the sensitivity of the unmodified BP network to the analog nature
of the stimulus structure. Prior research examining category
learning with BP networks used stimuli with feature dimensions
that were binarized, rather than continuous. So, for example, the
Kruschke (1993) study used stimuli having four rectangle lengths
and four segment positions, although these two dimensions are
inherently continuous. We hypothesized that this restricted use
of feature dimensions artificially limited stimulus complexity
which in turn limited the attentional bias of the BP network.

Using the original 2D binary Kruschke (1993) stimuli, we
showed that the DL network, as opposed to the BP network, do in
fact learn the filtration-condensation tasks at differential speeds,
producing the human-like attentional bias found in category
learning. These findings confirm our hypothesis that the DL
network, like human subjects, can find structure in the same
task at which the BP network failed 30 years ago (despite the
binary encoding). This result provides the first computational
model (DL) to successfully replicate qualitative learning speed
of the diagnostic filtration-condensation performance of human
category learning, without requiring hand-engineered or pre-
wired adaptive mechanisms.

It is important to note a number of failings of the existing
modeling approach. First in the lo-dimensional task due to
attempting to equate the learning parameters and network sizes,
making them similar to the Kruschke (1993) networks, DL
was hampered by this constraint and considerably slower at
learning than humans with the same task. It is also interesting
to speculate whether the analog nature of the Kruschke stimuli
might have made any difference. It seems unlikely as the number
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FIGURE 7 | Visualizations of the internal representations of a representative sample of the hidden units in the BP (A) and the DL (B) learning categories in the FS

condition.

of bits inherent in the analog encoding is no more than the
8 bit encoding we used for the same information and that
incrementally extracting would be faster. The human data,
especially in the condensation task was difficult for subjects
and produced slow and highly variable learning curves which
made curve fitting indeterminate, even though the learning rates
between FS and CI were different. In the hi-dimensional task,
both the BP and DL models were consistent with the learning
time of the human subjects. This is likely due to the higher
complexity of the pixel input rather than just the analog nature
of face stimuli. One possible hypothesis for this effect, involves
the concomitant increase in the size of the network architecture

with Hi-Dimensional stimuli. Similarly to a DL network, simply
having more weight connections may allow for a segregation
of network weights and hidden units into those with stronger
gradients and those with weaker ones allowing for a faster rate
especially in the FS stimuli. In effect, the increase in architecture
size whether due to extra layers or Hi-Dimensional input would
allow in differentiation between the FS and CI conditions.

We also showed that faces, which are high dimensional
stimuli, can be used to construct separable and integral
stimulus sets by simultaneously varying the within-category
and between-category correlation of stimulus features. Human
performance with these stimuli replicated that in which
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categories based on binarized stimulus features had been used.
Specifically, learning was faster for the face category in which
a filtration rule was used with separable features (FS condition)
than that in which a condensation rule was used with integral
features (CI condition). Moreover, we found that the BP network,
like humans and the DL network, can successfully model human
category learning when high dimensional stimuli are used. Thus,
as we hypothesized, the unmodified BP network can, in fact, learn
attentional feature binding. However, unlike humans and DL,
the BP network needs the analog stimulus constraints present in
the naturalistic stimuli to reproduce the human like attentional
bias. To our knowledge, this is the first case of a simple single
hidden layer BP neural network to model human attentional bias
in category learning without engineering the network attentional
bias.

Whereas the BP and DL networks both successfully modeled
human performance when learning high dimensional stimuli
(faces), the two networks did not apparently learn in the same
way. An examination of the learning dynamics show qualitatively
different learning curves for the BP network and the DL network.
The learning of the BP network is best fit by a negative
exponential function3 over trials, whereas the DL network is best
fit by an exponential hyperbolic function.

A second goal of this study was to understand how the
architecture of the DL network is able to accommodate the
interaction of category structure complexity and attentional bias
toward stimulus features.

We wondered what it was about the DL network architecture
specifically that yielded such success in a wide diversity
of categorization tasks. By comparing performance of the
unmodified BP network with that of the DL network, and
examining the hidden unit representations developed during
learning, we hoped to obtain some understanding of why the DL
network, but not BP network, learns categories in the way that
humans do.

Since their conception, artificial neural networks have
increased in the number of hidden layers they can accommodate.
Simultaneously, this has also increased the complexity of
problems they can solve. In the early days, the simple mapping

3The exponential-hyperbolic (logistic) learning curve possesses a range of shapes

that are distinctive compared to the slow gradual rate of change of the negative

exponential (see Mazur and Hastie, 1978). It is worth noting that the exponential-

hyperbolic can exhibit behavior from a sigmoidal shape (with a long dwell phase)

or a extremely fast rise to almost an immediate asymptote. In the present case the

low-dimensional binary stimuli in the Kruschke/Garner task was more sigmoidal

and quite different from the human performance on the same task (both in shape

and number of trials). This might be due to the fact that the task was presented

in an analog form to human subjects and in a binary form to the BP networks,

although as discussed above this seems unlikely. In the Hi-D case, the DL and the

human performance were quite similar in both shape and number of trials.

of input to output of the perceptron (Rosenblatt, 1961) could
only solve linearly separable problems. The addition of a single
hidden layer between input and output in the BP neural network
(Rumelhart and McClelland, 1986) improved the ability of
the BP network to solve problems having complex category
structure. However, although the addition of one hidden layer
in the BP network substantially increased the network’s ability

to solve complex decision boundaries, the model itself still had
difficulty creating representational structures. The advent of the
DL network showed that even more complex decisions can
be handled by adding more layers between input and output
(Hinton et al., 2006). The additional layers of the DL network
seem to aid complex categorization decisions by increasing
abstraction of the representational structures from layer to
layer.

An analysis of the internal representation of the hidden
units indicates that the BP and the DL networks use distinctive
processing strategies. While the representations at the first
hidden layer are the same for the BP network and the DL
network, the BP network must base its final category prediction
solely on these first layer representations. These first layer
representations are not conducive to feature competition. The
DL network on the other hand uses additional, subsequent
layers to abstract away from the raw feature input to create
higher level representations of the category. We propose that
this successive recoding leads to sequential extraction of features
and the development of more sensitive feature detectors having
higher fidelity and more attentional bias than is possible within a
single hidden layer.
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