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In psychology as elsewhere, the main statistical inference strategy to establish empirical

effects is null-hypothesis significance testing (NHST). The recent failure to replicate

allegedly well-established NHST-results, however, implies that such results lack sufficient

statistical power, and thus feature unacceptably high error-rates. Using data-simulation

to estimate the error-rates of NHST-results, we advocate the research program strategy

(RPS) as a superior methodology. RPS integrates Frequentist with Bayesian inference

elements, and leads from a preliminary discovery against a (random) H0-hypothesis to a

statistical H1-verification. Not only do RPS-results feature significantly lower error-rates

than NHST-results, RPS also addresses key-deficits of a “pure” Frequentist and a

standard Bayesian approach. In particular, RPS aggregates underpowered results safely.

RPS therefore provides a tool to regain the trust the discipline had lost during the

ongoing replicability-crisis.

Keywords: Bayes’ theorem, inferential statistics, likelihood, replication, research program strategy, t-test, Wald

criterion

INTRODUCTION

Like all sciences, psychology seeks to establish stable empirical hypotheses, and only
“methodologically well-hardened” data provide such stability (Lakatos, 1978). In analogy, data we
cannot replicate are “soft.” Recent attempts to replicate allegedly well-established results of null-
hypothesis significance testing (NHST), however, did broadly fail. As did the five preregistered
replications, conducted between 2014 and 2016, reported in Perspectives of Psychological
Science (Alogna et al., 2014; Cheung et al., 2016; Eerland et al., 2016; Hagger et al., 2016;
Wagenmakers et al., 2016). This implies that the error-proportions of NHST-results generally are
too large. For many more replication attempts should otherwise have succeeded.

We can partially explain the replication failure of NHST-results by citing questionable research
practices that inflate the Type-I error probability (false positives), as signaled by a large α-error
(Nelson et al., 2018). If researchers collect undersized samples, moreover, then this raises the
Type-II error probability (false negatives), as signaled by a large β-error. (The latter implies
a lack of sufficient test-power i.e., 1 – β-error). Ceteris paribus, as these errors increase, the
replication-probability of a true hypothesis decreases, thus lowering the chance that a replication
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attempt obtains a similar data-pattern as the original study.
Since NHST remains the statistical inference strategy in empirical
psychology, many today (rightly) view the field as undergoing a
replicability-crisis (Erdfelder and Ulrich, 2018).

It adds severity that this crisis extends beyond psychology—
to medicine and health care (Ioannidis, 2014, 2016), genetics
(Alfaro and Holder, 2006), sociology (Freese and Peterson, 2017),
and political science (Clinton, 2012), among other fields (Fanelli,
2009)—and affects each field as a whole. A 50% replication-
rate in cognitive psychology vs. a 25% replication-rate in social
psychology (Open Science Collaboration, 2015), for instance,
merelymakes the first subarea appearmore crisis-struck. Since all
this keeps from having too much trust in our published empirical
results, the term “confidence-crisis” is rather apt (Baker, 2015; Etz
and Vandekerckhove, 2016).

The details of how researchers standardly employ NHST
coming under doubt has sparked renewed interest in statistical
inference. Indeed, many researchers today self-identify as
either Frequentists or Bayesians, and align with a “school”
(Fisher, Neyman-Pearson, Jeffreys, or Wald). However, statistical
inference as a whole offers no more (nor less) than a probabilistic
logic to estimate the support that a hypothesis, H, receives
from data, D (Fisher, 1956; Hacking, 1965; Edwards, 1972;
Stigler, 1986). This estimate is technically an inverse probability,
known as the likelihood, L(H|D), and (rightly) remains central to
Bayesians.

An important precondition for calculating L(H|D) is the
probability of D given H, p(D,H). Unlike L(H|D), we cannot
determine p(D,H) other than by induction over data. This
(rightly) makes p(D,H) central to Frequentists. Testing H
against D—in the sense of estimating L(H|D)—thus presupposes
induction, but nevertheless remains distinct conceptually.
Indeed, the term “test” in “NHST” misleads. For NHST tests
only p(D,H), but not L(H|D). This may explain why publications
regularly over-report an NHST-result as supporting a hypothesis.
Indeed, many researchers appear to misinterpret NHST as the
statistical hypothesis-testing method it emphatically is not.

To clarify why testing p(D,H) conceptually differs from
testing L(H|D), this article compares NHST with the research
program strategy (RPS), a hybrid-approach that integrates
Frequentist with Bayesian statistical inference elements (Witte
and Zenker, 2016a,b, 2017a; Witte and Zenker, 2017b). As
“stand-ins” for real empirical data, we here simulate the
distribution of a (dependent) variable in hypothetical treatment-
and control-groups to simulate that variable’s arithmetic mean
in both groups. Our simulated data are sufficiently similar
to data that actual studies would collect for purposes of
assessing whether an independent, categorical variable (e.g., an
experimental manipulation) significantly influences a dependent
variable. Therefore, simulating the parameter-range over which
hypothetical data are sufficiently replicable does estimate whether
actual data are stable, and hence trustworthy.

We outline RPS [section The Research Program Strategy
(RPS)], detail three statistical measures (section Three
Measures), explain purpose, method, and the key-result of
our simulations (section Simulations), offer a critical discussion
(section Discussion), then compare RPS to a “pure” Frequentist
and a standard Bayesian approach (section Frequentism Vs.

Bayesianism Vs. RPS), and finally conclude (section Conclusion).
As supplementary material, we include the R-code, a technical
appendix, and an online-app to verify quickly that a dataset is
sufficiently stable1.

THE RESEARCH PROGRAM STRATEGY
(RPS)

With the construction of empirical theories as its main aim,
RPS distinguishes the discovery context from the justification
context (Reichenbach, 1938). The discovery context readily lets us
induce a data-subsuming hypothesis without requiring reference
to a theoretical construct. Rather, discerning a non-random
data-pattern, as per p(D,H0) < α ≤ 0.05, here sufficiently
warrants accepting the H1-hypothesis that is a best fit to D as a
data-abbreviation. Focusing on non-random effects alone, then,
discovery context research is fully data-driven.

In the justification context, by contrast, data shall firmly
test a theoretical H1-hypothesis, i.e., verify or falsify the
H1 probabilistically. A hypothesis-test must therefore pitch
a theoretical H1-hypothesis either against the (random) H0-
hypothesis, or against some substantial hypothesis besides theH1

(i.e., H2, . . . , Hn−1, Hn). Were the H1-hypothesis we are testing
indistinct from the data-abbreviatingH1, however, then data once
employed to induce the H1 now would confirm it, too. As this
would level the distinction between theoretical and inductive
hypotheses, it made “hypothesis-testing” an empty term. Hence,
justification context researchmust postulate a theoretical H1.

Having described and applied RPS elsewhere (Witte and
Zenker, 2016a,b, 2017a; Witte and Zenker, 2017b), we here
merely list the six (individually necessary and jointly sufficient)
RPS-steps to a probabilistic hypothesis-verification2.

Preliminary discovery

The first step discriminates a random fluctuation (H0) from
a systematic empirical observation (H1), measured either by
the p-value (Fisher) or the α-error (Neyman-Pearson). Under
accepted errors, we achieve a preliminary H1-discovery if the
empirical effect sufficiently deviates from a random event.

Substantial discovery

Neyman-Pearson test-theory (NPTT) states the probability
that a preliminary discovery is replicable as the (1–β-error),
aka test-power. If we replicate a preliminary discovery
while α- and β-error (hereafter: α, β) remain sufficiently
small, a preliminary H1-discovery turns into a substantial
H1-discovery.

1See https://osf.io/pwc26/ for the R-code; find the online-tool at https://

antoniakrefeldschwalb.shinyapps.io/ResearchProgramStrategy/
2Our focus here is on the quantitative evaluation of hypotheses by empirical

data. The current presentation of RPS therefore both excludes qualitative

research processes preceding data-collection like conjecturing phenomena or

constructing experimental designs (see Flick, 2014) as well as subsequent processes

like embedding data into an informative theory. Both process kinds employ

observation and interpretation, but also rely on scholarly argument referencing

more than statistical data alone. Nonetheless, insofar as empirical data are

independent of a researcher’s prior belief, such data are necessary to run a research

program.
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Preliminary falsification

A substantial H1-discovery may entail that we thereby
preliminarily falsify the H0 (or another point-hypothesis). As
the falsification criterion, we propose that the likelihood-ratio
of the theoretical effect-size d > 0, postulated by the H1, and

of a null-effect d= 0, postulated by theH0, i.e.,
L(d>0|D)
L(d=0|D) , must

exceed Wald’s criterion (1−β)
α

(Wald, 1943).

Substantial falsification

A preliminary H0-falsification turns into a substantial
H0-falsification if the likelihood-ratio of all theoretical effect-
sizes that exceed the minimum theoretical effect-size d > δ =

dH1 – dH0, and of theH0(d=0), i.e.,
L(d>δ|D)
L(d=0|D) , exceeds the same

criterion, i.e., (1−β)
α

.

Preliminary verification

We achieve a preliminary H1-verification if the likelihood
ratio of the point-valued H1(d=δ) and the H0(d=0) exceeds,

again, (1−β)
α

.

Substantial verification

Having preliminarily verified the H1(d=δ) against the H0(d=0),
we now test how similar δ is to the empirical (“observed”)
effect-size’s maximum-likelihood-estimate, MLE(demp). As our
verification criterion, we propose the ratio of both likelihood-
values (i.e., the maximal ordinate of the normal distribution
divided by its ordinate at the 95% interval-point), which is
approximately 4 (see next section). If δ’s likelihood falls within
the 95%-interval centered on MLE(demp), then we achieve
a substantial H1-verification. This means we now accept
“H1(d=δ)” as shorthand for the effect-size our data corroborate
statistically.

RPS thus starts in the discovery context by using p-values
(Fisher), proceeds to an optimal3 test of a non-zero effect-size
against either a random-model or an alternativemodel (Neyman-
Pearson), and reaches—entering into the justification context—a
statistical verification of a theoretically specified effect-size based

3The smallest sample, NMIN, sufficing in NPTT to identify a point-specified effect

as a statistically significant deviation from random, is a function of α, β , and

d. Under conventional errors (e.g., α = β ≤ 0.05), therefore, given any sample,

N, a significance-test is optimal if N = NMIN. With both hypothesis-verification

and -falsification alike, however, if N > NMIN, then the utility of additional data

decreases. Under α = 0.05 (one-tailed), for instance, already N=500 let the very

small effect d = 0.10 become statistically significant, even though it “explains” but

0.002% of data-variance. OnceN > 60.000, this utility vanishes. Almost any way of

partitioning a very large sample now makes virtually the smallest effect statistically

significant (Bakan, 1966).

This may seem paradoxical because the law of great numbers states that, ceteris

paribus, enlarging N increases the validity of a parameter-estimate. AtN > 60,000,

however, measuring virtually any variable “reveals” that it significantly deviates

from some predicted value. In a statistical sense, all unknown influences can now

sufficiently manifest themselves, which lets any parameter-value become equally

admissible. But if every parameter could become statistically significant, then none

would be particularly important. Ad absurdum, then, as concerns hypothesis-

testing the claim “more data is always better” is false in the hypotheses space.

It nevertheless holds that increasing the sample yields an ever more precise

parameter-estimate in the data space.

on probably replicable data4 (see Figure 1). All along, of course,
we must assume accepted α- and β-error.

In what we call the data space, RPS-steps 1 and 2 thus
evaluate probabilities; RPS-steps 3–5 evaluate likelihoods in the
hypotheses space; and RPS-step 6 returns to the data space. For
data alone determine if the point-hypothesis from RPS-step 5 is
substantially verified at RPS-step 6, or not. As if in a circle, then,
RPS balances threes steps in the data space (1, 2, 6) with three
steps in the hypotheses space (3, 4, 5).

Importantly, individual research groups rarely command
sufficient resources to collect a sufficiently large sample that
achieves the desirably low error-rates a well-powered study
requires (see note 3). To complete all RPS-steps, therefore,
groups must coordinate joint efforts, which requires a method to
aggregate underpowered studies safely (We return to this toward
the end of our next section).

Since RPS integrates Frequentist with Bayesian statistical
inference-elements, the untrained eye might discern an arbitrary
“hodgepodge” of methods. Of course, the Frequentist and
Bayesian schools both harbor advantages and disadvantages
(Witte, 1994; Witte and Kaufman, 1997; Witte and Zenker,
2017b). For instance, Bayesian statistics allows us to infer
hypotheses from data, but normally demands greater effort
than using Frequentist methods. The simplicity and ubiquity of
Frequentist methods, by contrast, facilitates the application and
communication of research results. But it also risks to neglect
assumptions that affect the research process, or to falsely interpret
such statistical magnitudes as confidence intervals or p-values
(Nelson et al., 2018). Decisively, however, narrowly sticking to
any one school would simply avoid attempting to integrate each
school’s best statistical inference-elements into an all-things-
considered best strategy. RPS does just this.

RPS motivates the selection of these elements by its main
goal: to construct informative empirical theories featuring precise
parameters and hypotheses. As RPS-step 1 exhausts the utility
of α, or the p-value (preliminary discovery), for instance,
β additionally serves at RPS-step 2 (substantial discovery). In
general, RPS deploys inference elements at any subsequent step
(e.g., the effect size at RPS-step 2–5; confidence intervals at RPS-
step 6) to sequentially increase the information of a preceding
step’s focal result.

Unlike what RPS may suggest, of course, the actual
research process is not linear. Researchers instead stipulate
both the hypothesis-content and the theoretical effect-size
freely. Nevertheless, a hypothesis-test deserving its name—one
estimating L(H|D), that is—requires replicable rather than “soft”
data, for such data alone can meaningfully induce a stable effect-
size.

RPS therefore measures three qualities: induction quality of
data, as well as falsification quality and verification quality of
hypotheses, to which we now turn.

4Fixing the H0-parameter as d = 0, as a random-model has it, is merely a

convention, of course. In fact RPS can alternatively base the H0-parameter on a

control-group (as is typical), or on a simpler model (that eliminates elements of

a more complex model), or on a rivaling theoretical model. In any case, not to

remain ignorant of α, β , N, d, wemust specify the H0.
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FIGURE 1 | The six steps of the research program strategy (RPS).

THREE MEASURES

This section defines three measures and their critical values
in RPS. The first measure estimates how well data sustain
an induced parameter; the second and third measure estimate
how well replicable data undermine and, respectively, support a
hypothesis5.

Def. induction quality: Based on NPTT, we measure induction
quality as α and β , given a fixed sample size, N, and two point-
valued hypotheses, H0 and H1, yielding the effect-size difference
dH1 – dH0 = δ.

The measure presupposes the effect-size difference dH1 – dH0 =

δ, for otherwise we could not determine test-power (1–β).
Since induction quality pertains to the (experimental)

conditions under which one collects data, the measure qualifies
an empirical setting’s sensitivity. Whether a setting is acceptable,
or not, rests on convention, of course. RPS generally promotes
α = β = 0.05, or even α = β = 0.01, as the right sensitivity
(see section Frequentism Vs. Bayesianism Vs. RPS). By contrast,

α = 0.05 and β = 0.20 are normal today. Since β
α
= 0.20

0.05 = 4, this
makes it four times more important to discover an effect than
to replicate it—an imbalance that counts toward explaining the
replicability-crisis.

A decisive reason to instead equate both errors (α = β) is
that this avoids a bias pro detection (α) and contra replicability
(1–β). Given acceptable induction quality, a substantial discovery

thus arises if the probability of data passes the critical value (1−β)
α

.

Under α = β = 0.05, for instance, we find that (1−β)
α

= 0.95
0.05 = 19.

Hence, for the H1 to be statistically significantly more probable
than the H0, we have it that p(H1,D) = 19× p(H0,D).

Thus, we evidently can fully determine induction quality prior
to data-collection for hypothetical data. Therefore, the measure
says nothing about the focal outcome of a hypothesis-test. As we
evaluate L(H|D) in the justification context, by contrast, the same
measure nevertheless quantifies the trust that actual data deserve
or—as the case may be—require.

Def. falsification quality: Based on Wald’s theory, we measure
falsification quality as the likelihood-ratio of all hypotheses
the effect-size of which exceeds either the H0 (preliminary
falsification) or δ (substantial falsification), and the point-valued
H0, i.e., L(d > 0|D)/L(d = 0|D). Our proposed falsification-
threshold (1− β)/α thus depends on induction quality of data.

The falsification quality measure rests on both the H1 and a
fixed amount of actual data. It comparatively tests the point-
valued H0 against all point-alternative hypotheses that exceed
d H1–d H0 = δ. For instance, α = β = 0.05 obviously yields the
threshold 19 (or log 19 = 2.94); α = β = 0.01 yields 99 (log
99 = 4.59), etc6. Since it is normally unrealistic to set α = β = 0,

5Witte and Zenker (2017b) presented the second and third measure as if they were

one.
6Using “log” to abbreviate the logarithmus naturalis (ln), as per the command

in R, in previous work we used “log” to abbreviate the logarithmus decimalis
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“falsification” here demands a statistical sense, rather than one
grounding in an observation a deterministic law cannot subsume.
Thus, a statistical falsification is fallible rather than final.

The same holds for verification:

Def. verification quality: Again based on Wald’s theory, we
measure verification quality as the likelihood-ratio of a point-
valued H1 and a substantially falsified H0. The threshold for

a preliminary verification is again (1−β)
α

(thus, too, depends on
induction quality of data). As the threshold for a substantial
verification, we propose the value 4.

To explain this value, RPS views a H1-verification as preliminary
if the maximum-likelihood-estimate (MLE) of data falls below
the ratio of the maximum corroboration, itself determined via a
normal curve’s maximal ordinate, viz., 0.3989, and the ordinate
at the 95%-interval centered on the maximum, viz., 0.10. As our
confirmation threshold, this yields≈4. Hence, a ratio<4 sees the
theoretical parameter lie inside the 95%-interval. RPS would thus
achieve a substantial verification.

Following Popper (1959), many take hypothesis-verification
to be impossible in a deterministic sense. Understood
probabilistically, by contrast, even a substantial verification
of one point-valued hypothesis against another such hypothesis
is error-prone (Zenker, 2017). The non-zero proportion of
false negative decisions thus keeps us from verifying even the
best-supported hypothesis absolutely. We can therefore achieve
at most relative verification.

Assume we have managed to verify a parameter preliminarily.
If the MLE now deviates sufficiently from that parameter’s
original theoretical value, then we must either modify the
parameter accordingly, or may otherwise (deservedly) be
admonished for ignoring experience. The MLE thus acts as a
stopping-rule, signaling when we may (temporarily) accept a
theoretical parameter as substantially verified.

The six RPS steps thus obtain a parameter we can trust to
the extent that we accept the error probabilities. Unless strong
reasons motivate doubt that our data are faithful, indeed, the
certainty we invest into this parameter ought to mirror (1–β),
i.e., the replication-probability of data closely matching a true
hypothesis (Miller and Ulrich, 2016; Erdfelder and Ulrich, 2018).

Before sufficient amounts of probably replicable data arise
in praxis, however, we must normally integrate various studies
that each fail the above thresholds. RPS’s way of integration is
to add the log-likelihood-ratios of two point-hypotheses, each
of which is “loaded” with the same prior probability, p(H1) =
p(H0) = 0.50. Also known as log-likelihood-addition, RPS thus
aggregates data of insufficient induction quality by relying on the
well-known equation:

L(H1|D)

L(H0|D)
=

p(H1)p(D,H1 )

p(H0)p(D,H0)

We proceed to simulate select values from the full parameter-
range of possible RPS-results. These values are diverse enough

(Witte and Zenker, 2017b). Results are independent of nomenclature, of course,

except that the critical values then came to 1.28 and 2.00.

to extrapolate to implicit values safely. The subsequent sections
offer a discussion and then compare RPS to alternative
methodologies.

SIMULATIONS

Overview
Using R-software, we simulate data for hypothetical treatment-
and control-groups, calculate the group-means, and then
compare these means with a t-test. While varying both induction
quality of data and the effect-size, we simulate the resulting
error rates. Since the simulated error-proportions of a t-test
approximate the error-probability of data, this determines the
parameter-range over which empirical results (such as those that
RPS’s six steps obtain) are stable, and hence trustworthy.

In particular, we estimate:

(i) the necessary sample size, NMIN, in order to register, under
(1–β), the effect-size δ as a statistically significant deviation
from random7;

(ii) the p-value, as the most commonly used indicator in NHST;
(iii) the likelihood that the empirical effect-size d(emp) exceeds

the postulated effect-size δ, i.e., L(d > δ|D), as a measure of
substantial falsification;

(iv) the likelihood of theH0, i.e., L(δ = 0|D), as a measure of type
I and type II errors;

(v) the likelihood of the H1, i.e., the true effect-size L(δ|D), as a
measure of preliminary verification;

(vi) the maximum-likelihood-estimate of data, MLE(x), when
compared to the likelihood of the H1, as a measure of
substantial verification.

We conduct five simulations. Simulations 1 and 2 estimate
the probability of true positive and false negative results as
a function of the effect-size and test-power. Our significance
level is set to α = 0.05, respectively to α = 0.01. Simulation 3
estimates the probability of false positive results. The remaining
two simulations address engaging with data in post-hoc fashion.
Simulation 4 evaluates shedding 10% of data that least support
the focal hypothesis. To address research groups’ individual
inability to collect the large samples that RPS demands,
Simulation 5 mimics collaborative research by adding the log-
likelihood-ratios of underpowered studies.

Simulation 1
Purpose

Simulation 1 manipulates the test-power and the true effect-size
to estimate the false negative error-rates (respectively the true
positive rate) throughout RPS’s six steps.

Method

We manipulate 16 datasets that each contain 100 samples of
identical size and variance. We represent a sample by the mean
of a normally distributed variable in two independent groups
(treatment and control), summarized with the test-statistic t.

7The term “random” is shorthand for a normalized mean, irrespective of whether

we assume random influences, work with a control group or a simpler model

(featuring fewer parameters), or with a theoretical alternative model.
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Between these 16 datasets, we vary the effect-size δ = [0.01, 0.2,
0.5, 0.8], and thus vary the difference between the group-means.
We also vary test-power (1–β) = [0.4, 0.5, 0.8, 0.95], and thus
let induction quality range from “very poor,” i.e., (1–β) = 0.4, to
“medium,” i.e., (1–β) = 0.95. Under α = 0.05 (one-sided), we
estimate NMIN to meet the respective test-power (Simulation 2
tightens the significance level to α = 0.01).

Results and Discussion

For both the experimental and the control group, Table 1 lists
NMIN to register the effect-size δ as a statistically significant
deviation from random (substantial discovery). Generally, given
constant test-power (1–β), the smaller (respectively larger) δ is,
the larger (smaller) isNMIN. This shows howNMIN depends on β .

For the sample sizes in Table 1, moreover, Table 2 states the
proportion of p-values that fall below α = 0.05, given a test-power
value. This estimates the probability of a substantial discovery. As
the standard deviation of the p-value here indicates, we retain a
large variance across samples especially for data of low induction
quality.

As with Table 1, Table 2 shows that the larger the test-power
value is, the larger is the proportion of substantial discoveries,
ceteris paribus. We obtain a similar result when estimating
the probability of a substantial falsification or a preliminary

verification, as per the likelihood-ratios L(d>0|D)
L(d=0|D) and L(d=δ|D)

L(d=0|D)

meeting the threshold (1−β)
α

.
In case of a preliminary verification, however, we obtain

a larger proportion of false negative results than in case of
a substantial falsification. For in verification we narrowly test
a point-valued H0 against a point-valued H1. Whereas in
falsification we test a point-valued H0 against an interval H1.
Therefore, the verification criterion is “less forgiving” than the
falsification criterion.

TABLE 1 | The estimated minimum sample size for a two sample t-test as a

function of test-power (1–β) and effect size δ, given α = 0.05.

δ

(1–β) 0.01 0.2 0.5 0.8

0.4 38,726 97 15 6

0.5 54,111 135 22 8

0.8 123,651 309 49 19

0.95 216,443 541 87 34

Using bar plots to illustrate the distribution of likelihood-
ratios (LRs) for a preliminary verification, Figure 2 shows that

LRs often fall below the threshold (1−β)
α

. However, if data are only
of medium induction quality (α = β = 0.05), we find a large
proportion of LRs > 3. We should therefore not immediately

reject the H1, if
(1−β)

α
< LR > 3, because LR > 3 indicates

some evidence for H1. Instead, we should supply additional data
before evaluating the LR. If we increase the sample by 50% of
its original size, N/2, for instance, but the LR still falls below
the threshold, then we may add yet another N/2, and only then
sum the log-LRs. If this too fails to yield a preliminary H1-
verification (or a H0-verification), then we may still use this
empirical result as a parameter-estimate which future studies
might test.

An important caveat is that the likelihood-ratio measures
the distance between data and hypothesis only indirectly. Even
though the likelihood steadily increases as the mean of data
approaches the effect-size that the H1 postulates, we cannot
infer this distance from the LR alone, but must study the

distribution itself. For otherwise, even if LR ≥
(1−β)

α
, we

would risk verifying the H1 although the observed mean of data
does not originate with the H1-distribution, but with a distinct
distribution featuring a different mean.

Moving beyond RPS-step 5, we can only address this caveat
adequately by constraining the data-points that substantially
verify the H1 to those lying in an acceptable area of
variance around the H1. Table 4 reports the proportion
of preliminarily H1-verifying samples that now fail the
criterion for a substantial H1-verification, and thus amount
to additional false negatives. We can reduce these errors by
increasing the sample size, which generally reduces the error-
probabilities.

To account for the decrease in β after constraining the sample

size in PRS-step 5, of course, the value of the threshold (1−β)
α

now is higher, too. Hence, meeting it becomes more demanding.
RPS-step 6 nevertheless increases our certainty that the data-
mean originates with the hypothesized H1-distribution, and so
increases our certainty in the theoretical parameter.

Table 5 states the proportion of datasets that successfully
complete RPS’s six steps, i.e., preliminary and substantial
discovery (steps 1, 2) as well as preliminary and substantial
falsification and verification (steps 3–6). For data of low to
medium induction quality, we retain a rather large proportion
of false negatives.

TABLE 2 | The proportion P of substantial discoveries, indicated by p-values below the significance level α = 0.05, as a function of the effect-size δ and test-power (1–β).

δ

0.01 0.2 0.5 0.8

(1–β) P(p ≤ α) σ (p) P(p ≤ α) σ (p) P(p ≤ α) σ (p) P(p ≤ α) σ (p)

0.4 0.40 0.23 0.41 0.17 0.31 0.20 0.30 0.19

0.5 0.56 0.14 0.42 0.17 0.49 0.16 0.39 0.17

0.8 0.84 0.07 0.85 0.09 0.76 0.10 0.78 0.10

0.95 0.95 0.03 0.98 0.04 0.98 0.02 0.95 0.03

P(p< α) = proportion of significant results; σ (p) = standard deviation of p-value.
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FIGURE 2 | Illustration of true positives. Bar plots indicate the frequencies of likelihood ratios ( L(d>δ|D)
L(d=0|D)

set in light gray, and L(d=δ|D)
L(d=0|D)

in dark gray) that, respectively,

fall above the criterion (1−β)
α (two leftmost bars), between this criterion and three (two middle bars), and below three (two rightmost bars), as a function of induction

quality of data, provided the H1 is true, under α = 0.05 [itself defined via d and (1–β), the latter here abbreviated as “pow”].

TABLE 3 | The proportion of substantial falsifications and preliminary verifications,

as indicated by the respective likelihood ratio (LR) meeting or exceeding the

threshold LR ≥
(1− β)

α
.

P

(

LR ≥
(1 − β)

α

)

Substantial falsification Preliminary verification

L(d > δ|D)

L(d = 0|D)

L(d = δ|D)

L(d = 0|D)

δ

(1−β) 0.01 0.2 0.5 0.8 0.01 0.2 0.5 0.8

0.4 0.12 0.15 0.11 0.10 0.25 0.17 0.22 0.05

0.5 0.26 0.15 0.19 0.14 0.43 0.23 0.20 0.11

0.8 0.67 0.60 0.60 0.54 0.50 0.57 0.59 0.52

0.95 0.95 0.89 0.83 0.83 0.74 0.76 0.81 0.78

LR, likelihood ratio; D, data.

Simulation 2
Purpose

To reduce the proportion of false negatives, as we saw, we must
increase induction quality of data. Simulation 2 illustrates this by
lowering the error-rates.

Method

Repeating the procedure of Simulation 1, but having tightened
the error-rates from α = β = 0.05 to α = β = 0.01, we

TABLE 4 | The proportion of preliminary verifications as per LR ≥
(1− β)

α
, given

the empirical effect-size d lies outside the interval comprising 95% of expected

values placed around the H1, where
L(d|D)

L(d = δ|D)
>

pdf (P50|d)

pdf (P95|d)
> 4.

P

(

LR ≥
(1 − β)

α
∩

L(d|D)

L(d = δ|D)
> 4

)

L(d = δ|D)

L(d = 0|D)

δ

(1–β) 0.01 0.2 0.5 0.8

0.4 0.07 0.03 0.02 0.00

0.5 0.08 0.05 0.04 0.00

0.8 0.05 0.04 0.05 0.04

0.95 0.05 0.02 0.04 0.02

pdf, Probability density function; P50/P95, 50th/95th percentile.

consequently obtain test-power (1–β) = 0.99. This also tightens
the threshold from LR > 19 to LR > 99. We drop the smallest
effect-size of Simulation 1 (δ = 0.01), for (1–β) = 0.99, after
all, makes NMIN = 432,952 unrealistically large (see note 3).
Simulation 2 therefore comprises three datasets (each with 100
samples) and manipulates the effect-size as δ = [0.2, 0.5, 0.8].

Results and Discussion

For these three effect sizes, Table 6 states NMIN under α = β =

0.01. Again, the larger (smaller) the effect is, the smaller (larger)
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is NMIN. Simulated p-values continue to reflect the test-power
value almost perfectly (see Table 7). Further, the proportion
of preliminary verifications and substantial falsifications (see
Table 8) approaches the proportion of substantial discoveries (see
Table 7).

Under high induction quality of data, also the proportion
of false negative verifications now is acceptable. When applying
the corroboration criterion for a substantial verification, we thus
retain only a very small number of additional false negative
verifications (see Table 9).

Table 10 reports the proportion of simulated datasets that
successfully complete RPS-steps 3–6 in the justification context
(preliminary H0-falsification to substantial H1-verification). As
before, increasing induction quality of data decreases the
proportion of false negative results.

TABLE 5 | The proportion of substantial verifications, after substantial discoveries

and subsequent preliminary verifications were obtained, given the H0 had been

substantially falsified.

δ

(1–β) 0.01 0.2 0.5 0.8

0.4 0.09 0.05 0.04 0.03

0.5 0.20 0.14 0.20 0.15

0.8 0.53 0.47 0.53 0.56

0.95 0.67 0.75 0.73 0.79

TABLE 6 | Sample size for a t-test as a function of δ, given α = β = 0.01.

δ

0.2 0.5 0.8

N 1,082 173 68

TABLE 7 | The proportion of substantial discoveries (indicated by the p-value) as

a function of δ, given α = β = 0.01.

δ

0.2 0.5 0.8

P(p≤α) σ (p) P(p≤α) σ (p) P(p≤α) σ (p)

1 <0.001 0.98 0.004 0.99 0.002

TABLE 8 | The proportion of substantial falsifications and preliminary verifications,

indicated by the respective LR, as a function of δ under α = β = 0.01.

Substantial falsification Preliminary verification

P

(

LR ≥
(1− β)

α

)

L(d > δ|D)

L(d = 0|D)

L(d = δ|D)

L(d = 0|D)

δ

0.2 0.5 0.8 0.2 0.5 0.8

0.97 0.97 0.98 0.90 0.95 0.92

Simulation 3
Purpose

We have so far estimated the probability of true positive and
false negative results as per the LR and the p-value. To estimate
also the probability of false positive results, Simulation 3 assumes
hypothetical effect-sizes and sufficiently large samples to accord
with simulated test-power values.

Method

Simulating four datasets (100 samples each), Simulation 3
matches the sample-size to the test-power values (1–β) = [0.4,
0.5, 0.8, 0.95] for a hypothetical effect-size δ = 0.2. In all datasets,
the simulated true effect-size is δ = 0.

Results and Discussion

Table 11 shows that simulated p-values reflect our predefined
significance level α = 0.05. At this level, a substantial falsification
leads to a similar proportion of false positive results as a
substantial discovery. By contrast, a preliminary verification
decreases the proportion of false positive results to almost zero
(see Table 12). Applying the substantial verification-criterion

TABLE 9 | The proportion of preliminary verifications as per LR ≥
(1− β)

α
, where

the empirical effect size d, however, lies outside the area spanned by the

95%-interval of expected values centered on the H1, and where
L(d|D)

L(d = δ|D)
>

pdf (P50|d)

pdf (P95|d)
> 4.

P

(

LR ≥
(1 − β)

α
∩

L(d|D)

L(d = δ|D)
> 4

)

L(d = δ|D)

L(d = 0|D)

D

0.2 0.5 0.8

0.06 0.04 0.04

pdf, Probability density function; P50/P95 = 50th/95th percentile.

TABLE 10 | The proportion of substantial verifications (subsequent to achieving

substantial discoveries and preliminary verifications), given that the H0 was

substantially falsified under α = β = 0.01.

δ

(1–β) 0.2 0.5 0.8

0.99 0.86 0.86 0.91

TABLE 11 | The proportion of false positives, where the sample size, N, is

obtained by a priori power analysis, given δ = 0.2 and where (1–β) = [0.4, 0.5,

0.8, 0.95].

N P(p≤α) σ

97 0.04 0.29

135 0.03 0.28

309 0.03 0.29

541 0.05 0.29
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even further decreases the probability of false positive results (see
Figure 3).

The preceding simulations suggest that, given the threshold

LR ≥
(1−β)

α
, the proportion of false negative results remains

too large. One might therefore lower the threshold to 3 <

LR <
(1−β)

α
, which still indicates some evidence for the H1 (see

Figure 2). Whether this new threshold reduces the proportion
of false negative results unproblematically directly depends on
the proportion of false positives. Compared to the case of
falsification, however, we now retain a larger proportion of false
positives (see Table 13 and Figure 3).

As we combine the threshold LR ≥
(1−β)

α
with the substantial

verification-criterion, the previous simulations retained a rather
large proportion of false negative results. However, this increase
occurs only if data are of low to medium induction quality. If
induction quality approaches α = β = 0.01, by contrast, then
the proportion of both false positive and false negative results
decreases to an acceptable minimum. Hence, we may falsify the
H0 and simultaneously verify the H1.

Simulation 4
Purpose

Simulations 1–3 confirmed a simple relation: increasing
induction quality of data decreases the proportion of false
positive results. Where an actual experimental manipulation

TABLE 12 | The proportion of false substantial falsifications and false preliminary

verifications using LR ≥
(1− β)

α
.

P

(

LR ≥
(1 − β)

α

)

Substantial falsification Preliminary verification

N
L(d > δ|D)

L(d = 0|D)

L(d = δ|D)

L(d = 0|D)

97 0.09 0.00

135 0.04 0.00

309 0.03 0.00

541 0.04 0.01

fails to produce its expected result, this relation may now tempt
researchers to post-hoc manipulate induction quality of data,
by shedding some of the “failing” data-points. Simulation 4
investigates the consequences of this move.

Method

Using the samples from Simulation 4, we remove from each
sample the 10% of data that score lowest on the dependent
variable, thus least support the H1, and then re-assess the
proportion of false positive findings.

Results and Discussion

Rather than increase induction quality of data, this post-
hoc manipulation produces the opposite result: it raises the
proportion of false positive results. On all of our criteria, indeed,
shedding the 10% of data that least support the focal hypothesis
increases the error-rates profoundly (see Table 14).

Published data, of course, do not reveal whether someone shed
parts of them. Where this manipulation occurs but one cannot
trace it reliably, this risks that others draw invalid inferences. For
this reason alone, sound inferences should rely on the aggregate
results of independent studies (This assumes that data shedding
is not ubiquitous). As RPS’s favored aggregation method, we
therefore simulate a log-likelihood-addition of such results.

Simulation 5
Purpose

We generally advocate high induction quality of data. Collecting
the sizable NMIN (that particularly laboratory studies require)
to meet test-power = 0.99 (or merely 0.95), however, can

TABLE 13 | The proportion of false preliminary verifications using LR = 3.

N P

(

L(d = δ|D)

L(d = 0|D)
> 3

)

97 0.10

135 0.09

309 0.07

541 0.00

FIGURE 3 | Illustration of false positives. Bar plots indicate the frequency of likelihood ratios ( L(d>δ|D)
L(d=0|D)

in light gray and L(d=δ|D)
L(d=0|D)

in dark gray) repeatedly falling above

the criterion
(1− β)

α
, between the criterion and three, and below three, as a function of the sample size, provided the H0 is true.
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TABLE 14 | The proportion of false substantial falsifications and false preliminary

verifications, given one had obtained a preliminary discovery (as per the p-value

and LR), after 10% of least hypothesis supporting data were removed.

P

(

LR ≥
(1 − β)

α

)

Substantial falsification Preliminary verification

N P(p ≤ α)
L(d > δ|D)

L(d = 0|D)

L(d = δ|D)

L(d = 0|D)

87 0.36 0.24 0.19

121 0.40 0.25 0.18

287 0.80 0.58 0.47

487 0.95 0.87 0.80

quickly exhaust an individual research group’s resources (see
Lakens et al., 2018)8. In fact, we often have no other choice
but to aggregate comparatively “soft” (underpowered) data from
multiple studies. Aggregate data, of course, must reflect the trust
each dataset deserves individually. We therefore simulate the
addition of logarithmic LRs (log-LRs) for data of low to medium
test-power.

Method

We add the log-LRs as per the low-powered samples of
Simulation 1, then assess the proportions of samples that meet
the criteria of each RPS-step. Notice that this is the only way to
conduct a global hypothesis-test that combines individual studies
safely (It is nevertheless distinct from a viable meta-analytic
approach; see Birnbaum, 1954).

Results and Discussion

Table 15 shows that the log-LRs of three low-powered studies
under (1–β) = [0.4, 0.5, 0.8] aggregate to one medium-powered
study under (1–β)= 0.95 (seeTable 3), because the three samples
sum to NMIN for a substantial discovery under (1–β) = 0.95.
The probability of correctly rejecting the H0 thus approaches 1,
whereas the proportion of preliminary verifications is not much
larger than for each individual study (see Table 3; last row). This
means individual research groups can collect fewer data points
than NMIN. Thus, log-LR addition indeed optimizes a substantial
H0-falsification.

Simulations 1–5 recommend RPS primarily for its desirably
low error-rates, which to achieve made induction quality of
data and likelihood-ratios central. Particularly Simulation 5
shows why log-likelihood-ratio addition of individually under-
powered studies can meet the rigorous test-power demands

8Governing the praxis of enlarging the sample until we reach sufficient test-power

is the assumption that the focal theoretical parameter is the mean at the group

level, whereas participant behavior at the individual level fluctuates randomly. If

we instead focus on the potential non-random variation at the individual level, of

course, then it is not the size of the sample (number of participants) that counts, but

the number of repeated measurements we perform on a single participant. With

a “small-N design,” indeed, the population is the single participant (see Smith and

Little, 2018). Provided our indicators are valid and reliable, repeatedmeasurements

on a single participant may in fact detect idiosyncratic influences that averaging at

the group level could distort. But rather than offer an alternative to large sample

research, a small-N design serves a distinct purpose, and so complements large

sample research.

TABLE 15 | The proportions of LR ≥
(1− β)

α
when adding the log(LR) of

individually underpowered studies featuring (1–β) = [0.4, 0.5, 0.8].

P

(

∑

log(LR) ≥ log

(

(1 − β)

α

))

δ

0.01 0.2 0.5 0.8

Preliminary verification
L(d = δ|D)

L(d = 0|D)

0.71 0.73 0.75 0.74

Substantial falsification
L(d > δ|D)

L(d = 0|D)

0.99 1 1 1

of the justification context, viz. (1–β) = 0.95, or better yet
(1–β)= 0.99.

DISCUSSION

As an alternative to testing the H1 against H0 = 0, we may
pitch it against H0 = random. Following a reviewer’s suggestion,
we therefore also simulated testing the mean-difference between
the treatment- and the control-group against the randomly
varying mean-difference between the control-group and zero.
Compared to pitching the H1 against H0 = 0, this yields a
reduced proportion of false negatives, but also generates a higher
proportion of false positives.

Since our sampling procedure lets the mean-difference
between control group and zero vary randomly around zero,
the increase in false positives (negatives) arises from the control
group’s mean-difference falling below (above) zero in roughly
50% of all samples. This must increase the LR in favor of the H1

(H0). With respect to comparing group-means, however, testing
theH1 againstH0 = random does not prove superior to testing it
against H0 = 0, as in RPS.

In view of RPS, if induction quality of data remains low
(α = β > 0.05), then we cannot hope to either verify or falsify
a hypothesis. This restricts us to two discovery context-activities:
making a preliminary or a substantial discovery (RPS-step 1, 2).
After all, since both discovery-variants arise from estimating
p(D,H), this rules out hypothesis-testing research, which instead
estimates L(H|D).

By contrast, achieving medium induction quality (α =

β ≤ 0.05) meets a crucial precondition for justification context-
research. RPS can now test hypotheses against “hard” data
by estimating L(H|D). Specifically, RPS tests a preliminary,
respectively a substantial H0-falsification (RPS-steps 3, 4), by

testing if L(d>0|D)
L(d=0|D) , respectively

L(d=δ|D)
L(d=0|D) , exceeds

(1−β)
α

. If the

latter holds true, then we can test a preliminary verification of the
theoretical effect-size H1-hypothesis (RPS-step 5) as to whether
L(d=δ|D)
L(d=0|D) exceeds

(1−β)
α

. If so, then we finally test a substantial H1-

verification (RPS-step 6)—here using the ratio of the MLE of data
and the likelihood of the H1(d=δ)—as to whether δ falls within
the 95%-interval centered on the MLE [If not, we may adapt
H1(d=δ) accordingly, provided both theoretical and empirical
considerations support this].
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As we saw, RPS almost eliminates the probability of a false
positiveH1-verification. If data are of medium induction quality,
moreover, then the probability of falsely rejecting the H1 lies
in an acceptable range, too (This range is even slightly smaller
than that for false positive verifications). However, lowering the

threshold (1−β)
α

to decrease the probability of false negatives
will increase the probability of false positives. In balancing false
positive with false negative H1-verifications, then, we face an
inevitable trade-off.

To increase the probability of false positives is generally more
detrimental to a study’s global outcome than to decrease the
probability of false negatives. After all, since editors and reviewers
typically prefer significant results (p < α = 0.05), non-significant
results more often fail the review process, or are not written-
up (Franco et al., 2014). This risks that the community attends
to more potentially false positive than potentially false negative
results9. That researchers should reduce this risk thus speaks
decisively against lowering the threshold. To control the risk,
moreover, it suffices to increase induction quality of data by
adding additional samples until N = NMIN.

In psychology as elsewhere today, the standard mode
of empirical research clearly differs from what RPS
recommends; particularly induction quality (test-power)
appears underappreciated. Yet, what besides a substantial
H1-verification can provide a statistical warrant to accept a H1

that aptly pre- or retrodicts a phenomenon? Likewise, only a
substantial H0-falsification can warrant us in rejecting the H0

(For reasons given earlier, p-values alone will not do).
The discovery context as RPS’s origin and the justification

context as its end, RPS employs empirical knowledge to gain
theoretical knowledge. A theory is generallymore informative the
more possible states-of-affairs it rules out. The most informative
kind of theory, therefore, lets us deduce hypotheses predicting
precise (point-specified) empirical effects—effects we can falsify
statistically10. Obvious candidates for such point-values are those
effects that “hard” data support sufficiently. RPS’s use of statistical
inference toward constructing improved theories thus reflects
that, rather than one’s statistical school determining the most
appropriate inference-element, this primarily depends on the
prior state of empirical knowledge we seek to develop.

Such prior knowledge we typically gain via meta-analyses
that aggregate the samples and effect-sizes of topically related

9Things might look different if, next to a truth-criterion (based on error

probabilities), we employ external utilities, too (Miller and Ulrich, 2016). Even

where we can motivate such utilities unproblematically, we must ever compare

the empirical proportions of simulated false positive results vs. false negative

substantial verifications. Under medium induction quality (α = β = 0.05), the

odds-ratio roughly is 1:5, under high induction quality (α = β = 0.01) it is 1:10. To

compare with the proportion of substantial discoveries and substantial falsifications,

under medium induction quality the odds-ratio decreases to about 1:2; under high

induction quality nearly to 1:1. As we saw in the previous section, the asymmetry

itself arises from comparing a point-parameter in case of false negatives, with a

distributed-parameter (an interval) in case of false positives.
10If we are uncertain which point-hypothesis best specifies a theoretical parameter,

then we may generalize the parameter from a point- to an interval-hypothesis.

The interval’s end-points thus state distinct (hypothetical) effect-sizes; the middle

point qualifies as a theoretical assumption. To achieve constant induction quality,

of course, we must confront each end-point with its appropriate sample size. To

this end, log-likelihood-addition lets us increase the sample associated to the larger

effect-size until we reach the appropriate sample-size for the smaller effect-size.

object-level studies. These studies either estimate a parameter
or test a hypothesis against aggregated data, but typically are
individually underpowered. Ameta-analysis now tends to join an
estimated combined effect-size of several studies, one on hand,
with the estimated sum of their confidence intervals deviating
from theH0, on the other. This aggregate estimate, however, thus
rests on data of variable induction quality. A similar aggregation
method, therefore, can facilitate only a parameter-estimation, but
it will not estimate L(H|D) safely.

A typical meta-analysis indeed ignores the replication-
probability of object-level studies, instead considering only the
probability of data, p(D,H)11. This makes it an instance of
discovery context-research. By contrast, log-likelihood-addition
is per definition based on trustworthy data (of high induction
quality), does estimate L(H|D) safely, and hence is an instance of
justification context-research (see sections Three Measures and
Discussion).

RPS furthermore aligns with the registered replication
reports-initiative (RRR), which aims at more realistic empirical
effect-size estimates by counteracting p-hacking and publication
bias (Bowmeester et al., 2017). Indeed, RPS complements RRR.
Witte and Zenker’s (2017a) re-analysis of Hagger et al.’s (2016)
RRR of the ego-depletion effect, for instance, strengthens the
authors’ own conclusions, showing that their data lend some 500
times more support to the H0(d=0.00) than to the H1(d=0.20).

Both RRR and RPS obviously advocate effortful research.
Though we could coordinate such efforts across several research
groups, current efforts are broadly individualistic and tend to
go into making preliminary discoveries. This may yield a more
complex view upon a phenomenon. Explaining, predicting,
and intervening, however, all require theories with substantially
verified H1-hypotheses as their deductive consequences. Again,
constructing a more precise version of such a theory is RPS’s
main aim. Indeed, we need something like RPS anyways. For
we can statistically test hypotheses by induction [see section
The Research Program Strategy (RPS)], but we cannot outsource
theory-construction to induction.

FREQUENTISM VS. BAYESIANISM VS. RPS

A decisive evaluative criterion is whether an inference strategy
leads to a rigorously validated, informative theory. Researchers
can obviously support this end only if their individual actions
relate to what the research community does as a whole. At the
same time, each researcher must balance her own interests with
those of others. Hence, we exercise “thrift” when collecting small
samples, but also publish the underpowered results this generates
to further our careers.

Reflecting the research community’s need for informative
theories, most journals require that a submitted manuscript
report at least one statistically significant effect—that is, a
preliminary discovery à la NHST (For an exception, see Trafimow,

11Here, we can neither discuss meta-analysis as a method, nor adequately address

the replication of empirical studies. We show elsewhere how to statistically

establish hypotheses by integrated efforts, particularly addressing Bem’s psi-

hypothesis (Witte and Zenker, 2017b) and the ego-depletion effect (Witte and

Zenker, 2017a).
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2014). Given this constraint, the favored strategy to warrant our
publication activities seemingly entails conducting “one-shot”-
experiments, leading to many papers without integrating their
results theoretically.

That strategy’s probably best defense offers three supporting
reasons: (i) the strategy suffices to discover non-random effects;
(ii) non-random effects matter in constructing informative
theories; (iii) themore such discoveries the merrier. However, (i)
is a necessary (rather than a sufficient) reason that the strategy is
apt; (ii) is an insufficient supporting reason, for non-randomness
matters but test-power counts (Witte and Zenker, 2018); and
(iii) obviously falls with (ii). Therefore, this defense cannot
sufficiently support that the strategy balances the interests of
all concerned parties. Indeed, the status quo strongly favors the
individual’s career aspirations over the community’s need for
informative theories.

The arguably best statistical method to make a discovery
remains a Fisher-test (For other methods, see, e.g., Woodward,
1989; Haig, 2005). It estimates the probability of an empirical
effect given uncontrollable, but non-negligible influences. This
probability meeting a significance-threshold such as p(H,D) <

α = 0.05, as we saw, is a necessary and sufficient condition for
a preliminary discovery (RPS-step 1). Though this directs our
attention to an empirical object, it also exhausts what NHST
by itself can deliver. Subsequent RPS-steps therefore employ
additional induction quality measures, namely the effect-size
(steps 2–5) and offer a new way of using confidence intervals
(step 6).

Recent critiques of NHST give particular prominence
to Bayesian statistics. As an alternative to a classical
t-test, for instance, many promote a Bayesian t-test. This
states the probability-ratio of data given a hypotheses-pair,
p(D|H1)/p(D|H0), a ratio that is known as the “Bayes factor”
(Rouder et al., 2009;Wetzels et al., 2011). If the prior probabilities
are identical, p(H1) = p(H0) = 0.50, then the Bayes factor is
the likelihood-ratio of two point-hypotheses, L(H1|D)/L(H0|D).
Indeed, RPS largely is coextensive with a Bayesian approach as
concerns the hypothesis space.

But Bayesians must also operate in the data space, particularly
when selecting data-distributions as priors for an unspecified
H1. Such substantial assumptions obviously demand a warrant.
For the systematic connection between the Bayes-factor and the
p-value of a classical t-test is that “default Bayes factors and p-
values largely covary with each other” (Wetzels et al., 2011, 295).
The main difference is their calibration: “p-values accord more
evidence against the null [hypothesis] than do Bayes factors”
(ibid).

The keyword here is “default.” For the default prior
probabilities one assumes matter when testing hypotheses. In
fact, not only do Bayesians tend to assign different default priors
to the focal H0 and the H1; they also tend to distribute (rather
than point-specify) these priors. As Rouder et al. (2009, 229)
submit, for instance, “[. . . ] we assumed that the alternative
[hypothesis] was at a single point”—an assumption, however,
which allegedly is “too restrictive to be practical” (ibid). Rather,
it be “more realistic to consider an alternative [hypothesis] that
is a distribution across a range of outcomes” (ibid), although
“arbitrarily diffuse priors are not appropriate for hypothesis

testing” (p. 230) either. This can easily suggest that modeling
a focal parameter’s prior probability distributively would be the
innocent choice it is not.

After all, computing a Bayesian t-test necessarily incurs not
only a specific prior data-distribution, but also a point-specified
scaling factor. This factor is given by the prior distributions of the
focal hypotheses, i.e., as the ratio p(H1)/p(H0) [see our formula
(1), section Three Measures]. Prior to collecting empirical data,
therefore, p(H1)/p(H0)< 1 reflects a (subjective) bias pro theH0–
which lets data raise the ratio’s denominator—while p(H1)/p(H0)
> 1 reflects a preference contra the H0.

If the priors on the H0 and the H1 are unbiased, by
contrast, then the scaling factor “drops out.” It thus qualifies
as a hidden parameter. Alas, unbiased priors are the exception
in Bayesian statistics. A default Bayesian t-test, for instance,
normally assumes both a Cauchy distribution and a scaling
factor of 0.707. Both assumptions are of the same strength as
the assumptions that RPS incurs to point-specify the H1. The
crucial difference, however, is that the two Bayesian assumptions
concern the data space, whereas RPS’s assumptions pertain to the
hypotheses space.

Unlike RPS’s assumptions, the two Bayesian assumptions thus
substantially influence the shape of possible data. For the scaling
factor’s value grounds in the type of the chosen prior-distribution,
which hence lets the Bayes factor vary noticeably. Different
default priors can thus lead to profound differences as to whether
data corroborate the H0- or the H1-hypothesis

Moreover, a Bayesian t-test’s result continues to depend on the
sample size, and lacks information on the replication-probability
of data given a true hypothesis.

The most decisive reason against considering a standard
Bayesian approach an all-things-considered best inference
strategy, finally, is that it remains unclear how to sufficiently
justify this or that scaling factor, or distribution, not only “prior
to analysis[, but also] without influence from [sic] data” (Rouder
et al., 2009, 233; italics added). Indeed, the need to fix a Bayesian t-
test’s prior-distribution alone already fully shifts the decision—as
to the elements an inference strategy should (not) specify—from
the hypotheses space to the data space. This injects into the debate
a form of subjectivity that point-specifying the H1 would instead
make superfluous.

One should therefore treat a Bayesian t-test with utmost
caution. For rather than render hypothesis testing simple and
transparent, a Bayesian t-test demands additional efforts to bring
its hidden parameters and default priors back into view. We
would hence do well to separate our data exploration-strategy
clearly from our hypothesis-testing machinery. The Bayesian
approach, however, either would continue not to mark a clear
boundary or soon look similar to RPS’s hybrid-approach12.

12Schönbrodt and Wagenmakers’s (2018) recent Bayes factor design analysis

(BFDA), for instance, clearly recognizes the need to first plan an empirical

setting, to only then evaluate the degree to which actual data falsify or verify

a hypothesis statistically. This same need lets RPS characterize the setting via

induction quality of data. While the planning stage is independent of the analysis

stage, RPS’s Wald-criterion not only provides a bridge between them, it also

functions as a threshold with known consequences. Unlike BFDA and similar

Bayesian approaches, however, RPS avoids setting subjective priors and relies solely

on the likelihood-function.
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To summarize the advantages RPS offers over both a pure
Frequentist and a standard Bayesian approach:

(i) RPS uses NPTT to determine the minimum sample size,
NMIN, that suffices to conduct research under at least
medium induction quality of data (α = β < 0.05);

(ii) the RPS hypothesis corroboration-threshold is sensitive to
both errors (α, β);

(iii) to facilitate an aggregate hypothesis-evaluation (balancing
resource restrictions with career aspirations), RPS uses log-
likelihood-addition to integrate individually underpowered
studies.

RPS thus makes explicit why a statistical result depends on the
sample-size, N. Using a point-alternative hypothesis particularly
shows that the Bayes-factor varies with N, which otherwise
remains “hidden” information. Throughout RPS’s six steps, the
desirably transparent parameter to guide the acceptance or
rejection of a hypothesis (as per Wald’s criterion) is induction
quality of data (test-power).

Finally, notice that the “new statistics” of Cumming (2013)
only pertains to the data space. As does Benjamin et al.’s (2018)
proposal to lower α drastically. For it narrowly concerns a
preliminary discovery (RPS-step 1), but leaves hypothesis-testing
unaddressed (also see Lakens et al., 2018). To our knowledge,
no equally appropriate and comprehensive strategy currently
matches the inferential capabilities that RPS offers (Wasserstein
and Lazar, 2016).

CONCLUSION

RPS is a hybrid-statistical approach using tools from several
statistical schools. Its six hierarchical steps lead from a
preliminary H1-discovery to a substantial H1-verification. Each
step not only makes a prior empirical result from an earlier step
more precise, our simulations also show that completing RPS’s
six steps nearly eliminates the probability of false positive H1-
verifications. If data are of medium induction quality, moreover,
then also the probability of falsely rejecting the H1 lies in an
acceptable range.

Having simulated a broad range of focal parameters (α, β ,
d, N), we may extrapolate to implicit ranges safely. This lets

us infer the probable error-rates of studies that were conducted
independently RPS and thus allows estimating how trustworthy
a given such result is. The online-tool we supply indeed makes
this easy.

We advocate RPS primarily for the very low error-rates of its
empirical results (Those feeling uncertain about such RPS-results
may further increase the sample, to obtain yet lower error-
rates). Moreover, an integration of individually underpowered
studies via log-likelihood-addition not only is meaningful, it can
also meet the test-power demands of the justification context.
Therefore, research groups may cooperate such that each group
collects fewer that the minimum number of data points.

Null-hypothesis significance testing by itself can at most
deliver a preliminary discovery (RPS-step 1). This may motivate
new research questions, which for RPS is merely an intermediate
goal; the aim is to facilitate theory development and testing. Since
most current research in psychology as elsewhere stops at RPS-
step 1, however, this cannot suffice to construct well-supported
and informative theories. Indeed, that an accumulation of
preliminary discoveries could lead to a well-supported theory
ever remains a deeply flawed idea.
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