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In this article, we review approaches to modeling a connection between spatial

and mathematical thinking across development. We critically evaluate the strengths

and weaknesses of factor analyses, meta-analyses, and experimental literatures. We

examine those studies that set out to describe the nature and number of spatial and

mathematical skills and specific connections between these abilities, especially those that

included children as participants. We also find evidence of strong spatial-mathematical

connections and transfer from spatial interventions to mathematical understanding.

Finally, we map out the kinds of studies that could enhance our understanding of the

mechanisms by which spatial and mathematical processing are connected and the

principles by which mathematical outcomes could be enhanced through spatial training

in educational settings.

Keywords: spatial cognition, mathematical concepts, factor analysis, statistical, developmental psychology,

process modeling

INTRODUCTION

Spatial ability contributes to performance in science, technology, engineering, and mathematics
(STEM) domains even controlling for verbal and mathematical abilities (Shea et al., 2001; Wai
et al., 2009). In addition, spatial reasoning task performance has been found to correlate with
mathematical task performance (e.g., Dehaene et al., 1999), suggesting that spatial reasoning
skills overlap with, and could be necessary for, mathematical reasoning skills (Tosto et al., 2014).
One correlation supported by cognitive and developmental research is between representations
of numerical and spatial magnitudes. Spatial skills have been found to correlate with numerical
magnitude representations across broad age ranges, from preschoolers (Gunderson et al., 2012)
to adults (Sella et al., 2016). Further, spatial and numerical magnitude representations have
overlapping neural representations (Piazza et al., 2007; Holloway et al., 2010). In this article, we
review evidence for the connections between spatial and mathematical skills across development
that has been gleaned from factor analyses, meta-analyses, and experimentation. We then suggest
productive ways to elucidate spatial-mathematical connections and discuss ways that modeling
could be used to improve mathematics learning.

FACTOR ANALYSIS

Both spatial and mathematical ability have been investigated since the early days of
psychological science using factor analytical methods that sought to map the “structure
of the intellect” (Spearman, 1927; Thurstone, 1938). This research showed a connection
between spatial and mathematical domains, yet the mechanisms by which training
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spatial thinking can promote mathematical thinking are still
not well understood. Across various factor analyses of spatial
skills that have been conducted in adults, the most consistent
finding is that there are multiple spatial skills, such as spatial
visualization (imagining transformations) and spatial relations
and spatial orientation (perceiving object position and angle)
(Michael et al., 1957; McGee, 1979; Lohman, 1988; Carroll,
1993). Factor analyses carried out on mathematical measures
over various ages have revealed latent factors that do not appear
to be specific to mathematics (e.g., deductive reasoning and
adaptability to a new task among 10th grade students, Kline,
1960; abstraction, analysis, application among elementary school
students Rusch, 1957). These studies are notable in that some
theorists have found evidence of a spatial factor in mathematics
(e.g., Kline, 1960; Werdelin, 1966) and others have argued that
there is a spatial sensorimotor intelligence factor important to
mathematical reasoning (Coleman, 1960; Skemp, 1961; Aiken,
1970).

Separate but Correlated Spatial and
Mathematical Thinking Factors
While many studies have found evidence of connections between
spatial and numerical tasks in young children, only recently
have studies explored the factor structure of their spatial and
mathematical skills. Mix et al. (2016, 2017a) have used factor
analyses to examine the connections among a broad range of
mathematical and spatial tasks in elementary school age children.
Mix et al. (2016) administered a battery of tasks that had the
greatest likelihood of showing spatial-mathematical connections
based on the literature, including connections between (1) spatial
visualization and complex mathematical relations, (2) form
perception and symbolic reasoning, and (3) spatial scaling and
numerical estimation (Landy and Goldstone, 2010; Slusser et al.,
2013,; Thompson et al., 2013, respectively). These tasks were
included in order to identify which underlying variables that
connect spatial and mathematical domains in kindergarten, third
and sixth grades.

Between kindergarten and sixth grade range, all spatial tasks
loaded together on a distinctly spatial factor, and all mathematical
tasks loaded on a distinctly mathematical factor (Mix et al., 2016,
2017a). However, there was a moderate correlation between the
two factors (rs = 0.50–0.53), even when controlling for verbal
ability, suggesting that although the spatial and mathematical
domains are distinct, there is a significant relation between these
domains. Even though verbal ability accounted for a significant
portion of variance in mathematical skills in each grade tested,
spatial skills accounted for a greater proportion of variance
(Mix et al., 2016). Cross-loadings between the spatial and
mathematical factors and tasks in the two domains also indicate
specific connections. In kindergarteners, mental rotation was
significantly related to the mathematical factor, whereas in sixth
graders visuospatial working memory and form copying were
significantly related to the mathematical factor. One possible
explanation for the change in cross-loadings over development
is that mathematical thinking relies at first on dynamic, object-
focused spatial processes (mental rotation) and later on more

static, memory-related spatial processes (visuospatial working
memory and visuomotor integration).

Strengths and Limitations of Factor
Analysis Evidence
Factor analysis is a useful tool for isolating the source of
correlations and removing measurement error (Bollen, 1989) as
well as for testing competing theories (Gerbing and Hamilton,
1996; Tomarken and Waller, 2005). However, factor analysis
requires a large number of participants over a breadth of tasks
in a domain to achieve a stable structure (Hair et al., 1995;
MacCallum et al., 1999). The biggest limitation of factor analysis
lies in the theorist; interpretation of results is a large part of
proper factor analysis because the results do not uniquely point
to any single interpretation of the meaning of the underlying
latent variables that are revealed (Armstrong and Soelberg, 1968;
Rummel, 1970). Thus, when relations do emerge from factor
analysis, other methods must be used to establish mechanisms
underlying these relations.

META-ANALYTIC AND EXPERIMENTAL
STUDIES

In addition to factor analyses, researchers have tackled the
question of how the domains of space and math are connected
through targeted experimental studies and meta-analyses. In this
section, we outline prominent theories about the divisions in
each domain and evidence for correlations between spatial and
mathematical skills. Understanding these theories is important
because they can help us to understand which particular facet
or type of spatial thinking is linked to a particular type of
mathematical thinking.

One comprehensive meta-analysis of spatial skills training
by Uttal et al. (2013) assumed a 2 × 2 typology supported
by behavioral (Newcombe and Shipley, 2015) and neurological
evidence (e.g., Chatterjee, 2008). Specifically, relations between
objects are processed differently than relations of feature within
an object (the extrinsic-intrinsic division). Further, spatial
information conveyed by a static viewing of objects and scenes
is processed differently than movements and transformations
of these objects and scenes (the static-dynamic division). In
their factor analysis testing the 2 × 2 typology, (Mix et al.,
under review) found evidence for distinct spatial factors for tasks
involving within object (intrinsic) vs. between object (extrinsic)
information, but did not find support for spatial tasks separating
according to the static-dynamic distinction (Mix et al. under
review). Echoing this finding, Kozhenikov et al. found evidence
that some children process spatial information intrinsic to
objects better (object visualizers) whereas others process spatial
information that involves between object relationships better
(spatial visualizers) but did not find that these groups of children
differed in their ability to process dynamic and static imagery
(Kozhevnikov et al., 2005).

The number and nature of basic mathematical skills that
underlie mathematical thinking are also in question. For
example, a distinction has been made between core number
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systems that represent exact and approximate number (Carey,
2004; Feigenson et al., 2004), between core systems for
approximate number and ratio (Matthews and Hubbard, 2017),
and between core approximate number system and exact
number ability enabled by symbolic knowledge (e.g., Carey,
2004). However, the debate about the systems that characterize
mathematical thinking has taken on a more pragmatic turn
than those concerning spatial thinking. For instance, there are
direct educational implications to whether core mathematical
skills facilitate later symbolic mathematical understanding and
achievement and how the latter might affect the former
(e.g., Feigenson et al., 2013; Schneider et al., 2017) or
whether mathematics is better taught through concepts or
procedures (e.g., Schoenfeld, 1985), or abstractly or concretely
(e.g., Kaminski et al., 2009). Researchers also debate which
kinds of early mathematical skills relate to later mathematical
achievement (e.g., understanding patterns, Rittle-Johnson et al.,
2017; thinking symbolically, Schneider et al., 2017, or one’s
ordinal vs. absolute sense of number Lyons et al., 2014). These
debates raise interesting questions about the connection between
spatial skills, early mathematical skills, and later mathematical
achievement. For example, does a particular type of spatial skill
relate to children’s ability to learn particular early mathematical
skills more quickly, and are these the early mathematical skills
that relate most strongly to later mathematical achievement?

What Skills Are Used in Both Spatial and
Mathematical Problems?
Certain connections between specific spatial skills and
mathematical skills have been observed (e.g., visuospatial
working memory and computation, Raghubar et al., 2010)
whereas others have not (e.g., between disembedding shapes
from scenes and parsing information in charts, Clark, 1988) with
little explanation as to why this is the case (for a review of these
connections see Mix and Cheng, 2012). One frequently observed
connection is between mental rotation and various math skills,
across age and development and with a variety of different
mental rotation task characteristics (Table 1). However, little is
known about the processes that account for this connection, or
whether there are other spatial-mathematical connections that
may be even stronger. Thus, this correlational type of evidence
fails to provide support for the theory that certain specific spatial
skills are particularly important for mathematics achievement
nor how they enable better performance and learning of specific
mathematical skills. Answers to these questions are of high
importance to successfully incorporating spatial learning into
mathematical curricula.

Moving beyond correlational studies, studies that have
measured the impact of training mental rotation on specific
mathematical skills, have not yielded consistent findings, with
some finding evidence of transfer (e.g., Cheng and Mix, 2014;
Lowrie et al., 2017) and some not finding such evidence (Hawes
et al., 2015b; Xu and LeFevre, 2016). There is little explanation,
and as of yet no meta-analysis, to compare these cross-
domain training studies or determine the overall effectiveness
of training any individual spatial skills to improve mathematical

reasoning. In the next section, we argue that modeling and
testing the processes involved in performing specific spatial and
mathematical tasks can help us understand the connections
between these two domains.

COGNITIVE PROCESS MODELS

Cognitive process models provide an account of the mental
processes engaged when performing a specific task. What
cognitive process or processes actually drive performance on a
spatial task? Answering this question would also allow us to
understand the mechanism that accounts for the connection
between spatial skills, like mental rotation, and performance on
mathematical tasks such as missing term problems (Cheng and
Mix, 2014). This in turn would inform educational efforts to
improve spatial thinking in ways that would be most helpful to
mathematical thinking.

What is known about the processes used for spatial skills?
Various studies have supported substantive divisions between
particular kinds of spatial skills, e.g., the intrinsic-extrinsic divide
separating tasks such as mental rotation from perspective taking
(Huttenlocher and Presson, 1973; Kozhevnikov and Hegarty,
2001). However, studies with kindergarten through sixth grade
children also show a great deal of overlap among a wide range
of spatial skills (Mix et al., 2016, 2017a). Further, certain spatial
skills, notably mental rotation and visuospatial working memory,
have been found to cross-load onto a mathematical factor at
particular grade levels. An important next step is to examine
process models of spatial skills and how they are manifested (or
not) onmathematical tasks, as illustrated below regarding mental
rotation.

A Process View of Mental Rotation
Mental rotation was first described based on the finding that time
to simulate the rotation of an object was related to the angle
through which the object was rotated (Shepard and Metzler,
1971). Cognitive process models, supported by empirical studies,
reveal that mental rotation actually involves multiple, non-
obvious sub-components. Behavior is best fit by a model that
involves carrying out small, successive, variable transformations,
rather than a single rotation (Provost and Heathcote, 2015) and
empirical work suggests that individuals actually rotate just one
part of the object rather than all parts of the whole object (Xu
and Franconeri, 2015). Further, modeling shows that the type of
mental rotation problem influences the process that is engaged;
when rotating complex stimuli, participants tend to be slower
(Bethell-Fox and Shepard, 1988; Shepard and Metzler, 1988),
which has been fit by computational models of mental rotation
where task relevant features of the object are focused on and
task irrelevant features are ignored (Lovett and Schultheis, 2014).
Participants also frequently err in problems with complex stimuli
by selecting the mirror image of the correct choice that is rotated
to the same degree as the correct choice (e.g., among children
Hawes et al., 2015a,b), a pattern of data that is explained by a
model that parameterizes “confusability” between the target and
its mirror (e.g., confusing a “d” for a “b,” Kelley et al., 2000).
Relatedly participants tend to use a fast flipping transformation
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TABLE 1 | Observed relations between mental rotation and mathematical skills.

References Average age Mental rotation task characteristics Measure or mathematical skill

Gunderson et al., 2012 5.4 Children’s mental transformation task, 2D figure

rotation/construction (Levine et al., 2018)

Number une estimation, appoximate calculation

Kyttälä et al., 2003 6.16 Novell “’Troll” task, 2D, same/different choice General math skill

Carr et al., 2008 7.5 Cube rotation (Vandenberg and Kuse, 1978) Arithmetic

Battista, 1990 12 Purdue spatial visualizaiton Test, 3D images

rotation (Guay, 1976)

Logical reasoning, geometric knowledge and problem solving

Hegarty and Kozhevnikov, 1999 12.08 Primary mental abilities, 2D rotation/figure

completion (Thurstone, 1938)

Problem solving skill

Delgado and Prieto, 2004 13 Cube rotation (Peters, 1995) Geometry, word problems

Casey et al., 1997 13.8 Cube rotation (Vandenberg and Kuse, 1978) Geometry, SAT math

Kyttälä and Lehto, 2008 15.5 Cube rotation (Vandenberg and Kuse, 1978) Mental arithmetic, geometry, word problems

Reuhkala, 2001 15.5 Cube rotation (Vandenberg and Kuse, 1978) Math skill (mental arithmetic, algebra, geometry)

Geary et al., 2000 19 Cube rotation (Vandenberg and Kuse, 1978) Arithmetic

Thompson et al., 2013 21.26 Cube rotation (Peters, 1995) Compatibility effect of number comparison

akin to matching features for simple, 2D stimuli, which models of
mental rotation have taken this into account (Kung and Hamm,
2010; Searle andHamm, 2012). The varied components described
by these models make clear that mental rotation is not a simple
process, and that there are many steps needed to succeed at a
mental rotation task.

Each of these modeled components of mental rotation
performance has a potential role to play in the observed
relationship between mental rotation and various mathematical
skills over the course of development. If spatial constructs
are actually based on wide-ranging processes it opens up
the hypothesis space to determine the source of connections
between spatial and mathematical thinking. Rather than a simple
connection between two monolithic skills, there are numerous
possible connections based on the components of each, and
possibly even multiple ways a spatial skill can act in a single math
problem. The work of figuring out which components are critical
to the observed relation between spatial and mathematical skills,
while daunting, is needed in order to unpack what otherwise are
opaque connections.

To take one example, Gunderson et al. (2012) observed
a predictive relationship between young children’s mental
transformation skill and their number line estimation. Individual
differences in mental rotation performance could have arisen as
a difference in any of the components identified above: the ability
to carry out rotations, to focus on relevant spatial information,
or to carry out non-rotational stimulus matching. Similarly, the
number line estimation task, where participants are asked to
determine the position of a number along a labeled line, could
be decomposed into several components as well (e.g., accessing
a representation of a number’s magnitude when cued by its
symbol, ordering those magnitudes precisely on a continuous
number line, spatially subdividing the line at salient landmarks,
Siegler and Opfer, 2003). Any or all of these components
might be the source of the connection between number line
estimations and spatial skill (see Figure 1). By designing studies
that control for and model the components of both spatial
and mathematical tasks, it should be possible to identify and

FIGURE 1 | Potential connections among spatial and mathematical skill

components.

understand the mechanisms that explain links between spatial
and mathematical thinking. This approach compliments and
enriches the work focused on looking at the latent structure
of skills, while not dwelling on an explanation of any one
task but focusing on explaining important connections between
latent skills.

EDUCATIONAL IMPLICATIONS

Meta-analyses provide strong evidence that training spatial
skills in the laboratory result in significant improvements
and transfer to other spatial skills (Uttal et al., 2013).
However, evidence is more mixed about training spatial skills
to improve mathematical skills (e.g., Cheng and Mix, 2014;
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Hawes et al., 2015b; Simons et al., 2016; Lowrie et al.,
2017). Broader training regimes in and out of the classroom
have helped to improve mathematics performance in multiple
age groups (e.g., Witt, 2011; Sorby et al., 2013; Bruce and
Hawes, 2015), and more generally, spatial thinking has been
shown to be a significant predictor of STEM outcomes, even
controlling for mathematical and verbal thinking (Wai et al.,
2009).

One finding substantiated by factor analyses and interventions
is that spatial skills aremore closely related to novel mathematical
and scientific content than to STEM skills that are more
familiar (Stieff, 2013; Mix et al., 2016), suggesting that it
may be particularly important to provide students with spatial
scaffolding when students are learning a new mathematical
concept. Another set of findings suggests that providing students
with a repertoire of spatial tools, such as gesture, rich spatial
language, diagrams, and spatial analogies, (Newcombe, 2010;
Levine et al., 2018) can facilitate their spatial thinking. Moreover,
these tools, as well as 3-D manipulatives (Mix, 2010) have
been found to facilitate learning mathematical concepts (e.g.,
Richland et al., 2012; Verdine et al., 2014; Hawes et al., 2017;
Mix et al., 2017b). An overarching principle to guide the use
of spatial thinking and tools in education is that supporting
spatial thinking and learning beginning early in life may result
in improvements in mathematics understanding, based on the
general connection between spatial and mathematical factors
as well as evidence that training particular spatial skills shows
some transfer to mathematics skills. A promising avenue for
future work is not just to support spatial thinking in general,
but to show students how they can use this kind of thinking
to solve particular kinds of mathematical problems (Casey,
2004).

CONCLUSIONS

In this review, we critically evaluate the contributions of
the factor analytic method to identifying and elucidating
the connection between spatial and mathematical thinking
across development. We highlighted a central gap in our
knowledge—understanding the mechanisms connecting spatial
and mathematical skills—which can be better addressed through
targeted experimental studies that are informed by process
models than by factor analytic studies. The findings that can
emerge from this approach are important for increasing our
basic understanding of why spatial and mathematical thinking
are connected. They also hold promise for informing educational
efforts to increase mathematical achievement by strengthening
spatial thinking by training spatial skills, by encouraging the use
of spatial tools, and by showing children how they can deploy
these skills and tools to solve particular kind of mathematical
problems.
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