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Purpose: Prior research has demonstrated that the postpartum period is associated
with an increased risk of cognitive impairment. This study aims to investigate whether
disrupted spontaneous neural activity exists in postpartum women without depression
using resting-state functional magnetic resonance imaging (rs-fMRI) and to detect the
relationship between these abnormalities and cognitive impairment.
Materials and Methods: Postpartum women (n = 22) were compared with age-
OPEN ACCESS and education-matched nulliparous women (n = 23) using rs-fMRI. We calculated the
Edited b amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) values
e A . . .
Changiz Moh,yedd,,’,;] to evaluate spontaneous neural activity and detect the relationship between rs-fMRI data
Northeastern University, United States and cognitive performance.
Regf;’;; ‘;; " Results: Relative to nulliparous women, postpartum women had significantly decreased
Nanjing Drum Tower Hospital, China  ALFF and ReHo values primarily in the left posterior cingulate cortex (PCC) and prefrontal
- Xaliang,  cortex and increased ALFF values in left cerebellar posterior lobe. We found a positive
Harbin Institute of Technology, China . . .
«Correspondence: correlation between the ALFF and ReHo values in the PCC and the complex figure
J,»a,,_P,ngGL} test (CFT)-delayed scores in postpartum women (r = 0.693, p = 0.001; r = 0.569,
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p = 0.011, respectively). Moreover, the clock-drawing test (CDT) scores showed positive
correlations with the ALFF and ReHo values in the right superior frontal gyrus (SFG;
r=0.492, p =0.033; r =0.517, p = 0.023, respectively).

Conclusion: Our combined ALFF and ReHo analyses revealed decreased spontaneous
neural activity, mainly in the PCC and prefrontal cortex, which was correlated with
specific impaired cognitive functioning in postpartum women. This study may elucidate
the neurophysiological mechanisms underlying postpartum cognitive impairment and
enhance our understanding of the neurobiological aspects of the postpartum period.
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INTRODUCTION

Postpartum women experience a multitude of physical and environmental changes and are at
risk of developing worsening of underlying affective disorders (Munk-Olsen et al., 2009, 2012;
Agrati and Lonstein, 2016; Esscher et al., 2016; Gingnell et al., 2017). Furthermore, the postpartum
period has been linked with an increased risk of cognitive impairment, which primarily presents
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as poor memory or recent memory loss, forgetfulness, difficulty
concentrating, and distractibility (Christensen et al, 2010;
Postma et al., 2014; Albin-Brooks et al., 2017). Alterations
in hormone levels, such as estrogen, progesterone, and
glucocorticoid levels, may result in cognitive impairment
during the postpartum period (Henry and Sherwin, 2012).
Previous studies have indicated that women during the
postpartum period have significant cognitive deficits that may
occur prior to affective disorder (Christensen et al., 2010; Postma
et al,, 2014; Meena et al., 2016). Postpartum-related cognitive
impairment may play a major role in various postpartum
psychiatric disorders (Henry and Rendell, 2007; Chan et al., 2015;
Hoekzema et al., 2017). However, most studies are focusing on
the postpartum associated affective disorders such as depression
and anxiety, while few studies have compared the cognitive
function and behavioral problems in postpartum women
without affective disorders. Moreover, the neuropathological
mechanism of postpartum cognitive impairment still remains
largely unknown.

Neuroimaging techniques have been applied to investigate
the anatomical and functional alterations in the brain in
postpartum women. Gray matter (GM) atrophy and white matter
(WM) lesions, which are common structural abnormalities
that have been observed in previous studies, are modestly
linked with postpartum cognitive decline (Kim et al., 2010;
Postma et al, 2014; Hoekzema et al, 2017). Hoekzema
et al. (2017) demonstrated that primiparous women underwent
a symmetrical pattern of extensive GM volume reductions
throughout pregnancy, which primarily affected the anterior
and posterior cortical midline and bilateral lateral prefrontal
and temporal cortex. The GM reductions endured for at least
2 years post-pregnancy (Hoekzema et al., 2017). Nevertheless,
little is known concerning the complex neurophysiological
activity in the central nervous system of postpartum women.
Neural abnormalities have been detected in populations at risk
for developing cognitive impairment (Machulda et al., 2011).
Therefore, measures of neural activity could conceivably be used
to detect and track the potential effects of postpartum cognitive
impairment on brain function.

Prior studies have used task-based functional magnetic
resonance imaging (fMRI) to examine the effects of emotion
reactivity on brain activity during the postpartum period
(Gingnell et al., 2015, 2017). Resting-state fMRI (rs-fMRI) is a
powerful tool for evaluating spontaneous neural activity (Mantini
et al,, 2007; Lee et al,, 2013) and rs-fMRI has been used to
investigate the disrupted functional connectivity network in
postpartum depressed women (Xiao-juan et al., 2011; Chase et al.,
2013; Deligiannidis et al., 2013; Fisher et al.,, 2016). However,
very few studies have investigated the spontaneous brain activity
in postpartum women without depression and its effects on
cognitive function.

The amplitude of low-frequency fluctuation (ALFF) and
regional homogeneity (ReHo) are two major data-driven
algorithms for local measure of spontaneous neural activity.
ALFF measures the amplitude of very low-frequency oscillations
of the blood oxygenation level-dependent (BOLD) signal at
the single-voxel level (Zang et al, 2007), whereas ReHo

analyzes the neural synchronization of a given voxel with
its adjacent voxels, i.e., local neural synchrony (Zang et al,
2004). The combination of ALFF and ReHo may provide a
more comprehensive pathophysiological assessment of human
brain dysfunction than either method alone. Therefore, we took
advantage of the two most common methods for whole-brain
analyses to identify the spontaneous neural activity in postpartum
women.

On the basis of prior work and theoretical considerations, we
aimed to combine ALFF and ReHo to explore the spontaneous
neural activity in postpartum women compared with that in
nulliparous women and hypothesized that (1) aberrant ALFF and
ReHo values would be identified within several brain regions
involved in emotional processing, attention, and cognitive
function and (2) disrupted spontaneous neural activity would be
associated with impaired cognitive performance.

MATERIALS AND METHODS

Subjects

This study was approved by the Research Ethics Committee of
the Nanjing Medical University. All individuals provided written
informed consent before their participation in the study protocol
(Reference No. 2016067).

In this study, a total of 46 subjects (aged between 20 and 40
years, all right-handed with the completion of at least 9 years of
education) made up of 23 postpartum women and 23 nulliparous
women were included through community health screening
and newspaper advertisements. One postpartum woman was
subsequently excluded because of the exceeded limits for head
motion during scanning. All the postpartum women were
primiparous and medication free and had delivered a healthy
and full-term infant in the preceding 3 months. None of the
women experienced any complications during pregnancy or
delivery, such as hypertension, diabetes, eclampsia, heart disease,
or postpartum hemorrhage. Among them, 11 women had natural
childbirth and the other 11 chose caesarean section. Sixteen
women were breastfeeding and the other six women were mix-
feeding.

Eight of the women carried a boy and 12 a girl. The
remaining 2 had twins (1 had male twins and 1 had female
twins). Considering the previously reported effects of fetal sex
on cognitive changes in pregnant women (Vanston and Watson,
2005), we additionally compared the women carrying a boy to
the women carrying a girl (excluding the two women having
twins). No differences in structural and functional alterations
were observed between the two groups.

Women were excluded from the study if they had severe
smoking, alcoholism, stroke, brain trauma, Parkinson’s disease,
Alzheimer’s disease, major depression, epilepsy, neuropsychic
disorders that could affect cognitive function, major medical
illness (e.g., anemia, thyroid dysfunction, and cancer), MRI
contraindications, or were currently pregnant. None of the
postpartum women had symptoms of postnatal depression
according to the Edinburgh Postnatal Depression Scale (EPDS,
overall scores < 12; Cox et al, 1987). Moreover, none
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of the included participants had accompanying symptoms
including depression and anxiety, according to the Self-Rating
Depression Scale (SDS) and Self-Rating Anxiety Scale (SAS;
overall scores < 50, respectively; Zung, 1971, 1986). The
characteristics of the postpartum women and nulliparous women
are summarized in Table 1.

Clinical Data and Neuropsychological

Assessment
To exclude the hyperglycemia and hyperlipidemia at the time
of examination, blood samples of all of the participants were
collected after an 8-h fast by venipuncture at 8 A.M. to assess
the levels of fasting plasma glucose (FPG), triglycerides, total
cholesterol, low-density lipoprotein (LDL)-cholesterol, and high-
density lipoprotein (HDL)-cholesterol.

All subjects underwent a battery of neuropsychological tests
that covered related cognitive domains. The neuropsychological

TABLE 1 | Demographics, clinical, and cognitive characteristics of the postpartum
women and nulliparous women.

Postpartum Nulliparous p value

women women

(n=22) (n=23)
Age (year) 29.32 +£2.93 29.43 + 3.87 0.910
Education levels (years) 17.09 £1.77 17.35 £ 3.04 0.732
Fasting glucose (mmol/L) 4.85+0.47 481 £0.35 0.795
Triglycerides (mmol/L) 4.45 +0.74 414 +0.58 0.122
Total cholesterin (mmol/L) 0.99 + 0.40 0.80 +£0.30 0.073
LDL-cholesterin (mmol/L) 2.54 +£0.62 2.34 +£0.48 0.240
HDL-cholesterin (mmol/L) 1.48 +£0.33 1.38 +£0.24 0.244
WM hyperintensity 0(0-1) 0(0-2) 0.637
FD value 0.21 4+ 0.06 0.20 £ 0.07 0.904
Cognitive performance
MMSE 28.95 + 0.95 29.22 +0.80 0.319
MoCA 26.14 £ 117 26.30 £ 1.11 0.622
AVLT 34.27 +£8.78 33.78 £ 7.37 0.840
AVLT-delayed recall 7.27 £219 6.52 +1.88 0.223
CFT 34.68 + 1.57 34.41 £1.87 0.605
CFT-delayed recall 16.45 + 3.11 18.22 £1.44 0.022*
DST 15.00 + 3.24 13.74 £ 2.91 0.176
TMT-A 44.09 +9.20 48.70 + 9.62 0.108
TMT-B 83.59 + 15.18 90.26 + 10.66 0.098
CcDT 3.18 £ 0.59 3.57 £ 0.51 0.024*
VFT 156.55 + 3.40 14.46 + 3.11 0.269
DSST 69.82 +£9.72 69.70 + 8.08 0.963
EPDS 418 £ 2.52 - -
SDS 38.50 £ 6.15 38.09 + 5.88 0.819
SAS 40.23 +7.35 38.78 £ 7.08 0.505

Data are represented as mean + SD or median (range). *p value < 0.05.
LDL, low-density lipoprotein; HDL, high-density lipoprotein; WM, white matter;
FD, framewise displacement; MMSE, Mini Mental State Exam, MoCA, Montreal
cognitive assessment; AVLT, auditory verbal learning test; CFT, complex figure
test; DST, digit span test; TMT-A, trail-making test — Part A; TMT-B, trail-making
test — Part B; CDT, clock-drawing test; VFT, verbal fluency test; DSST, digit symbol
substitution test; EPDS, Edinburgh Postnatal Depression Scale; SDS, Self-Rating
Depression Scale; SAS, Self-Rating Anxiety Scale.

status of the participants was established using the Mini Mental
State Exam (MMSE; Galea and Woodward, 2005), Montreal
cognitive assessment (MoCA; Nasreddine et al., 2005), auditory
verbal learning test (AVLT; Schmidt, 1996), complex figure test
(CFT; Shin et al, 2006), digit span test (DST; Hale et al,
2002), trail-making test (TMT) A and B (Bowie and Harvey,
2006), clock-drawing test (CDT; Samton et al, 2005), verbal
fluency test (VFT; Brucki and Rocha, 2004), and digit symbol
substitution test (DSST; Bettcher et al., 2011). The tests assessed
general cognitive function, episodic verbal and visual memory,
semantic memory, attention, psychomotor speed, executive
function, and visuospatial skills. It took approximately 60 min
for each individual to complete all of the tests in a fixed
order.

MRI Data Acquisition

All subjects were scanned using a 3.0 Tesla MRI scanner
(Ingenia, Philips Medical Systems, Netherlands) with an eight-
channel receiver array head coil. Head motion and scanner noise
were alleviated using foam padding and earplugs. The earplugs
(Hearos Ultimate Softness Series, United States) were used to
attenuate scanner noise by approximately 32 dB based on the
manufacture’s data sheet. Subjects were instructed to lie quietly
with their eyes closed and without falling asleep, not to think
about anything in particular, and to avoid any head motion
during the scan. Functional images were acquired axially using
a gradient echo-planar imaging sequence as follows: repetition
time (TR), 2000 ms; echo time (TE), 30 ms; slices, 36; thickness,
4 mm; gap, 0 mm; flip angle (FA), 90°; field of view (FOV),
240 mm x 240 mm; and acquisition matrix, 64 x 64. Structural
images were acquired with a three-dimensional turbo fast echo
(3D-TFE) T1WI sequence with high resolution as follows:
TR/TE, 8.2/3.8 ms; slices, 170; thickness, 1 mm; gap, 0 mm; FA,
8; acquisition matrix, 256 x 256; and FOV, 256 mm x 256 mm.
Fluid-attenuated inversion recovery (FLAIR) scans were also
acquired: TR/TE, 7000/120 ms; slices, 18; thickness, 6 mm; gap,
1.3 mm; FA, 110°; and voxel size, 0.65 mm x 0.95 mm x 6 mm.

Functional Data Preprocessing

Functional data analyses were conducted using the Data
Processing Assistant for Resting-State fMRI (DPARSF) programs
(Yan and Zang, 2010) based on statistical parametric mapping
(SPM8') and the rs-fMRI data analyses toolkits (REST?). The first
10 volumes were removed from each time series to account for the
time it took participants to adapt to the scanning environment.
Slice timing and realignment for head-motion correction were
then performed for the remaining 230 images. Participant
data exhibiting head motion >2.0 mm translation or >2.0°
rotation were excluded from analysis. The remaining dataset
was spatially normalized to the Montreal Neurological Institute
template (resampling voxel size = 3 mm x 3 mm X 3 mm).
Qualified images were processed using a linear trend and band-
pass filtering (0.01-0.08 Hz). Any subjects with a head motion

Uhttp://www.filion.ucl.ac.uk/spm
Zhttp://www.restfmri.net
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>2.0 mm translation or a 2.0° rotation in any direction were
excluded.

ALFF and ReHo Analyses

For ALFF analysis, the images were first smoothed with a
Gaussian kernel of 8 mm full-width at half-maximum (FWHM).
Next, the time series were first transformed to the frequency
domain using a fast Fourier transform. The square root was then
computed at each frequency of the power spectrum. ALFF values
were acquired after the calculation at each frequency of the power
spectrum across 0.01-0.08 Hz at each voxel. For standardization
purposes, the ALFF of each voxel was divided using the global
mean ALFF value. ALFF was finally calculated using the REST
software through the procedure described in previous studies
(Zang et al., 2007).

For ReHo analysis, the images were analyzed to calculate
Kendall’s coefficient of concordance of the time courses of a given
voxel with its 26 nearest neighboring voxels. The ReHo maps
were then spatially smoothed with a Gaussian kernel of 6 mm.
The ReHo value of each voxel was standardized by dividing the
raw value by the global mean ReHo value that was acquired with
a computation similar to that used to calculate the global mean
ALFF value. ReHo was also calculated using the REST software
through the procedure described in previous studies (Zang et al.,
2004).

Structural Analysis

Structural images of each subject were processed using the VBM
toolbox software in SPM8’. Briefly, the structural images were
normalized and segmented into GM, WM, and cerebrospinal
fluid (CSF) using the unified segmentation model in SPMS8
(Ashburner and Friston, 2005). The brain parenchyma volume
was calculated as the sum of the GM and WM volumes. The GM,
WM, and brain parenchyma volume were divided by the total
intracranial volumes to adjust for variability due to head size.
The GM images were spatially smoothed using a Gaussian kernel
of 8 mm FWHM. The voxel-wise GM volume was used in the
following statistical analysis as covariates for the ALFF and ReHo
calculations.

Since the presence of the WM lesions may be an important risk
marker for the development of cognitive impairment (de Groot
etal., 2000, 2001), quantitative assessment of WM hyperintensity
was performed on the FLAIR images using the age-related
WM changes scale (Wahlund et al., 2001) by two experienced
radiologists (XY and J-PG) who were blinded to the clinical data
and group allocation. Participants with a rating score above 1
(confluence of lesions or diffuse involvement of the entire region)
were excluded. Consensus was obtained through a discussion
between the two assessors.

Statistical Analysis

Demographic variables and cognitive performance scores were
compared between both groups using SPSS 20.0 (SPSS, Inc.,
Chicago, IL, United States). An independent two-sample ¢-test
was used for continuous variables, and a y? test was applied

Shttp://www.fil.ion.ucl.ac.uk/spm

for proportions. Values of p < 0.05 were considered statistically
significant.

Within-Group Analysis

For within-group analysis, one-sample ¢-tests were performed on
the individual ALFF and ReHo maps in a voxel-wise manner
for postpartum women and nulliparous women. Significant
thresholds were corrected using false discovery rate (FDR)
criterion and set at p < 0.001.

Between-Group Analysis

For between-group analysis, two-sample ¢-tests were performed
to investigate the differences of ALFF and ReHo values between
postpartum women and nulliparous women using a default
GM mask. Age and education were included as null covariates.
To exclude the potential effects of GM volume, the voxel-wise
GM volume maps were also included as covariates. Multiple
comparison correction was performed using FDR criterion, and
the significance was set at p < 0.001 according to the suggestion
from a prior study (Eklund et al., 2016).

Correlation Analysis

To investigate the relationship between regional ALFF and ReHo
values, a bivariate correlation was performed between these
two algorithms. Briefly, the mean ALFF and ReHo values with
significant differences were individually extracted and correlated
with one another.

To investigate the relationship among the ALFF/ReHo
values of the peak voxels and neuropsychological performance,
Pearson’s correlation analyses were performed using SPSS
software since data distributions meet the requirements of
parametric statistics. Partial correlations were analyzed using
the age, education, and GM volume as covariates. A value of
p < 0.05 was considered to be statistically significant. Bonferroni
correction was used for multiple comparisons in the correlation
analyses. The Bonferroni corrected p values for ALFF and ReHo
were 0.00083 and 0.00139, respectively.

Since micromovements from volume to volume can influence
spontaneous neuronal activity (Power et al., 2012), framewise
displacement (FD) values were computed for each subject to
reflect the temporal derivative of the movement parameters. No
subjects had FD > 0.5 mm for more than 35 volumes in this
study. No significant difference was found in the mean FD values
between postpartum women and nulliparous women (Table 1).

TABLE 2 | Comparisons of the brain volumes between postpartum women and
nulliparous women.

Postpartum Nulliparous p value
women (n = 22) women (n = 23)
Gray matter volume 316+1.38 322+13 0.146
(% of TIV)
White matter 20.3+1.4 295+15 0.720
volume (% of TIV)
Brain parenchyma 609+ 29 61.7 £ 2.3 0.285

volume (% of TIV)

Data are expressed as mean + SD. TIV, total intracranial volume.
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RESULTS

Demographic and Neuropsychological

Characteristics

Table 1 summarizes the demographic measures and
neuropsychological test results of the postpartum women
and the nulliparous women. The two groups did not significantly
differ in terms of age, education level, FPG, blood lipids, and WM
hyperintensity (all p > 0.05). In terms of the cognitive assessment,
the postpartum women had significantly poorer CFT-delay and
CDT scores than the nulliparous women (all p < 0.05). The
other neuropsychological tests showed no significant differences
between postpartum women and nulliparous women.

Structural Analysis

Table 2 shows no significant difference in GM, WM, or
brain parenchyma volume between postpartum women and
nulliparous women. After Monte Carlo simulation correction, no
suprathreshold voxel-wise difference in the GM and WM volume
between the postpartum women and nulliparous women was
observed. None of the participants in this study were excluded
due to severe atrophy.

ALFF and ReHo Analysis
Figure 1 shows the standardized ALFF (Figure 1A) and
ReHo (Figure 1B) heat maps for the nulliparous women

and postpartum women. The ALFF and ReHo values were
significantly greater than the global mean values mainly in
the posterior cingulate cortex (PCC), superior frontal gyrus
(SFG), middle frontal gyrus (MFG), inferior parietal lobe (IPL),
and cerebellum. Compared with the nulliparous women, the
postpartum women had significantly decreased ALFF values in
the left PCC, right SFG, and bilateral MFG but increased ALFF
values in the left cerebellar posterior lobe (CPL; Figure 2A and
Table 3). Compared to the nulliparous women, the postpartum
women had significantly lower ReHo values in the left PCC, right
SEG, and right MFG, but no significant increases were observed
(Figure 2B and Table 3). Furthermore, we did not observe
any significant differences in cognitive functions and resting-
state neural activity between women with natural childbirth and
women with caesarean section (all p > 0.05).

Correlation Analysis

The regional ALFF and ReHo values extracted from the PCC
(r = 0.775, p < 0.001) and right SFG (r = 0.582, p = 0.004)
were associated with each other after a bivariate correlation
analysis (Figure 3). After a correction for age, education, and
GM volume, we found a positive correlation between the ALFF
and ReHo values in the PCC and the CFT-delayed scores in
postpartum women (r = 0.693, p = 0.001; r = 0.569, p = 0.011,
respectively; Figure 4). Moreover, the CDT scores showed
positive correlations with the ALFF and ReHo values in the right

Nulliparous

ALFF Map

Postpartum

B

Nulliparous

ReHo Map

Postpartum

FIGURE 1 | (A) One-sample t-test results of ALFF maps (o < 0.001 corrected by FDR) in nulliparous women and postpartum women. (B) One-sample t-test results
of ReHo maps (p < 0.001 corrected by FDR) in nulliparous women and postpartum women. The left side corresponds to the right hemisphere.
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FIGURE 2 | (A) Regions exhibiting differences in ALFF between the nulliparous women and postpartum women (p < 0.001 corrected by FDR). (B) Regions
exhibiting differences in ReHo between nulliparous women and postpartum women (p < 0.001 corrected by FDR). The left side corresponds to the right hemisphere.

2,020 -2.02

4.88 I . -4.88
2.70

270

TABLE 3 | Regions showing significant differences in ALFF and ReHo values
between postpartum women and nulliparous women.

Brain regions BA Peak MNI coordinates Peak T Voxels
X, ¥, Z (mm) value

ALFF differences

PCC 31 —3, —48, 30 —3.8499 135

R SFG 10 21,57, 24 —3.6502 47

R MFG 10 42,42,15 —3.7782 54

L MFG 9 —24,51,33 —3.7039 58

L CPL . -6, —84, —30 3.3354 65

ReHo differences

PCC 31 3, -42,9 —4.3286 125

R SFG 10 21,60, 24 —3.6324 43

R MFG 8 30, 33, 51 —4.0864 61

The threshold was set at a p < 0.001 (FDR corrected). BA, Brodmann’s area; MNI,
Montreal Neurological Institute; PCC, posterior cingulate cortex; SFG, superior
frontal gyrus;, MFG, middle frontal gyrus;, CPL, cerebellar posterior lobe; L, left;
R, right.

SEG (r = 0492, p = 0.033; r = 0.517, p = 0.023, respectively).
However, no significant correlations persisted after Bonferroni
correction, probably partly due to the relatively strict calculation.

No such associations were detected in nulliparous women
group. Additional decreases or increases in neural activity were
independent of any other clinical characteristics and cognitive
tests.

DISCUSSION

To our knowledge, this is for the first time to use both the ALFF
and ReHo approaches to detect disrupted spontaneous neural
activity related to cognitive impairment in postpartum women
without depression. Decreased spontaneous neural activity was
primarily detected in the PCC and prefrontal cortex. Moreover,
significantly decreased neural activity in the PCC and SFG was
strongly correlated with the impaired CFT-delayed and CDT
scores found in postpartum women. These region-specific neural
cognition associations may play a pivotal role in postpartum
cognitive impairment.

Since pregnancy can lead to substantial changes in brain
structure, we compared GM and WM volumes but did not detect
any differences between postpartum women and nulliparous
women. A previous study reported reduced GM volume in
regions related to social cognition including the prefrontal

PCC
1.5,

14
13

r=0.775
p<0.001

1.2
1.1
1.0
0.94

Mean ReHo Value

08 1.0 1.2 14 1.6 1.8 2.0 22 24 26
Mean ALFF Value

(SFG; r = 0.582, p = 0.004).

FIGURE 3 | Correlations between the ALFF and ReHo values in the (A) posterior cingulate cortex (PCC; r = 0.775, p < 0.001) and (B) right superior frontal gyrus

B .
ALFE Right SFG

ReHo

Mean ReHo Value

0.8
Mean ALFF Value

0.9 1.0 11 1.2
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CFT-delayed Score
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ALFF in PCC

C 4.5,
4.01
3.5

3.0
251 r=0.492
p=0.033

CDT Score

201 ¢ o

1.5
06 07 08 09 10 1.1 1.2

ALFF in right SFG

FIGURE 4 | (A) Correlations between the CFT-delayed scores and decreased ALFF values in the PCC (r = 0.693, p = 0.001). (B) Correlations between the
CFT-delayed scores and decreased ReHo values in the PCC (r = 0.569, p = 0.011). (C) Correlations between the CDT scores and reduced ALFF in the right SFG
(r=0.492, p = 0.033). (D) Correlations between the CDT scores and reduced ReHo in the right SFG (r = 0.517, p = 0.023).
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and temporal cortices (Hoekzema et al, 2017). Moreover,
Yeo et al. (2011) demonstrated the intersections between the GM
volume changes of pregnancy and the cognitive components of
the human association cortex. We speculate that the inherent
heterogeneity of postpartum women may be one reason for the
inconsistent results. Moreover, the MR technique and analytical
method may also contribute to the differences. Given the lack
of change in GM volume, our results suggest that altered
spontaneous neural activity in postpartum women may occur
prior to any major structural abnormalities.

ALFF and ReHo measurements have been widely used to
explore the potential pathogenesis of various neuropsychiatric
diseases, especially the cognition-related diseases (Zang et al,
2004, 2007; Wang et al., 2011; An et al, 2013; Cui et al,
2014; Han et al, 2015). These two analyses are based on
different neurophysiological mechanisms with ALFF measuring
the neural intensity (Zang et al., 2007) and ReHo representing
the neural coherence (Zang et al., 2004). In the current
study, decreased spontaneous neural activity was detected by
both methods in the PCC and prefrontal cortex. Similarly,
reduced ALFF and ReHo activities were also observed in the
PCC and prefrontal cortex in patients with cognitive decline,
such as Alzheimer’s disease (Wang et al, 2011), amnestic
mild cognitive impairment (Zhang et al,, 2012; Liang et al,
2014), and diabetes-related cognitive impairment (Cui et al.,
2014). Thus, we suggest that these cognitive abnormalities may

share the similar mechanisms with the cognitive changes in
postpartum women. Moreover, the correlation between ALFF
and ReHo values reflected the close relationship between both
measurements. We propose that the coexisting neural intensity
and coherence abnormalities in these specific regions may
represent more severe brain changes than those revealed by a
single method.

In our study, significant hypoactivity was found in default
mode network (DMN) regions including the PCC, and was
positively correlated with impaired CFT-delayed scores. The
DMN, which consisted of nodes in the PCC/precuneus, bilateral
IPL, medial temporal gyrus, and medial prefrontal gyrus, is
most active at rest and shows reduced activity when a subject
enters a task-based state involving attention or goal-directed
behavior (Raichle et al., 2001; Mantini et al., 2007; Lee et al.,
2013). As the central node of the DMN, the PCC performs
diverse cognitive functions including visuospatial memory and
processing of emotional and non-emotional information (Vogt
etal., 2006; Leech and Sharp, 2013; Sestieri et al., 2017). Moreover,
the CFT-delayed score was used to assess the visuospatial
memory and visuospatial skills (Shin et al., 2006). Therefore,
the correlation between decreased PCC activity and impaired
CFT-delayed scores may indicate the decline of the visuospatial
memory in postpartum women. The PCC is also recognized
for its role in self-referential processing and social cognition
(Mars et al., 2012). Johnson et al. (2006) confirmed that the
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anteroinferior PCC has more outward and preventative aspects
of self-relevant thought, including duties and responsibilities
to others. Postpartum women would be expected to have a
stronger focus on infant-related responsibilities and be more
involved in thinking about the intentions of others, especially
the newborn (Chase et al., 2013). Furthermore, alterations in
endogenous sex steroid hormone levels during the postpartum
period may result in widespread neural changes, including in the
PCC (Fisher et al., 2016). Thus, our results indicate that decreased
ALFF and ReHo activity in the PCC may be responsible for the
impaired visuospatial memory and self-referential processing in
postpartum women.

The prefrontal cortex is mainly responsible for executive and
cognitive functions (Yuan and Raz, 2014). In the current study,
neural abnormalities in the prefrontal cortex were linked to
impaired cognitive performance on CDT tests in postpartum
women, which indicated the dysfunction of executive abilities
as well as visuospatial processing and visuoconstructional skills.
Using a neuropsychological assessment, previous studies have
confirmed disrupted executive functioning as one of the main
cognitive impairments in postpartum women (Anderson and
Rutherford, 2012; Meena et al., 2016). The GM volume of the
prefrontal cortex has been shown to be reduced after pregnancy
(Hoekzema et al., 2017). In addition, decreased glutamatergic
levels in the dorsolateral prefrontal cortex were observed in
depressed postpartum women by proton magnetic resonance
spectroscopy (MRS; Rosa et al, 2017). A study using fMRI
showed that the prefrontal brain activity during a response
inhibition task was decreased throughout the first postpartum
weeks in healthy women (Bannbers et al, 2013). Our study
extends the work of these aforementioned reports by showing
that aberrant spontaneous activity in the prefrontal cortex may
play a critical role in postpartum cognitive impairment, especially
executive dysfunction.

By contrast, the left CPL showed enhanced ALFF values
in postpartum women, which indicated the enhanced neural
activity in specific regions that may be explained as a recruitment
of additional neural resources to compensate for cognitive
dysfunction in other brain regions (Reuter-Lorenz and Cappell,
2008; Sokolov et al., 2017). The association of the CPL with
cognitive processing and emotion mediation has been proposed
(Schmahmann and Caplan, 2006; Sokolov et al., 2017). It seems
that hyperactivity in the CPL may be involved in limiting the
cognitive decline during the postpartum period. However, since
no correlations have been found between enhanced ALFF in
the CPL and memory performance, the potential compensatory
neural mechanism still requires further investigation.

Several limitations in this study must be acknowledged.
First, this cross-sectional study involved a relatively small
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