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As deep neural networks grow in size, from thousands to millions to billions of weights,

the performance of those networks becomes limited by our ability to accurately train

them. A common naive question arises: if we have a system with billions of degrees of

freedom, don’t we also need billions of samples to train it? Of course, the success of

deep learning indicates that reliable models can be learned with reasonable amounts

of data. Similar questions arise in protein folding, spin glasses and biological neural

networks. With effectively infinite potential folding/spin/wiring configurations, how does

the system find the precise arrangement that leads to useful and robust results? Simple

sampling of the possible configurations until an optimal one is reached is not a viable

option even if one waited for the age of the universe. On the contrary, there appears to

be a mechanism in the above phenomena that forces them to achieve configurations that

live on a low-dimensional manifold, avoiding the curse of dimensionality. In the current

work we use the concept of mutual information between successive layers of a deep

neural network to elucidate this mechanism and suggest possible ways of exploiting it to

accelerate training. We show that adding structure to the neural network leads to higher

mutual information between layers. High mutual information between layers implies that

the effective number of free parameters is exponentially smaller than the raw number of

tunable weights, providing insight into why neural networks with far more weights than

training points can be reliably trained.

Keywords: deep learning, training, curse of dimensionality, mutual information, correlation, neural networks,

information theory

1. INTRODUCTION

Artificial neural networks with millions, or even billions (Shazeer et al., 2017), of weights
provide neurons and synapses comparable with computational complexity approaching small
animals (Goodfellow et al., 2016). And, scientists have begun using them to test and compare many
hypotheses in cognitive science (Phillips and Hodas, 2017). Some work has begun to explore how
these complex systems reach such finely balanced solutions. For example, some have addressed
how, given that the space of possible functions is so large, can any finite computational stage do
a good job approximating physical systems (Lin et al., 2017). However, from a cognitive science
perspective, the converse question remains, how is it that these complex systems can be trained with
only a reasonable amount of data (vastly less than the complexity of the systems would suggest)?
Given the computational power available in modern GPUs, we may explore these artificial neural
networks to better understand how such highly interconnected computational graphs transfer
information to quickly reach global optima.
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Deep neural networks have shown great promise in a host of
machine learning tasks in computer vision, speech recognition
and natural language processing (see e.g., the review LeCun
et al., 2015 and references therein). Exactly because of this
success, there exists a need to understand what sets deep learning
apart from other approaches, explain how it can achieve the
impressive results that have been recently documented, identify
the limitations and investigate more efficient designs within the
restrictions.

Deep neural networks have grown in size, from thousands
to millions to billions of weights and the performance of those
networks becomes limited by our ability to accurately train them
(Srivastava et al., 2015; Klambauer et al., 2017). Thus, a question
that arises is: if we have a system with billions of degrees of
freedom, don’t we also need billions of samples to train it?
The success of deep learning indicates that reliable models can
be learned with reasonable amounts of data. Similar behavior
appears in protein folding, spin glasses and biological neural
networks.

In the case of protein folding, there is a vast number
of conformations that the protein can assume which do not
correspond to a folded state. Simple statistical sampling of the
configurations would take astronomically long times to find the
folded state. Yet, when the protein starts to fold it completes this
task relatively fast (see also Levinthal paradox Dill and Chan,
1997). The resolution lies in the fact that evolution has created a
mechanism of folding which involves the rapid formation of local
interactions. These interactions determine the further folding of
the protein. The mechanism can be described by a funnel-like
energy landscape (Dill and Chan, 1997). The funnel-like energy
landscape has deep, steep walls with intermediate plateaus. This
drastic landscape correlates most of the degrees of freedom and
allows the protein folding to proceed in relatively few, large steps
toward its folded state.

The training of deep neural networks involves an optimization
problem for the parameters (weights) of the network. Recent
work (Choromanska et al., 2015) has used the fact that the
loss function involved in the optimization can be mapped to
a spin glass model in order to study the landscape of the
loss function. In particular, it was found that the landscape
contains a large number of local minima whose number increases
exponentially with the size of the network. Most of these local
minima are equivalent and thus yield similar performance on
a set of test samples. While the existence of a lot of (mostly)
equivalent local minima explains the common behavior of deep
neural network training observed by different researchers, we
want to study in more detail the approach to the minima. It
is known that these minima can be highly degenerate which
makes the picture of local funnel-like energy landscapes more
plausible (see also previous paragraph about protein folding).
This local funnel-like energy landscape picture points toward
the notion that, during training, the neural network is able to
achieve configurations that live on a low-dimensional manifold,
avoiding the curse of dimensionality. Thus, we want to study
how the interplay of depth, width and architecture of the
network can force it to achieve configurations that live on that
manifold.

The restriction to a low-dimensional manifold is facilitated
by the contractive properties of popular activation functions
or regularization techniques. But this is not enough to explain
why the deep neural nets work well and more importantly how
to train them efficiently. History has shown that, until very
recently, adding depth impeded effective training, regardless of
the number of training epochs (Srivastava et al., 2015; Klambauer
et al., 2017). We will show that deep nets work exactly because
they learn features of the data gradually, i.e., in succession
starting from simple to more complicated ones. It is known
that convolutional neural nets learn features of higher and
higher semantic complexity at each layer, but, more precisely,
the net finds the correct low-dimensional manifold on which
to build the representation of the desired function of the data.
The features of the lower layer constrain the space of possible
features in the deeper layers. The realization of the need for
gradual learning of features suggests, in mathematical terms,
that the successive layers of the deep net should be highly
correlated and that highly-nonlinear activation functions that
destroy correlation will impede training of large networks. We
show how this concept is connected to a number of emerging
training techniques, such as batch normalization and ResNets.
It is also related to the recently pointed connection between the
Variational Renormalization Group and Restricted Boltzmann
Machines (Mehta and Schwab, 2014) as well as the Information
Bottleneck analysis of deep neural networks (Schwartz-Ziv and
Tishby, 2017). We compare the layer-by-layer feature learning
of nets where correlation between layers is enforced and those
without it. Lastly, we discuss how these ideas form promising
design principles for more efficient training of neural nets of high
complexity.

2. MATERIALS AND METHODS

To evaluate the learning process of the neural networks, we
created and trained numerous neural networks. To create
the neural networks, we used Keras (Chollet, 2015) with a
TensorFlow (Abadi et al., 2015) back-end. We selected a well
understood, yet non-trivial, machine learning task: MNIST
(http://yann.lecun.com/exdb/mnist/), which is identifying hand-
written digits. Each image is a 28x28 grayscale image of a hand-
written digit between 0 and 9. There are 60,000 training examples
and 30,000 validation examples. The validation error (denoted
test error in the figures) is the proportion of validation examples
the network incorrectly labels. Recent neural networks have been
able to accurately identify over 99.5% of the validation examples
correctly (Chang and Chen, 2016). However, MNIST is non-
trivial, as these excellent results were only achieved in recent years
using deep learning. Thus, poor training will produce poor results
on MNIST, while good training will provide excellent results.
MNIST has a large enough input space (784 pixels) to present
a challenge, but small enough to tractably explore many training
configurations with a single GPU. Training was conducted on a
NVidia 1080p GPU.

We chose to use multilayer perceptrons (MLPs), with and
without residual connections. MLPs are traditional multilayer
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neural networks, where information flows from one densely
connected layer to the next, lastly passing through a softmax layer
to provide the prediction of the input digit. Residual connections
alter the topology of theMLPs by adding skip connections, which
add shortcuts between layers (He et al., 2016). Explicitly, a “skip
connection” works as follows. Consider a receiving layer R in
a multi-layer perceptron and two other layers R1 and Rk that
have a common width w and are both closer to the input than
R. The skip connection idea is implemented as follows: For each
unit in R1 and the corresponding unit in Rk, their output values
are added together to create a single combined activation output
value so that the total input to layer R is a vector whose elements
are equal to the unit-wise sum of the output of layer R1 and the
output of layer Rk.

We tested neural networks of different widths (more neurons
per layer) and different depths (more layers). A wider neural
network has more expressive power than a narrow neural
network, and a deeper neural network has greater expressive
power than a shallow one (Eldan and Shamir, 2016; Poole
et al., 2016). By comparing different widths and depths, we
can compare the effects of successive transformations of the
data.

We also added Batch Normalization between each layer,
followed by a tanh activation function. Batch Normalization
corrects for covariate shift due to diverging activations, and
it improves the trainability of the model. Batch Normalization
allows us to construct deep neural networks that don’t suffer
from vanishing gradients like vanilla neural networks (Ioffe and
Szegedy, 2015). The reduction in vanishing gradients allows us
to focus our analysis on the effects of successive information
transformations, and not artifacts due to finite numerical
precision and training time.

More specifically, to implement the shortcut connection, we
sum the output of the first layer and penultimate layer before
passing the sum into the final softmax layer as described above
(Figure 2). To implement the residual connections, we summed
the output of alternating layers of the same width, using a
topology illustrated in Figure 3. We initialized the networks
by sampling from a normal distribution modified according
to Glorot and Bengio (2010); He et al. (2016), which has
shown to produce weights that promote faster convergence
by preventing gradients from starting out pathologically
small. We chose a categorical (softmax) cross-entropy as the
objective function. We trained using RMSprop with an initial
learning rate of 10−3. We chose tanh activation functions,
and we used the out-of-the-box “BatchNormalization” layer
implemented by Keras (https://keras.io/layers/normalization/#
batchnormalization). We used a batch-size of 60,000, meaning all
training images were combined into a single back-propagation
step.

The question about what “gradual learning” means can be
partially addressed through the concept of mutual information.
The mutual information between two distributions X and Y is
defined as:

MI(X;Y) = H(X)−H(X|Y) = H(Y)−H(Y|X)

FIGURE 1 | Traditional multilayer perceptron (MLP). Our MLP consists of

multiple layers of width W, where each layer is batch normalized and given a

tanh activation. The first and last layers are twice as wide, to force the network

to discard information between the first and last layer.

FIGURE 2 | Shortcut network. This is the same MLP structure as in Figure 1,

but the output of the first and last layer are summed together and fed into the

softmax. That is, for each unit in the first and last layer, the two output values

are added together to create a single combined activation vector the same

size as the (identical) widths of the first and last layers.The shortcut network

allows information during backpropagation to propagate the entire length of

the network in a single iteration.

where H(X) and H(Y) are marginal entropies while H(X|Y) and
H(Y|X) are conditional entropies. Mutual information is the
amount of uncertainty, in bits, reduced in a distribution X by
knowing Y. It is symmetric, meaning MI(X;Y) = MI(Y;X). It
is also invariant to isomorphic transformations, so MI(X;Y) =

MI(g(X); h(Y)), for arbitrary invertible functions g and h. These
properties make mutual information useful for quantifying
the similarity between two nonlinearly different layers. It will
capture the information lost by sending information through
the network, but, unlike traditional correlation measures, it
does not require a purely affine relationship between X and
Y to be maximized. We calculate the mutual information
between the features of two layers by using the Kraskov
method (Kraskov et al., 2004) using the NPEET Python
library (https://github.com/gregversteeg/NPEET). In particular,
we take an input image and evaluate the activations at each
layer. We then calculate the mutual information between the
activations of the first layer and the last layer, using the entire
validation set as an ensemble. To ensure that the mutual
information between the first and last layer is not trivial, we
make the first and last layers twice as wide, to force the
network to discard information between the first and last
layer.
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3. RESULTS

As shown in Figures 4A,B, as the nets train, they progressively
move toward an apparent optimummutual information between
the first and last layers. Traditional MLPs follow a trend
of systematically increasing the mutual information. On the
other hand, MLPs with shortcuts start with higher mutual
information which then decreases toward the optimum. Thismay
be interpreted as the shortcut helping the network to first find
a low dimensional manifold, and then progressively exploring
larger and larger volumes of state-space without losing accuracy.
We should note that the purpose of this study is not to present
the state of the art results (e.g. see Wan et al., 2013) about image
classification but the relative advantage of an architecture using
shortcuts over one that does not.

In Figures 5A,B we compare the performance of different
ResNets widths and the effects of adding residual skip-connects,
shortcuts, or both respectively. As ResNets train, they start with
low mutual information between weights. The MI gradually
increases as it trains, maximizes and begins to decrease again
(see Figure 5A). The lack of mutual information in the final
trained networks shows that a well trained network does not
learn identity transforms. The objective of Figure 5B is twofold:
(i) to show that the shortcut improves upon the traditional MLP

FIGURE 3 | Residual network. The outputs of alternating layers are summed,

causing a shortcut between every other layer. Information via backpropagation

flows more efficiently backwards into the network, but it can not jump as far in

each iteration as the shortcut network.

and (ii) that both the shortcut and traditional MLP benefit from
the additional introduction of residuals. Note that the main
improvement over the traditional MLP comes from the shortcut
(as can be seen from the green crosses and the blue diamonds).
The residuals add an extra mild improvement for both the
traditional MLP and the shortcut (as can be seen from the red
and turqoise circles).

In Figure 5A we see evidence that high mutual information
is not a necessary condition for accuracy. However, high mutual
information allows the weights to lie upon a low-dimensional
manifold that speeds training. In Figure 5A, we see that high
mutual information produces rapid decrease in test error: The
points that represent the outcome of each epoch of training show
a high slope (and decrease in error) at high mutual information,
and a low slope at low mutual information (Figure 5B, notice
that the x-axis has a different scale). This behavior agrees with the
analysis in (Schwartz-Ziv and Tishby, 2017) which identifies two
phases in the training process: (i) a drift phase where the error
decreases fast (while the successive layers are highly correlated)
and (ii) a diffusion phase where the error decreases slowly (if at
all) and the representation becomes more efficient. The training
progress of networks (both MLP and ResNets) with shortcut
connections, indicated by the larger turquoise circles and green
crosses, starts with such a high mutual information that the
networks are largely trained within a single epoch.

Successive layers which enjoy high mutual information
obviously learn features that cannot be far from the previous layer
in the space of possible features. However, mutual information
alone cannot tell us what these features are. In other words,
while we see that the deep net must be learning slowly we
cannot use solely mutual information to say what it is that
it learns first, second, third etc. This is particularly evident in
our observation that training first correlates features in different
layers, and then the mutual information steadily decreases as
the network fine-tunes to its final accuracy. Thus, we see that
high mutual information between layers (particularly between
the first and last layer) allows the neural network to quickly find

FIGURE 4 | Comparison of performance for nets with (A) various layer widths and (B) various numbers of hidden layers. Each trace represents a different random

weight initialization. The networks with a shortcut are labeled as “MLP w/ Shortcut.” The arrows indicate the general direction of progression during training. Test error

is the proportion of validation examples the network incorrectly labels.
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FIGURE 5 | Comparison of performance for (A) various ResNet widths without any shortcuts. (Each color trace is a single training run) and (B) various combinations

of architectures. MLP, Multilayer Perceptron; S, Shortcut; Res, Residual Network; S Res, Shortcut Residual Network. In this plot, as neural networks train, they start at

high error and progressively decrease error after each epoch (represented by each point).

a low dimensional manifold of much smaller effective dimension
than the total number of free parameters. Gradually, the network
begins to explore away from that manifold as it fine tunes to its
final level of accuracy.

The gathered experience by us and others about the difficulty
of training deep nets over shallow nets points to the fact that
the first features learned have to be simple ones. If not, if the
complicated features were the ones learned through the first few
layers, then the deeper layers would not make much difference.
But they do, so the “gradual” learning of features must involve a
gradual progression through the space of features from simple to
more complex. Another way to think of this is that the depth of
the deep net allows one to morph a representation of the input
space from a rudimentary one to a sophisticated one. This makes
mathematical, physical and evolutionary sense too (see also the
analysis in Schwartz-Ziv and Tishby, 2017). This point of view
agrees with the success of the recently proposed ResNets. ResNets
enforce the gradual learning of features by strongly coupling
successive layers. This approach agrees also with the recent
realization that Restricted Boltzmann Machines have an exact
mapping to the Variational Renormalization Group (vRNG)
(Mehta and Schwab, 2014). In particular, in vRNG one proceeds
to estimate the conditional probability distribution of one layer
conditioned on the previous one. This task is made simpler IF
the two successive layers are closely related. In machine learning
parlance, this means that the two successive layers are coupled
so that the features learned by one layer do not differ a lot from
those learned by the previous one. This also chimes with the
recent mathematical analysis about deep convolutional networks
(Mallat, 2016).

The question about what are the “best” deep net architectures
(for a fixed number of layers) can be also partially addressed
through measuring mutual information. In particular, tracking
the evolution of mutual information and the associated test
error with the number of iterations helps us delineate which
architectures will find the optimal mutual information manifold,
something one should keep in mind when fiddling with the

myriads of possible architecture variants. However, mutual
information alone is not enough, because it can help evaluate
a given architecture but cannot propose (suggest) a new
architecture. An adaptive scheme which can create hybrids
between different architectures is some kind of remedy but of
course does not solve the problem in its generality. This is a well-
known problem in artificial intelligence and for some cases it
may be addressed through techniques like reinforcement learning
(Sutton and Barto, 1998).

Overall, the successful training of a deep net points to the
successful discovery of a low-dimensional manifold in the huge
space of features and using it as a starting point for further
excursions in the space of features. Also, this low-dimensional
manifold in the space of features constrains the weights to also
lie in a low-dimensional manifold. In this way, one avoids being
lost in unrewarding areas and thus leads to robust training
of the deep net. Introducing long-range correlations appears
to be an effective way to enable training of extremely large
neural networks. Interestingly, it seems that maximizing mutual
information does not directly produce maximum accuracy, but
finding a high-MI manifold and from there evolving toward a
low-MI manifold allows training to unfold more efficiently.

4. DISCUSSION

When the output of two layers is highly correlated, many of the
potential degrees of freedom collapse into a lower dimensional
manifold due to the redundancy between features. Although
we say “correlation,” we precisely measured this redundancy
using mutual information, which is invariant under arbitrary
invertible nonlinearities. High mutual information implies that
the effective size of the available training state-space has been
reduced on order∼ 2n∗MI , where n is the number of layers. Thus,
high mutual information between the first and last layer enables
effective training of deep nets by exponentially reducing the size
of the potential training state-space.
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Despite having millions of free parameters, deep neural
networks can be effectively trained. How? We showed that
significant inter-layer correlation (mutual information) reduces
the effective state-space size, making it feasible to train such
nets. By encouraging the correlation with shortcuts, we reduce
the effective size of the training space, and we speed training
and increase accuracy. Hence, we observe that long range
correlation effectively pulls systems onto a low-dimensional
manifold, greatly increasing tractability of the training process.
Once the system has found this low-dimensional manifold, it
then tends to gradually leave the manifold as it finds better
training configurations. Thus, high correlation followed by de-
correlation appears to be a promising method for finding optimal
configurations of high-dimensional systems. By experimenting
with artificial neural networks, we can begin to gain insight into
the developmental processes of biological neural networks, as
well as protein folding (Dill and Chan, 1997).

Even when batch normalization is used to help eliminate
vanishing gradients, deep MLPs remain difficult to train. As
we see in Figure 4B, beyond 5–10 layers, adding depth to a
MLP slows training and converges to a lower accuracy. This
has also been demonstrated in other applications with other
types of neural networks (Srivastava et al., 2015). Our measures
of mutual information also show that deeper networks reduce
mutual information between the first and last layer, increasing
the difficulty for the training to find a low-dimensional manifold
to begin fine tuning. The present results imply that the power
of residual networks lies in their ability to efficiently correlate
features via backpropagation, not simply in their ability to easily
learn identity transforms or unit Jacobians.

The shortcut architecture we describe here is easy to
implement using deep learning software tools, such as Keras or
TensorFlow. Despite adding no new free parameters, the shortcut
conditions the network’s gradients in a way that increases
correlation between layers. This follows from the nature of the
backpropagation algorithm: error in the final output of the neural
network is translated into weight updates via the derivative chain
rule. Adding a shortcut connection causes the gradients in the
first layer and final layer to be summed together, forcing their
updates to be highly correlated. Adding the skip connection
increases coupling between the first and final layer, which
constrains the variation of weights in the intervening layers,
driving the space of possible weight configurations onto a lower
dimensional manifold. Thus, a contribution of understanding
that the neural networks train more effectively when they start
on a low dimensional manifold includes demonstrating how
long range shortcuts improve network trainability. As networks

grow in complexity, adding shortcut connections will help keep
them on a low dimensional manifold and accelerate training
and potentially increase accuracy. However, for tasks where
final accuracy of the neural network takes primary importance
(such as in operational neural networks in commercial systems),
shortcuts will be just one potential architectural ingredient
among an entire zoo of choices, including different activation
functions, regularization schemes, learning rate schedules, and
layer sizes. In the end, eking out the highest possible validation
accuracy of a neural networkmight not be ascribable to any single
choice.

Thus, toward the central question of “how can neural
networks be trained with such little data, in comparison to
the number of free parameters?”—We see that although the
neural network may have many tunable weights, high correlation
makes most of them largely redundant. So, although a neural
network may have millions or billions of parameters, they
are effectively exponentially smaller. This low dimensional
manifold emerges naturally, and by forcing additional correlation
with a shortcut connection, we further increase the effective
redundancy and observe faster training than a network with
no long-range shortcuts. By extension, in protein folding
or the neural connectome, connecting distal components
of the system forces correlation of the intervening amino
acids or neurons, respectively. So, although the space of
possible arrangements may be combinatorially large, long-range
connections decrease the effective space of possible arrangements
exponentially.
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