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While rhythmic expectancies are thought to be at the base of beat perception in music,
the extent to which stress patterns in speech are similarly represented and predicted
during on-line language comprehension is debated. The temporal prediction of stress
may be advantageous to speech processing, as stress patterns aid segmentation and
mark new information in utterances. However, while linguistic stress patterns may be
organized into hierarchical metrical structures similarly to musical meter, they do not
typically present the same degree of periodicity. We review the theoretical background
for the idea that stress patterns are predicted and address the following questions: First,
what is the evidence that listeners can predict the temporal location of stress based on
preceding rhythm? If they can, is it thanks to neural entrainment mechanisms similar
to those utilized for musical beat perception? And lastly, what linguistic factors other
than rhythm may account for the prediction of stress in natural speech? We conclude
that while expectancies based on the periodic presentation of stresses are at play in
some of the current literature, other processes are likely to affect the prediction of stress
in more naturalistic, less isochronous speech. Specifically, aspects of prosody other
than amplitude changes (e.g., intonation) as well as lexical, syntactic and information
structural constraints on the realization of stress may all contribute to the probabilistic
expectation of stress in speech.
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INTRODUCTION

In the domain of music, it is well established that metric structure gives rise to expectancies which
allow humans to perceive and synchronize to a beat (Large and Kolen, 1994; Large and Jones,
1999). As music and language share many cognitive mechanisms and neural resources (Patel,
2008), the same beat perception mechanisms applied to musical rhythm might also be used when
processing speech rhythms, involving the representation of a metrical structure and prediction of
where the next stressed syllable will occur. Rhythmic properties of speech based on the alternation
of stressed and unstressed syllables have been posited to be organized into hierarchical metrical
trees or grids, which may be similar to musical meter (e.g., Martin, 1972; Liberman and Prince,
1977; Selkirk, 1984; Ferreira, 1993, 2007). However, while prediction mechanisms are thought to
underlie many aspects of language processing (Federmeier and Kutas, 1999; Pickering and Garrod,
2007; Kuperberg and Jaeger, 2016), it is less clear to what extent rhythmic features of speech are
predicted during on-line comprehension.
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While rhythmic perception in music operates on periodic,
hierarchically organized beats, the same periodicity is seldom
found in naturalistic speech (Lehiste, 1977; Dauer, 1983). Thus,
while still presenting rhythmic properties, the stress patterns of
speech may typically be too varied to give rise to meaningful
expectations (Patel, 2008; London, 2012). On the other hand,
there are several reasons why predicting when the next stressed
syllable will occur in speech may be useful. Stress patterns
are an important segmentation cue in speech and in language
acquisition (Sanders and Neville, 2000; Nazzi and Ramus, 2003),
and aid word recognition in the presence of many competing
lexical items (Norris et al., 1995). Thus, successful prediction of
the occurrence of stresses may aid the difficult task of breaking
the continuous speech signal into its components.

The temporal prediction of stress could also be beneficial
by reducing processing costs during language comprehension.
Stressed syllables are detected and processed faster than
unstressed ones (Cutler and Foss, 1977; Gow and Gordon, 1993).
Crucially, shorter reaction times (RTs) are also found when
an acoustically identical phoneme is predicted to be stressed
based on various aspects of the preceding context (Cutler,
1976; Cutler and Fodor, 1979; Pitt and Samuel, 1990). Stressed
syllables are thought to carry higher informational content than
unstressed ones (Altman and Carter, 1989), and stress patterns
appear to be strongly related to the information structure of a
sentence (Aylett and Turk, 2004; Calhoun, 2010). Therefore, in
order to more easily integrate new information, listeners may
predict the timing of future stresses and allocate attention and
processing resources to those points in time. This has been
termed the Attentional Bounce Hypothesis (ABH) (Pitt and
Samuel, 1990). The theoretical background surrounding this
hypothesis is discussed below. We then turn to evidence for and
against temporal prediction of stress in speech, its possible neural
mechanisms, and its limitations.

HOW ARE PREDICTIONS FORMED?

Most work on the prediction of stress in speech assumes that
listeners form expectations based on perceived regularities in the
stress pattern of a sentence. Originally, through the definition of
English as a “stress-timed” language, regularity was thought to
consist of the physical periodicity of stresses occurring at close to
isochronous intervals (Abercrombie, 1967), which would easily
lead a listener to infer the next occurrence of a stress. However,
naturalistic speech does not present this degree of periodicity
(Lehiste, 1977). While the periodicity of stress may be primarily
a perceptual phenomenon (Lehiste, 1977), as captured in the
notion of perceptual centers (p-centers; Morton et al., 1976),
this claim is controversial, and there is no consensus regarding
the presence of isochrony either in the signal or as a perceptual
experience.

Regularities in speech stress patterns have also been
characterized through hierarchical metrical trees or grids. This
concept comes from phonological theories designed to explain
how stress is distributed in a sentence (e.g., Martin, 1972;
Liberman and Prince, 1977; Hayes, 1983; Selkirk, 1984). A basic

tenet of most theories is the avoidance of stress clashes or lapses
(two stressed or two unstressed syllables next to each other; e.g.,
thirTEEN turns into THIRteen MEN), which in practice renders
the pattern of stresses more periodic (Selkirk, 1984). However,
these theories focus primarily on the hierarchical nature of stress
structure and not on periodicity (Martin, 1972). The timing and
prominence of every event in a sequence is determined by that
of all other sounds through an internal, hierarchical structure, in
opposition to sounds concatenated at a single level, as in the case
of a simple isochronous beat.

Martin (1972) proposed that listeners internalize this
hierarchical structure during on-line comprehension and can
thus predict the location of future stresses. This in turn would
allow them to allocate their attention to those points in time,
facilitating processing, a concept that was later termed the ABH
(Pitt and Samuel, 1990). However, as we will argue, research
following this proposal focused less on hierarchical stress
structure and more on expectancies based on periodicity. While
Martin frames these as very different types of predictions, the
two are not always distinguished in the literature.

We believe much of this confusion arises from an
inconsistency in the way terms such as “rhythm” and “meter” are
defined. For the sake of clarity we adopt the following definitions,
though we acknowledge they are not necessarily the only or best
ways to interpret these terms. We view rhythm as an informal
way to refer to temporal patterning of events, whereas we treat
meter as a specific type of structure. Based on Patel (2011), we
define meter as a “hierarchical organization of beats in which
some beats are perceived as stronger than others” (Patel, 2011,
100), where beats may be constituted by the accents or stresses
found in both music and language. Importantly, this definition
highlights the hierarchical nature of metric structure and it is
thus more in line with theories of metrical grids described above.
While this type of structure may tend toward periodicity, such
as through stress shift, its realization need not necessarily be
periodic.

EVIDENCE

Several early studies of the prediction of stress in speech utilized
phoneme monitoring as an indication of processing speed (e.g.,
Shields et al., 1974; Cutler, 1976; Pitt and Samuel, 1990; Quené
and Port, 2005). Shields et al. (1974) found shorter RTs to
phonemes belonging to stressed syllables of nonsense words
as opposed to when the same syllables were unstressed. The
nonsense words were embedded in sentences, based on the idea
that a sentence’s stress pattern induces timing expectancies for
future stresses (Martin, 1972). However, this experiment did
not entirely rule out the possibility that the acoustic saliency of
stressed syllables, rather than their temporal predictability, may
have facilitated processing (Cutler, 1976; Pitt and Samuel, 1990).
Such acoustic differences were controlled for in a subsequent
test of the ABH (Pitt and Samuel, 1990, Exp. 1). Two-syllable
words which could be accented on the first or second syllable
(verb-noun pairs such as PERmit vs. perMIT) were embedded
within sentences. Acoustic differences were controlled by creating
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a single “neutral stress” version of the words (PERMIT). The
authors expected RTs to be shorter when the target phoneme
occurred on a syllable that had been predicted to be stressed
based on the preceding rhythmic context. However, this was
not the case, suggesting that the difference in RTs found by
Shields et al. (1974) might in fact have been due to the stressed
syllables’ acoustic saliency. Nonetheless, while both Shields et al.
(1974) and Pitt and Samuel (1990) based their hypotheses on
theories of metrical grids, the meter of the sentences was not itself
controlled for; additionally, factors other than stress rhythm may
have confounded the effects of timing expectancies (e.g., semantic
and syntactic prediction for whether a verb or a noun would
occur in Pitt and Samuel, 1990). Thus it is hard to tell from these
early studies whether rhythmic predictions are indeed at play in
speech.

Subsequent studies induced temporal expectations for stress
through the periodic or semi-periodic alternation of stressed
and unstressed syllables (e.g., Pitt and Samuel, 1990, Exp. 2;
Quené and Port, 2005; Schmidt-Kassow and Kotz, 2009a,b;
Rothermich et al., 2012; Rothermich and Kotz, 2013). In their
second experiment, Pitt and Samuel (1990) embedded neutral
stress targets in strings of bisyllabic words presenting the
same or opposite stress pattern as the target – either trochaic
(S-w) or iambic (w-S). While in this case RTs were shorter
for syllables predicted to be stressed based on the preceding
rhythm, in their discussion Pitt and Samuel (1990) cast doubt on
whether this result would generalize to natural sentences. One
study using a similar methodology found that precise timing
regularity (isochrony of stresses), rather than consistency in
the metric pattern of the target and the preceding words, best
explains differences in RTs (Quené and Port, 2005). This speaks
against the claim that stress periodicity is primarily a perceptual
phenomenon, suggesting that rhythmic predictions for stress are
most reliably induced by physical periodicity of the stimulus –
which is seldom found in natural speech (though see Otterbein
et al., 2012).

Nonetheless, recent studies provide evidence for rhythmic
expectancies induced by sentences comprised of bisyllabic words
with consistent trochaic or iambic patterns, but lacking exact
isochrony. Schmidt-Kassow and Kotz (2009b) observed event-
related brain potentials to “metric violations” induced by having a
target word be pronounced with incorrect lexical stress (e.g., with
a trochaic pattern rather than the correct iambic pattern) within
such sentences. A biphasic pattern was observed, consisting of
an early anterior negativity and a P600 effect. Schmidt-Kassow
and Kotz (2009a) found similar results when using correctly
pronounced target words with a stress pattern opposite to the
preceding context (although this effect was only present when
listeners were instructed to actively pay attention to the meter of
the sentences). Additionally, Rothermich et al. (2012) observed a
reduced N400 to semantically unpredictable target words when
the words were embedded in sentences with regular (iambic
or trochaic) rather than irregular stress patterns. This suggests
that temporal regularity of stress in speech leads to expectations
which in turn may facilitate semantic integration of unpredicted
words. Lastly, eye-tracking evidence for the prediction of lexical
stress was found for stimuli with a highly constraining metrical

structure (limericks; Breen and Clifton, 2011). These experiments
corroborate evidence from phoneme monitoring, suggesting
that the alternation of stressed and unstressed syllables may
contribute to timing expectancies for stress, though they do not
speak to whether such predictions may be at play in naturally
occurring speech.

ENTRAINMENT

The ABH (Shields et al., 1974; Pitt and Samuel, 1990) suggests
that attention is directed to the predicted location of a stress
regardless of how this location is predicted. Later studies,
inducing rhythmic expectancies through periodicity, shifted their
theoretical approach to the more specific notion of neural
entrainment, as assumed in Dynamic Attending Theory (DAT;
Large and Kolen, 1994; Large and Jones, 1999). This theory,
which was primarily developed to understand the perception of
musical rhythm, posits that listeners form expectations for when
a beat will occur thanks to the entrainment, or synchronization,
of their own neural oscillations with an external periodic
stimulus. This leads to the dynamic allocation of attention to
specific points in time. Neural oscillations have been shown to
entrain to rhythmically organized stimuli (Lakatos et al., 2008),
and to the strong beats of an imagined meter imposed over a
periodic series of acoustically equal beats (Nozaradan et al., 2011).

While many have posited that this mechanism may also be
involved in the perception of stress patterns in speech (e.g., Large
and Jones, 1999; Port, 2003; Ghitza and Greenberg, 2009; Kotz
and Schwartze, 2010; Goswami, 2012; Peelle and Davis, 2012),
whether this is the case has not been unequivocally established.
Cummins and Port (1998) found that in a speech cycling task
(where a phrase was repeated multiple times in synchrony with
a metronome), stresses tended to align with particular metrical
positions in accordance with the principles of DAT (Port, 2003).
However, it is not clear whether this work applies to regular
speech and whether it translates to neural activity.

A promising lead comes from work positing a role for
entrainment in the segmentation and temporal prediction of
speech units at different timescales (for a review, see: Kösem
and van Wassenhove, 2017; Meyer, 2017). Neural oscillations in
the theta range (4–8 Hz) have been shown to synchronize with
fluctuations in the temporal envelope of speech corresponding
to the syllabic rate (Giraud and Poeppel, 2012; Peelle and Davis,
2012). Entrainment to the syllabic rate may be a fundamental
mechanism for prediction, segmentation, and speech processing
in general (Ghitza and Greenberg, 2009; Peelle and Davis,
2012). Oscillations in the delta range (0.5–4 Hz) have also
been found to track the pitch contour of speech, possibly
reflecting entrainment to intonational boundaries (Bourguignon
et al., 2013). Entrainment is posited to be a fundamental
element of neural mechanisms supporting the representation of
temporal structure and temporal predictions in speech (Kotz
and Schwartze, 2010; Schwartze and Kotz, 2013). To the best
of our knowledge, however, neural entrainment to hierarchically
organized stress patterns in speech remains to be empirically
established.
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PREDICTION IN EVERYDAY SPEECH

The evidence for temporal prediction of stress reviewed thus far
has relied on stimuli that contain a certain degree of periodicity,
induced either through perfect isochrony (Quené and Port, 2005)
or through the regular alternation of stressed and unstressed
syllables (Pitt and Samuel, 1990; Schmidt-Kassow and Kotz,
2009a,b; Rothermich et al., 2012). The neural mechanism most
commonly associated with these findings is the entrainment
of neural oscillations to an external stimulus, in this case the
pattern of stresses in speech. While entrainment may not require
exact isochrony and can adjust to various types of rhythmic
irregularity (Large and Jones, 1999; Large et al., 2002), it is not
clear whether the stress patterns of natural speech present the
coherence required by neural oscillations to entrain (Schwartze
and Kotz, 2013). Schwartze and Kotz (2013) note that different
types of speech may present more or less rhythmic regularity, and
may therefore engage entrainment to various degrees.

Whether everyday speech presents enough rhythmic
regularity to induce temporal expectations for stress through
neural entrainment remains an open question. It is likely
that neural entrainment is at play in the presently reviewed
literature, as these studies induced expectancies through the
periodic (or semi-periodic) presentation of stress. However, their
generalization to the perception of natural speech remains to be
tested. Given that natural speech presents far less periodicity than
the stimuli utilized in these studies, two possibilities arise: (1) the
prediction of stress in natural speech is reduced or non-existent,
(2) mechanisms other than neural entrainment are involved
in the prediction of stress. These two possibilities and their
implications are explored in the following sections.

No Prediction?
It is possible that the prediction of stress observed in the
studies here reviewed relies on general beat perception processes
not typically utilized in speech perception. In other words,
listeners may indeed entrain to the beat induced by the periodic
presentation of stressed syllables, but the same phenomenon
could have been induced by any other periodic stimulus
(such as a simple sequence of beats, as in Cason and Schön,
2012). These predictions may therefore be tied to the specific
manipulations of these experiments and not be present in
everyday speech perception. This reflects the observation that the
role of prediction mechanisms in language comprehension may
have been overestimated through the use of overly predictable
stimuli (Huettig and Mani, 2016).

However, it is unlikely that no prediction of stress is involved
in natural speech. In the absence of prediction, any difference in
RTs to stressed as opposed to unstressed syllables would be due to
bottom-up, salient features of stressed syllables. This, however, is
inconsistent with the finding that shorter RTs are shown even for
syllables predicted to be stressed in absence of acoustic differences
(Cutler, 1976; Cutler and Fodor, 1979). Additionally, it is not
clear why phenomena such as stress shift would constrain the
stress patterns of speech into hierarchically organized structures
allowing prediction. Finally, the hierarchical nature of stress
patterns suggests that prediction for the location of the strongest

stress in a sentence (i.e., the nuclear stress) is required in order not
to misclassify a pre-nuclear (relatively weaker) stress as nuclear
(Calhoun, 2010). Thus, it is likely that mechanisms other than
neural entrainment are involved in the prediction of stress for
everyday speech.

Other Forms of Prediction
While the majority of studies have induced temporal predictions
of stress by controlling the periodicity of the preceding speech, a
few experiments have achieved similar results through different
manipulations. Prosodically, the prediction of stress has been
induced through a sentence’s intonational contour (Cutler, 1976),
as well as through the manipulation of the duration and the pitch
quality of vowels preceding a target word (Brown et al., 2016).

This points to the idea that stress patterns may be better
conceptualized in conjunction with other prosodic features
such as intonation, rather than solely through fluctuations in
amplitude envelope (e.g., as in Peelle and Davis, 2012). Special
qualities in amplitude, pitch, duration, and spectral tilt are all
thought to contribute to the perception of stress (Fry, 1955;
Shattuck-Hufnagel and Turk, 1996; Sluijter and van Heuven,
1996; Breen et al., 2010). As context-dependent predictions
have been observed for prosodic elements such as pitch accents
(Weber et al., 2006; Dimitrova et al., 2012), prosodic boundaries
(Clifton et al., 2002), and prominence shifts (Klassen and
Wagner, 2017), these elements may need to be modulated as
well, or at least controlled for, in order to fully understand the
prediction of stress.

Moreover, the acoustic realization of a sentence’s stress
pattern may result from the interplay of several linguistic
constraints that potentially influence language production
(Calhoun, 2010). These include a tendency for rhythm, but
also lexical and syntactic constraints, sentence focus, and
information structure, as well as unplanned disfluencies and
pauses (Ferreira, 2007). This is supported by studies that induced
stress expectations through syntactic (Breen and Clifton, 2011)
and information structural predictions (Cutler and Fodor, 1979).
In this framework, the position of each stress results from
the probabilistic alignment of these constraints with an overall
metrical structure (Calhoun, 2010). Prediction at these different
levels (e.g., semantic predictions) may therefore contribute to
the prediction of stress. And, relatedly, predicting the timing of
stressed syllables may be just one of many tools that listeners have
for segmentation (Sanders and Neville, 2000) and for allocating
attentional resources to new information (Cutler and Fodor,
1979), and may itself be secondary to other mechanisms in
everyday speech.

CONCLUSION

In this review, we have focused on studies that induced temporal
expectations for specific stress patterns based on the idea that
stress in speech is rhythmically organized. However, while
these studies have often appealed to theories of hierarchical
metrical grids, they have typically induced prediction of stress by
artificially increasing the amount of periodicity found in speech.
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While their results are consistent with the notion of neural
entrainment involved in musical beat perception, whether this
mechanism could account for the prediction of stress in natural
speech – presenting far less periodicity – has not been established.
We propose that other mechanisms may be at play, such as the
prediction of other linguistic features that often coincide with
perceived stress.

Nonetheless, the current literature offers insights into the
way the prediction of stress through neural entrainment may
be utilized for types of speech that naturally present higher
degree of rhythmic regularity. For example, infant-directed
speech and song present enhanced hierarchical temporal
structure than the same materials directed at adults (Falk
and Kello, 2017), and child-directed nursery rhymes display
hierarchical amplitude modulations that may facilitate the
development of phonological awareness through entrainment
(Leong and Goswami, 2015). Thus, it is possible that speakers
increase the regularity of their own speech to make it
easier for listeners to entrain to and predict their stress
patterns, consequently rendering speech more intelligible
and facilitating language acquisition. Moreover, failure to
recruit entrainment mechanisms during development may be
fundamentally tied to language deficits such as developmental
language disorder and developmental dyslexia (Goswami,

2011). Future studies should aim to establish the degree to
which the mechanisms utilized for beat perception in music
are applied to different types of speech and in different
populations.
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