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Linguistic manual gestures are the basis of sign languages used by deaf individuals.
Working memory and language processing are intimately connected and thus when
language is gesture-based, it is important to understand related working memory
mechanisms. This article reviews work on working memory for linguistic and non-
linguistic manual gestures and discusses theoretical and applied implications. Empirical
evidence shows that there are effects of load and stimulus degradation on working
memory for manual gestures. These effects are similar to those found for working
memory for speech-based language. Further, there are effects of pre-existing linguistic
representation that are partially similar across language modalities. But above all, deaf
signers score higher than hearing non-signers on an n-back task with sign-based
stimuli, irrespective of their semantic and phonological content, but not with non-
linguistic manual actions. This pattern may be partially explained by recent findings
relating to cross-modal plasticity in deaf individuals. It suggests that in linguistic
gesture-based working memory, semantic aspects may outweigh phonological aspects
when processing takes place under challenging conditions. The close association
between working memory and language development should be taken into account
in understanding and alleviating the challenges faced by deaf children growing up with
cochlear implants as well as other clinical populations.

Keywords: working memory, manual gestures, sign language, deafness, semantics, phonology, cochlear
implantation

WORKING MEMORY AND LANGUAGE

Working memory is the ability to simultaneously store and process information (Daneman and
Carpenter, 1980; Baddeley, 2000; Ma et al., 2014) and as such forms the foundation of higher
cognition including thinking and learning. Working memory provides a platform for language
processing by keeping information in mind and integrating it with new information during
discourse processing as well as a platform for language learning (Baddeley et al., 1998), i.e., the
establishment of new linguistic representations. The storage and processing limits of working
memory may constrain language processing when it takes place under challenging conditions,
i.e., when the incoming language signal is degraded and therefore cannot be readily matched to
existing representations (Rönnberg, 2003; Rönnberg et al., 2008, 2013). For most people, language
is primarily speech-based. However, for individuals with reduced hearing ability, gesture-based
language, i.e., sign languages, provide an alternative means of communication that bypasses the
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defective auditory channel. The communicative importance of
sign language gives the study of working memory for manual
gestures applied significance. However, it also has a theoretical
interest as gestural and vocal communication seem to share
common origins (Corballis, 2003; Aboitiz and García, 2009;
Aboitiz, 2012) and their comparison can provide insight into
the architecture of working memory and its language modality
specificity.

Working Memory for Sign and Speech
The comparison of working memory for sign language to
working memory for speech has demonstrated similar capacity
across language modalities (Boutla et al., 2004; Andin et al., 2013)
and similar lifespan trajectories (Rudner et al., 2010). However,
when processing demands are low and maintenance demands
high, sign capacity is more similar to visuospatial capacity
(5+/−2) than speech-based verbal capacity (7+/−2, Boutla et al.,
2004; Andin et al., 2013). There are also language-modality
specific differences in the neural networks supporting working
memory for sign and speech. Specifically, working memory for
sign generates more activation compared to working memory for
speech in superior parietal regions associated with visuospatial
processing and temporo-occipital regions associated with object
recognition (for a review see Rudner et al., 2009). This net
activation for sign language may reflect sign specific sensorimotor
mechanisms and modes of representation (Emmorey et al., 2014)
or language modality-specific executive strategies employed
during working-memory tasks (Bavelier et al., 2008). Specifically,
net superior parietal activation may reflect generation and storage
of a virtual spatial array (Rönnberg et al., 2004, 2008; Rudner
et al., 2009) in, or close to, a neural region identified as a capacity-
limited store for representation of the visual scene (Todd and
Marois, 2004, see Rudner, 2015 for discussion). Further, a recent
animal study has shown that visuospatial working memory in
deaf individuals is dependent on parietal cortex (Wong et al.,
2017). Rather than focusing on the comparison of working
memory for sign to working memory for speech, the current
review targets work investigating working memory for manual
gestures that may or may not be familiar and/or lexicalized in a
sign language.

Linguistic and Non-linguistic Manual
Gestures
In sign languages, use of gestures is formalized in lexicon and
grammar but also in manual alphabets. The latter represent
the orthography of written languages and are used in the
context of sign languages for finger-spelling names or concepts
that have not acquired their own sign. Deaf individuals who
lack formal language input often use conventionalized gestures
to communicate. These are known as homesigns (Spaepen
et al., 2013). Manual gestures can function as emblems (Ekman
and Friesen, 1969), e.g., “thumbs up” or provide emphasis
in the context of spoken language (Chieffi and Ricci, 2005).
They facilitate discourse comprehension (Wu and Coulson,
2014) and production (Morsella and Krauss, 2004; Gillespie
et al., 2014) by relieving pressure on challenges to working
memory (Wesp et al., 2001; Morsella and Krauss, 2004;

Ping and Goldin-Meadow, 2010; Chu et al., 2014), especially
for individuals with low working memory capacity (Marstaller
and Burianová, 2013). Simple manual actions, however, may
be used without semantic intent. Importantly, manual actions
can be encoded, stored and rehearsed in working memory,
irrespective of whether they have the status of manual gestures
or signs (Wilson and Fox, 2007; Rudner, 2015). However, they
do not seem to have the same role as gestures in supporting
speech processing (Cook et al., 2012). Notwithstanding, this
means that by carefully selecting manual actions, gestures and
signs, linguistic working memory in the visual domain can be
systematically investigated.

Semantics and Phonology
All languages have a lexicon and sign languages have lexicons
that consist of signs constituted by manual actions that by
definition are associated with meaning. Furthermore, within any
given language-specific lexicon, individual items are consistent
with the phonology of that language: this also applies to sign
languages. Whereas in speech-based languages phonology can
be defined either in terms of the patterning of sounds adopted
within that language, or the articulatory gestures involved in
producing those sounds, in signed languages an articulatory
definition is adopted. Sign language phonology is defined
as the patterning of formational aspects of individual signs
including shape, movement and location in relation to the body
(Stokoe, 1960; Sutton-Spence and Woll, 1999). In other words,
handshape, movement and location are all contrastive elements
that constitute the sublexical components of lexical signs. This
means that any lexical sign not only has a specific meaning (or
set of meanings) but also a specific phonological composition
that distinguishes it from all other signs in the lexicon. However,
for a person who is not familiar with any sign language, a
manual gesture may not signify anything at all, and further, its
sublexical composition may not comply with any known set of
rules. Thus, for the non-signer, any given sign may lack both
semantics and phonology. This state of affairs makes manual
gestures an excellent tool for investigating the effects of semantics
and phonology on working memory.

WORKING MEMORY FOR MANUAL
GESTURES

Measuring Working Memory for Gestures
Although non-signers can encode manual gestures in memory
(Wilson and Fox, 2007; Rudner, 2015), they are less successful
than signers at imitating them (Holmer et al., 2016b) and thus at
a disadvantage when it comes to recall of encoded signs (Rudner,
2015; Rudner et al., 2016b). The n-back paradigm (Cohen
et al., 1994; Owen et al., 2005) avoids the confounding effects
of suboptimal imitation ability on the production demands of
traditional serial recall paradigms, and can be used to investigate
working memory for both linguistic and non-linguistic manual
gestures (for examples see Table 1). In the n-back paradigm,
memoranda are presented serially and the participant is asked to
match each item as it occurs to the stimulus that was presented
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FIGURE 1 | Schematic representation of the n-back working memory task
with examples of 1-, 2- and 3-back matches. Each square represents a visual
stimulus that may be for example a video-recorded sign or a picture of an
object. The pattern in each square represents a given characteristic of the
stimulus which may be the stimulus as a whole, a surface feature of the
stimulus such sign handshape (if the stimulus is a video-recorded sign) or an
inferred feature of the stimulus such as the handshape of the sign gloss of a
depicted object.

n steps back in the series, see Figure 1. Typically, n = 2 is
considered to generate moderate working memory load (Smith
and Jonides, 1997), requiring the maintenance of two items and
their order along with the simultaneous processing demands of
matching each new stimulus to the first item maintained in the
storage buffer, and then updating the buffer. Updating the buffer
involves adding the new item as the second item in the buffer
after the original second item moves up to first place and the

now obsolete item that was formerly the first item in the storage
buffer is suppressed or deleted. Working memory load can be
manipulated in the n-back paradigm by adjusting n. N = 1 is
considered a low memory load and n = 3 high memory load
(Smith and Jonides, 1997).

Pre-existing Semantic Representation
Increases Working Memory Capacity
Across the Language Modalities of Sign
and Speech
Working memory capacity for words is greater than capacity for
pseudowords (Hulme et al., 1991). Recently, it has been shown
that for British Sign Language (BSL) users this effect generalizes
to lexical signs, demonstrating that the positive effect of pre-
existing semantic representation on working memory capacity
generalizes to sign language (Rudner et al., 2016b, see Table 1). In
particular, BSL users, both deaf and hearing, scored higher than
British non-signers on an n-back task based on video-recorded
manual gestures (see Figure 2). More critically, hearing BSL
signers scored better when items were lexicalized in BSL than
when they were not. This applied across memory loads (n = 1–3)
and irrespective of whether the non-British signs were lexicalized
in another mutually unintelligible sign language, Swedish Sign
Language (SSL), made-up non-signs or non-linguistic manual
actions. A similar pattern was found for British deaf signers,
although here the difference in performance on the n-back task
between BSL and SSL was only significant when working memory
load was high (n = 3).

No Evidence That Pre-existing
Phonological Representation Supports
Working Memory for Manual Gestures
Not only pre-existing semantic representation but also pre-
existing phonological representation enhances working memory

FIGURE 2 | Working memory performance with British Sign Language (BSL) and Swedish Sign Language (SSL) stimuli by British Deaf Signers (DS), Hearing British
Signers (HS) and Hearing British non-signers. The y-axis shows arcsin transformed d′ collapsed across load. D′ is based on hits adjusted for false alarms in
accordance with signal detection theory, and the arcsin transformation was used because of near ceiling performance at n = 1. Reprinted with the publisher’s
permission from Rudner et al. (2016b).
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for words (Gathercole et al., 1999). However, review of the
literature reveals no evidence that this effect generalizes to
sign language. Thus, the effect of pre-existing phonological
representation on working memory for words appears to be
language-modality specific.

The potential effect of pre-existing phonological
representation on working memory for signs was investigated
by Rudner et al. (2016b, see Table 1) in two different ways. In
the first place, it was tested whether BSL signers had higher
scores than non-signers on the n-back task when the stimuli
had accessible phonology, and in the second place, whether the
signers performed better when stimuli had accessible phonology
than when they did not. Items with accessible phonology were
SSL, that is, they were lexicalized in SSL and were thus real
natural signs but not lexicalized in BSL and thus lacked meaning
for the British signing participants.

The phonological repertoires of BSL and SSL are highly similar
(Rudner et al., 2016b) and thus even though the semantics of
the SSL items was not available to the signing participants, its
phonological structure was. SSL was contrasted with artificially
constructed phonologically illegal non-signs that were eligible
for lexicalization in neither BSL nor SSL. The deaf signers
who participated in the study did indeed score significantly
better than the hearing non-signers on the n-back task with
SSL, in line with our prediction of modality generality, but a
similar (although non-predicted) performance discrepancy was
also found with non-signs. This suggested that pre-existing
phonological representation was not the true cause of the effect.
Further, there was no difference in performance with either SSL
or non-signs between the two hearing groups. Because hearing
signers are just as likely to benefit from access to sign phonology
as deaf signers it seems unlikely that the working memory
advantage of the deaf signers over hearing non-signers with SSL
was caused by pre-existing phonological representation.

A sharper test of the potential effect of pre-existing
phonological representation on working memory for manual
actions, however, was the within-group comparison of n-back
scores for SSL and non-signs for the two signing groups.
We aimed to isolate the effect of pre-existing phonological
representation by comparing n-back scores with SSL, an
unfamiliar but phonologically accessible sign language, with
n-back scores for non-signs that were deliberately created to
contravene the phonological constraints of BSL. However, the
phonology of sign language carries semantic information in a way
that the phonology of spoken language does not. For example,
signs may be iconic, i.e., have visual similarity to the objects they
represent, e.g., the sign for aeroplane depicts wings and upward
movement (BSL example from Thompson et al., 2012). This
means that the signs of even an unfamiliar sign language may
carry semantic information. Although the SSL signs were selected
to be semantically opaque to the British participants, it is possible
that the phonological features of the SSL signs did provide some
semantic cues that could be deployed mnemonically during the
n-back task. This made for a conservative comparison between
n-back scores with BSL and SSL, but at the same time, it made
the comparison of SSL to non-signs rather liberal. Even so, there
was no difference in performance between these two stimulus

types for the signing groups and for the non-signing group, to
whom iconic features would also be available, there was even
a tendency toward an advantage of non-signs over SSL. Thus,
Rudner et al. (2016b) found little support for the notion that pre-
existing phonological representation supports working memory
processing.

Deaf Signers Have Greater Working
Memory Capacity for Sign-Based
Gestures Than Hearing Non-signers
Signers are experts in using their own language and thus it
is hardly surprising that they show better performance than
non-signers on a sign-based working memory task due to their
expert knowledge of the language (Ericsson and Kintsch, 1995).
As I have argued, part of that benefit derives from the pre-
existence of semantic representations (Rudner et al., 2016b).
However, above and beyond that benefit there seems to be
an additional advantage for deaf signers that does not pertain
specifically to pre-existing phonological representation and is
not apparent for hearing signers. Deaf individuals are highly
reliant on visual information for perception and communication.
Therefore, it is not surprising that they develop special skills in
the visual domain. Low level visual processing does not seem to
be enhanced in deaf individuals but for visual skills with a greater
cognitive component, such as visual attention, congenitally deaf
individuals do show some advantage that is associated with neural
plasticity (for a review see Bavelier et al., 2006 and discussion
Rudner et al., 2009).

CROSS-MODAL PLASTICITY

When sensory cortex is not recruited in its typical mode during
development, cross-modal plasticity takes place (Merabet and
Pascual-Leone, 2010). This applies to both visual cortex in the
occipital lobe (Kupers and Ptito, 2014) and auditory cortex in the
temporal lobe (Nishimura et al., 1999; Finney et al., 2001; Cardin
et al., 2013) in humans. Deaf humans recruit right auditory
cortex more than hearing individuals during observation of
dynamic visual but not linguistic stimuli (Finney et al., 2001)
and the superior temporal cortex bilaterally during observation
of signs (Nishimura et al., 1999). Cardin et al. (2013) dissociated
perceptual and cognitive effects, showing that while right superior
temporal cortex reorganizes to process non-linguistic dynamic
visual stimuli irrespective of linguistic content, the left superior
temporal cortex is only sensitive to dynamic visual stimuli with
linguistic content (Cardin et al., 2013). Animal studies have
shown that the regional localization of cross-modally reorganized
functions can be very specific: congenitally deaf cats have better
orientation abilities in the visual periphery than hearing cats
but this benefit is suspended by deactivating regions of the
temporal lobe by localized cooling. In particular, deactivation
of posterior auditory cortex selectively eliminated their superior
visual localization abilities, whereas deactivation of the dorsal
auditory cortex eliminated their superior visual motion detection
(Lomber et al., 2010). It is likely that the localization of visually
based linguistic and cognitive functions reorganized in the
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auditory cortex of congenitally deaf humans is just as specific, and
that with the right techniques it will be possible to localize these
functions.

Cross-Modal Plasticity in Temporal
Cortex Supports Working Memory
There is accumulating evidence that the superior temporal cortex
is engaged in working memory processing in deaf signers in
a manner that is not observed in hearing individuals (Cardin
et al., 2017, see Table 1; Ding et al., 2015). In particular,
British deaf signers showed activation of the bilateral posterior
superior temporal cortex during a 2-back working memory task,
irrespective of whether it was based on BSL signs or moving
nonsense objects (Cardin et al., 2017). This extended the work of
Ding et al. (2015) using individuals with early deafness but with
diverse language experience, by demonstrating that recruitment
of superior temporal cortex in congenitally deaf individuals still
takes place when language skills are well established and is
thus not simply caused by poorly established language skills
(MacSweeney and Cardin, 2015). Further, in the study by Cardin
et al. (2017), the deaf compared to hearing participants showed
increased resting state connectivity between frontal regions and
the superior temporal cortex, and this finding was replicated by
Ding et al. (2016) with deaf Chinese participants. These findings
show that congenital deafness leads to reorganization of working
memory networks. This extends previous findings showing that
differences in working memory networks for sign and speech
are influenced not only by language modality but also auditory
deprivation.

The absence of activation differences between linguistic and
non-linguistic working memory in the study by Cardin et al.
(2017) confirms the suggestion of Ding et al. (2015) that the
functional significance of the reorganized networks is related to
visuospatial working memory rather than working memory for
sign language as such. Nonetheless, these findings mean that
the superior temporal cortex of congenitally deaf individuals
reorganizes not only for perceptual processing of visual stimuli
but also for their cognitive processing, such as working memory.
This perceptual and cognitive reorganization may be related to
the performance advantage of deaf signers over hearing non-
signers on visual working memory tasks (Wilson et al., 1997;
Geraci et al., 2008; MacSweeney and Cardin, 2015; Rudner et al.,
2016b; Cardin et al., 2017).

THE ROLE OF PHONOLOGY IN
WORKING MEMORY FOR MANUAL
GESTURES

It also needs to be considered why pre-existing phonological
representation does not give signers a working memory
advantage, at least not in an n-back task (Rudner et al.,
2016b). The phonological composition of to-be-remembered
speech-based items influences processing (Baddeley, 2000).
In particular, phonological similarity between items decreases
working memory performance. This effect is well-attested for

speech-based items and there is also evidence that phonological
similarity among American Sign Language (ASL) signs decreases
short-term memory performance (Wilson and Emmorey, 1997).
However, there is to my knowledge no evidence of such an
effect for BSL (for discussion see Andin et al., 2013). Thus,
although there is evidence that sign-based phonological similarity
influences working memory processing, this may not generalize
across all sign languages, including BSL. Further, there is evidence
that phonological information may be suppressed during the
n-back task when it is not explicitly required for task solution
(Sweet et al., 2008; Rudner et al., 2016b). Such an effect may
be enhanced in sign language as it has been pointed out that
phonological information may be heavier in signed than spoken
language (Geraci et al., 2008; Gozzi et al., 2010; Marshall et al.,
2011) and thus there may be more incentive to ignore it if it is
task irrelevant, particularly if a semantic route to task solution is
effective.

Although, there is apparently no evidence of an effect of pre-
existing phonological representation on working memory for
unfamiliar signs in deaf British signers, there is evidence of an
effect of phonological representation on phoneme monitoring
in this population (Cardin et al., 2016). Using video-recorded
BSL, SSL and non-sign stimuli similar to those used in the
working memory study by Cardin et al. (2016), Rudner et al.
(2016b) showed greater bilateral activation of an acknowledged
phonological processing region, namely the supramarginal gyrus,
for lexical signs compared to non-signs in deaf signers, i.e.,
in participants with pre-existing phonological representations.
Supramarginal gyrus activation for the signers did not differ
with the phonological parameters that were targeted in the
task (handshape and location) and was thus phonology specific
rather than task specific. This means that it is unlikely that the
absence of an effect of pre-existing phonological representation
on n-back score was due to an inability to access the phonological
information contained in the stimuli. Indeed, the ability to
explicitly access phonological representations of sign language
has been demonstrated across sign languages not only in
phoneme monitoring tasks (Gutierrez et al., 2012; Grosvald
et al., 2012), but also in phonological similarity judgment tasks
(MacSweeney et al., 2008b; Andin et al., 2014; Holmer et al.,
2016b) and for SSL in a working memory context (Rudner
et al., 2013, see Table 1). Instead, the likely explanation is that
when the lexical signs were maintained in working memory, the
phonological information associated with them was suppressed
because it was irrelevant to task solution (Sweet et al., 2008)
and may have increased working memory load (Marshall et al.,
2011).

Intriguingly, the study by Cardin et al. (2016) showed
no difference in neural activation between BSL and SSL for
any of the groups. In other words, there was no significant
effect of pre-existing semantic representation on phoneme
monitoring (c.f. Petitto et al., 2000; Grosvald et al., 2012).
This indicates that the significant effect of pre-existing semantic
representation on n-back performance (Rudner et al., 2016b)
is likely reserved for the context of the working memory
task in which semantic encoding, when possible, reduced task
demands.

Frontiers in Psychology | www.frontiersin.org 6 May 2018 | Volume 9 | Article 679

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-00679 May 11, 2018 Time: 14:34 # 7

Rudner Working Memory for Manual Gestures

Working Memory for Non-linguistic
Manual Actions
Although the combination of deafness and sign language
experience conferred a working memory advantage during
processing of familiar and unfamiliar signs as well as non-
signs, it did not generalize to an advantage in working
memory processing of non-linguistic manual actions consisting
of ball-catching events (Rudner et al., 2016b). These ball-
catching events were generated by asking the model who
recorded the signs and non-signs to catch a small ball that
was thrown toward him. Critically, the manual actions that
were generated in this manner were elicited in a bottom–up
rather than top–down fashion. The purpose of this was to
eliminate intentionality from the actions. Performance on the
n-back task was poorer with non-linguistic manual actions than
with any of the other stimulus types. However, there was a
significant effect of working memory load between each level
of n (Rudner et al., 2016b) and a separate study showed an
effect of formational similarity on n-back performance (Rudner,
2015, see Table 1). One perceptual difference between the
non-linguistic manual actions and the signs and non-signs
was the reduced motoric diversity displayed by the model. In
particular, the handshape used to catch the ball was similar in
all instances and although the ball was thrown to difference
segments of the space around the model, the movements
he made to catch the ball were stereotypical even if they
differed in trajectory. Thus, the poorer performance by all
groups with non-linguistic manual actions compared to non-
signs and signs may be due to too little motoric diversity to
distinguish separate items (c.f. Sehyr et al., 2017). This notion
is supported by the effect of formational similarity on n-back
performance with non-linguistic manual actions in which the
degree of motoric diversity significantly influenced performance
(Rudner, 2015).

WORKING MEMORY LOAD – EFFECT
ACROSS MATERIALS AND GROUPS

Working memory load is increased when more items are
maintained for the same amount of processing. This is achieved
using the n-back paradigm by increasing the magnitude of
n. An effect of working memory load has been observed
for all types of manual gestures under consideration here:
familiar signs, unfamiliar sign, non-signs and non-linguistic
manual actions (Rudner, 2015; Rudner et al., 2015, 2016b).
Interactions with load can be informative of the way in which
different types of information are stored in working memory.
In particular, a significant interaction between load and gesture
type for deaf signers showed that for this group, the effect of
pre-existing semantic representation was only apparent when
working memory load was high (Rudner et al., 2016b). This
was in contrast to hearing signers who showed an effect of pre-
existing semantic representation across memory loads (Rudner
et al., 2016b). Further, in the same study, another significant
interaction between load and gesture type showed that although
there was an effect of load for non-linguistic manual actions, in

line with previous work (Rudner, 2015), it was lower than for
non-signs (Rudner et al., 2016b).

SPEECH-BASED RECODING OF
FAMILIAR SIGNS BY BIMODAL
BILINGUALS

The difference in the effect of semantic representation across
memory loads between deaf and hearing signers (Rudner et al.,
2016b) suggested that there were differences in working memory
processing across to the two signing groups. There is evidence
that working memory encoding and maintenance are more
efficient for words than signs for bimodal bilinguals (Hall
and Bavelier, 2011). Thus, it is likely that to maximize task
performance the hearing signers in the study by Rudner et al.
(2016b) encoded and maintained the familiar signs as words.
On the other hand, the deaf signers who did not have such
ready access to the speech modality most likely encoded and
maintained the lexical signs in the visual language modality in
which they were presented. Recently, it has been shown that deaf
signers with good reading skills recode fingerspelled words as
speech-based phonology during a working memory task (Sehyr
et al., 2017). It is likely that the representations resulting from
recoding by deaf signers are more fragile and susceptible to
working memory load than those of the bimodal bilinguals,
although this remains to be tested. Further, homesigns (gestures
used by deaf individuals who lack conventional linguistic input)
seem to be processed in the working memory of the homesigners
who use them in much the same way, generally speaking,
as words or lexicalized signs (Spaepen et al., 2013). Further
investigation of working memory for homesigns could increase
our understanding of the relation between working memory
and language learning in the absence of a formal language
system.

SIGNAL DEGRADATION

A common challenge to language understanding is the
degradation of the incoming language signal that takes place in
noisy conditions. This phenomenon has been widely researched
in the speech modality (Rönnberg et al., 2013). However,
it is not only acoustic noise that interferes with the speech
signal, visual noise also interferes with speech perception
(Cohen and Gordon-Salant, 2017) and the same applies to
sign language perception (Pavel et al., 1987). In particular,
reduced resolution introduced by signal compression in digital
communication regularly used by sign language users may
have a negative effect on communication quality (Agrafiotis
et al., 2003). Indeed, visual noise in the form of reduced
resolution negatively affects working memory for manual
gestures and this effect interacts with working memory load
such that poor signal quality has greater effect on n-back scores
when load is higher (see Table 1 and Figure 3, Rudner et al.,
2015). A similar effect has been found for working memory
for spoken words using alpha power as an index of working
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memory load (Obleser et al., 2012). This supports the notion
that the effect of signal degradation on working memory
is language modality general. However, the effect of signal
degradation on working memory for gestures has only just
started to be investigated, and more work is needed in this
area.

IMPLICATIONS FOR WORKING
MEMORY MODELS

So far, this review has shown a range of working memory effects,
some of which are specific to working memory for manual
gestures and some of which are shared with working memory
for spoken words. Most saliently, there is an effect of load on
working memory for all types of manual gestures studied in this
way (Spaepen et al., 2013; Rudner, 2015; Rudner et al., 2016b)
and some evidence of an effect of signal degradation as well as an
interaction between load and signal degradation (Rudner et al.,
2015).

To this extent, effects on working memory are modality
general. Although there is an effect of pre-existing semantic
representation on working memory for manual gestures, the
precise character of this effect is language modality specific and
related to working memory load, see Figure 4. In particular,
the effect of pre-existing semantic representation on working
memory for manual gestures may only be apparent when
load is high and the quality of representations maintained
in working memory becomes particularly important (Rudner
et al., 2016b). It is true that an effect of pre-existing semantic
representation was shown for hearing signers with sign-based
stimuli, but it is likely that familiar signs were recoded
as words by these bimodal bilinguals for whom encoding
and maintenance is likely to be more efficient in the oral
rather than gestural modality (Hall and Bavelier, 2011; Rudner
et al., 2016b). Further, there is a lack of strong evidence

that pre-existing phonological representations are co-opted
during working memory for manual gestures (Rudner et al.,
2016b).

This pattern of findings is in line with flexible resource
models of working memory (Ma et al., 2014). One such
model is the Ease of Language Understanding model (ELU,
Rönnberg, 2003; Rönnberg et al., 2008, 2013). This model
explains the relationship between complex working memory and
language understanding under challenging conditions. Originally
(Rönnberg, 2003), ELU assumed a similar mechanism across the
language modalities of sign and speech, but language modality
specific aspects soon emerged (Rönnberg et al., 2008). The
explicit cognitive processing that takes place when language
understanding is challenged in various ways functions differently
for sign and speech (Rudner and Rönnberg, 2008a,b; Rönnberg
et al., 2008). On the other hand, the mechanisms underlying the
implicit language understanding that takes place under optimal
conditions seem to be similar across the language modalities
of sign and speech (Rönnberg et al., 2000; MacSweeney et al.,
2008a).

PRACTICAL IMPLICATIONS –
COCHLEAR IMPLANTATION

The differences between working memory for sign and
speech that become apparent when language understanding is
challenging have practical implications for a new generation
of bimodal bilinguals who are also cochlear implant users.
An increasingly common intervention for severe to profound
deafness, both congenital and acquired, the cochlear implant
(CI) transfers acoustic information collected via microphone
at the scalp directly to the auditory nerve bypassing the
defective inner ear. It allows individuals with deafness acquired
post-lingually to preserve communication by restoring access
to sound, albeit with a substantially degraded and distorted

FIGURE 3 | Mean d′ in each of the conditions of the n-back experiment. D′ is based on hits adjusted for false alarms in accordance with signal detection theory.
Resolution decreases with increasing R. Reprinted from Rudner et al. (2015).
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FIGURE 4 | Working memory for linguistic and non-linguistic manual gestures.
Manual gestures enter the corresponding loop either directly, if they are
non-linguistic, or via the sign lexicon for individuals with pre-existing semantic
representation. Bimodal bilinguals have the option of recoding signs as their
word glosses and processing them via the word loop. Both loops are subject
to negative effects of phonological/formational similarity, but while
phonological familiarity aids processing in the word loop, this does not seem
to be the case in the sign loop. Deafness leads to greater capacity of the sign
loop, probably due to reliance on visual information and expert knowledge of
sign language.

signal. Early implantation, from only a few months and no
later than 7 years, allows many children with congenital
deafness to acquire spoken language and cognitive skills,
providing they have the right support (Tobey et al., 2011),
and changes the course of cross-modal plasticity caused
by deafness (Kral and Sharma, 2012; Glick and Sharma,
2017).

With the advent of cochlear implantation, many profoundly
deaf children attend mainstream schools where there may be
little opportunity to practice and develop sign language skills.
In addition, only around 5% of deaf children who could benefit
from sign language communication are born into deaf families
where sign language is established and common place. This
means, that many profoundly deaf children growing up today
do not have the same access to sign language as their parents’
generation.

Children with CI perform at a lower level than their normal
hearing peers on a wide range of cognitive tasks (Lyxell et al.,
2008; van Wieringen and Wouters, 2015). These include short
term memory measured using forward and backward digit
span (Burkholder and Pisoni, 2003; Edwards et al., 2016)
and visuospatial working memory (Beer et al., 2014), even
though non-implanted deaf individuals have been shown to
perform better than individuals with normal hearing on visuo-
spatial working memory (Wilson et al., 1997; Geraci et al.,
2008; Rudner et al., 2016a). It could be argued that standard
administration of digit span (Wechsler Intelligence Scale) with

oral presentation of stimuli would put individuals with the
limited auditory access afforded by cochlear implants at a
disadvantage. However, it seems that digit span discrepancies
in children with cochlear implants are due to deficits in verbal
rehearsal and serial scanning skills (Burkholder and Pisoni,
2003) rather than stimulus degradation as such (Carter et al.,
2002; Burkholder-Juhasz et al., 2007). There is some evidence
that children with cochlear implants in mainstream educational
settings perform better cognitively than their peers in so-called
total communication settings where speech is augmented with
various kinds of visual cues although not typically sign language
(Pisoni and Cleary, 2003; Tobey et al., 2011; Boons et al., 2012).
However, because selection of educational setting is not random,
care should be taken in interpreting this finding. Indeed, it has
been shown that the speech development of deaf children with
cochlear implants who have deaf signing parents and thus good
access to sign language can be comparable to that of hearing
peers (Davidson et al., 2014) although those with sign support
in hearing families may not always do as well (Geers et al.,
2017).

Early acquisition of language is vital for cognitive development
(Mayberry et al., 2002) and may be the best predictor of successful
language outcome for children born deaf (Campbell et al., 2014).
Not only are sign languages fully ledged natural languages, they
show similar developmental milestones to spoken languages and
provide a good basis for their subsequent acquisition (Mayberry
et al., 2002). Experience of sign language from infancy organizes
the brain for language (Rönnberg et al., 2000; MacSweeney et al.,
2008a; Campbell et al., 2014; MacSweeney and Cardin, 2015)
and animal studies show that reorganization of auditory cortex
for visual processing does not preclude subsequent auditory
processing when cochlear implantation provides access to sound
in the mature brain (Land et al., 2016). Although cochlear
implantation is a revolution in the treatment of deafness, it
provides only partial access to the richness of the speech signal,
and in noisy situations it provides only limited assistance in
segregating the signal of interest. Demonstrably, it provides a
basis for language acquisition and cognitive development for
many deaf children, but this basis is suboptimal. As Campbell
et al. (2014) pointed out in their Frontiers review, there is little
evidence to suggest that encouraging sign language development
in deaf children is detrimental to speech development. If
sign language can provide early and better quality cognitive
representations leading to better ability to imitate gestures
and maintain them in working memory its use should be
stimulated.

Reading is a vital skill for everyone in the modern world
but especially for deaf individuals for whom it can give
access to information that may be less available through direct
communication channels of sign and speech. Good language
skills lay the foundation for good reading skills and this is true
of both spoken and signed language (Holmer, 2016). A recent
review by Mayer and Trezek (2017) shows that overall, studies of
reading comprehension suggest that the majority of participants
with cochlear implants achieved scores in the average range,
although with a wide range of variability. The language skills
of deaf native signing children are likely to be more firmly
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established for sign language than for a spoken second
language acquired via cochlear implants. There is evidence that
sign language skill predicts reading ability (Hermans et al.,
2008; Holmer et al., 2016a), while the predictive strength of
spoken language skills in deaf children is unreliable (Mayberry
et al., 2010). Further, there is a link between reading ability
and precision in imitating signs in deaf children (Holmer
et al., 2016b). Recently, it has been shown that training the
link between sign language and the written word may have
a positive effect on word reading (Holmer et al., 2017).
Thus, both spoken language skill and reading skill in deaf
children are associated with firmly established first language
skills.

FUTURE DIRECTIONS

The investigation of working memory for manual gestures as an
independent phenomenon rather than in comparison to working
memory for words has only just begun and future directions of
interest are many and various. I will outline some of the most
salient.

This review reports evidence of an effect of semantic
representation on working memory for manual gestures but
no effect of phonological representation. The effect of semantic
representation differed for deaf and hearing signers being
apparent across different memory loads for hearing signers but
only apparent for deaf signers at high memory load. Based on
the emerging model of working memory for linguistic and non-
linguistic manual gestures, see Figure 4, future work should
investigate:

(1) the load limits of working memory for manual gestures in
deaf signers and how they are influenced by pre-existing
semantic representation.

(2) the influence of pre-existing semantic representation on
working memory for manual gestures in hearing signers
when sign-based representation is mandatory.

(3) the influence of pre-existing phonological representation
when phonological representation is mandatory.

(4) the neural networks underpinning exploitation of pre-
existing representation during working memory for manual
gestures.

This review also reports effects of load and degradation on
working memory for manual gestures similar to those found for
words. Future work should investigate:

(5) the modality specificity of the neural networks
underpinning effects of load and degradation and their
interaction.

Little work has investigated the effect of age on working
memory for manual gestures. Future work should investigate:

(6) how age plays into the phenomena listed above.

I have discussed how representation and maintenance of
gesture may support language development in deaf children.
Future work should investigate:

(7) imitation of, and memory for, manual gestures in deaf
children as well as their correlation with academic
development.

Other populations with disorders of language and cognition
including but not limited to individuals with intellectual
disabilities, apraxia, aphasia or psychiatric disorders such as
schizophrenia may also benefit from using gesture as means of
representation. Thus, future work should investigate:

(8) imitation of, and memory for, manual gestures in other
clinical populations.

The ability to represent and maintain manual gestures in older
adults at risk of post-lingual deafness has, to my knowledge, not
yet been investigated. Future work should consider

(9) how age-related hearing loss plays into the above
mentioned phenomena.
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