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We examined how children’s strategy choices in solving complex subtraction problems

are related to grade and to variations in problem complexity. In two studies, third- and

fifth-grade children (N≈160 each study) solved multi-digit subtraction problems (e.g.,

34–18) and described their solution strategies. In the first experiment, strategy selection

was investigated by means of a free-choice paradigm, whereas in the second study a

discrete-choice approach was implemented. In both experiments, analyses of strategy

repertoire indicated that third-grade children were more likely to report less-efficient

strategies (i.e., counting) and relied more on the right-to-left solution algorithm

compared to fifth-grade children who more often used efficient memory-based retrieval

and conceptually-based left-to-right (i.e., decomposition) strategies. Nevertheless, all

strategies were reported or selected by both older and younger children and strategy

use varied with problem complexity and presentation format for both age groups. These

results supported the overlapping waves model of strategy development and provide

detailed information about patterns of strategy choice on complex subtraction problems.

Keywords: mental calculation, subtraction problems, strategy choice, children, mathematics, problem solving,

arithmetic

INTRODUCTION

Understanding how children choose and apply a specific strategy to solve a mathematical
problem is an important issue in the field of numerical cognition. Individuals’ strategy
choices are influenced by many factors, including their repertoire or knowledge of strategies
(Kilpatrick et al., 2001; Baroody and Dowker, 2003), their expertise in implementing
those strategies (Torbeyns et al., 2006; Verschaffel et al., 2007), and their overall level of
mathematical achievement (Geary et al., 2000; Smith-Chant and LeFevre, 2003). Although
some studies have examined children’s performance in solving complex arithmetic problems,
the results have varied depending on children’s age and consequently their arithmetic
expertise, the specific arithmetic operation, and the type of strategy assessment applied
(e.g., Torbeyns et al., 2009a,b; Torbeyns and Verschaffel, 2016; Lemaire and Brun, 2018).
Accordingly, in the present research we conducted two large scale studies using two different
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types of strategy assessment in which we investigated how
children at different stages of their primary education perform
complex subtraction problems varying in the degree of
complexity. By manipulating these key variables, we were able
to provide a comprehensive overview of the factors influencing
children’s strategy choices on multi-digit subtraction problems.

Among the four basic arithmetic operations, that is, addition,
subtraction, multiplication, and division, subtraction is of
particular interest because children and adults report using a
wide range of different strategies, both on simple problems such
as 14–6 (e.g., LeFevre et al., 2006) and on complex problems
such as 24–9 or 56–23 (Torbeyns et al., 2009a; Linsen et al.,
2014). According to Lemaire and Siegler (1995), arithmetical
strategy use entails two components: first choosing a strategy
(strategy choice), and then implementing the chosen strategy
(strategy execution) to solve the arithmetic problem. In the
present study, the focus was on the process of strategy choice.
Strategy choice is associated not only with an individual’s level
of skill in simple arithmetic (Smith-Chant and LeFevre, 2003),
but also with the specific features of a given problem (e.g.,
problem difficulties in terms of number of digits in each operand
or the presence/absence of a borrow procedure; Imbo et al.,
2007), and the context of the problem, such as the presentation
format (e.g., problems presented in horizontal vs. vertical format
Trbovich and LeFevre, 2003; Lemaire and Calliès, 2009; Imbo
and LeFevre, 2010). Like Lemaire and Brun (2018), in the present
study we provide a detailed analysis of strategies used by children
to solve subtraction problems, investigating for the first time
how different problem features (i.e., problem complexity and
presentation format together) influence children’s strategies and
performance, as well as how such strategic behavior changes with
children’s age and related expertise.

Subtraction Strategies
Adults and children have been observed to use a variety of
strategies on subtraction problems and these strategies can be
categorized according to the type of computations involved.
For the very simplest problems, such as 5–3, memory retrieval
is usually reported, but various counting strategies, such as
counting up (i.e., for 5–3, counting 4, 5) are also used (e.g.,
LeFevre et al., 2006). Solvers may also report counting up
or down on large problems such as 52–49 (Torbeyns et al.,
2009b). Another way of categorizing strategies on more complex
problems is to consider the solution path, such that strategies can
be divided into two main categories (Green et al., 2007; Imbo and
LeFevre, 2009). In right-to-left strategies, the operands are treated
as concatenations of single digits and calculation considers each
columnar operation separately, for example, solving 45–29 by
subtracting 15–9 = 6 and 3–2 = 1. For subtraction, the right-to-
left strategy is a mental version of column-by-column algorithm
taught at school for use in written calculation. In contrast, in left-
to-right strategies, operands are represented and manipulated in
a more holistic manner. For example, 64–12 can be decomposed
into 60–10 = 50 and 4–2 = 2, and then reassembled to obtain
the answer (i.e., 52; Lemaire and Calliès, 2009), or 69–13 can
be solved by rounding to 70–13 = 57 and then subtracting 1.
Often referred to as transformation or decomposition strategies,

the left-to-right approach requires conceptual understanding of
the structure of numbers (LeFevre et al., 2006).

Children show developmental and educational changes in
the use of the left-to-right and right-to-left strategies described
above, mainly corresponding to strengthening of their mental
calculation skills due to the acquisition of multi-digit algorithms
(written) procedures (Fuson et al., 1988; Geary et al., 2004).
In particular, in European countries such as Belgium, Italy,
and the Netherlands, children are taught mental computation
for multi-digit subtraction in second grade, and start to learn
the written algorithm in third grade (Cornoldi and Lucangeli,
2004; Caviola et al., 2014). However, in the US and Canada,
less emphasis is placed on mental computation, especially for
multi-digit problems, which are thought to be solved through
the written algorithm (Baroody and Dowker, 2003). Accordingly,
strategy use might vary across countries and school systems.

A few researchers have studied children’s strategies on
complex subtraction but none has documented the full range of
strategies used (Beishuizen, 1993; Lemaire and Calliès, 2009). For
example, Lemaire and Calliès (2009) compared the performance
of 20 fifth- and 20 seventh-grade students in France on complex
subtractions, however, they restricted children’s strategy choices
to two left-to-right methods (i.e., full and partial decomposition).
Other researchers have focused on subtraction-by-addition
strategies (e.g., Linsen et al., 2014). Thus, currently there is no
information about the extent of children’s spontaneous strategy
use on complex subtraction.

Other important factors in children’s strategy choices, beyond
their levels of automaticity and strategy knowledge, are the
characteristics of the problem. Problem complexity is one
feature that is assumed to influence children’s strategy choices
(Lemaire and Lecacheur, 2011; Ardiale and Lemaire, 2013).
One way to vary problem complexity is to include a carry
or borrow requirement (Noël et al., 2001; Imbo et al., 2007).
Superficial features of the problems, such as presenting the
problems in a horizontal vs. a vertical format, may also
influence children’s strategy choice. Overall, processing efficiency
varies with presentation format, and complexity (Trbovich
and LeFevre, 2003; Lemaire and Calliès, 2009; Imbo and
LeFevre, 2010; Caviola et al., 2012), but, to the best of our
knowledge, none of the previous studies examined in a larger
set of problems how different features can interact to influence
children’s strategy choice. Moreover, researchers have suggested
that manipulations of presentation format can trigger differential
recruitment of cognitive resources, leading to variability in the
solution procedures that participants select as a function of
format (Trbovich and LeFevre, 2003). For example, vertically-
presented problems required more visual resources, whereas
horizontally-presented problems required more phonological
resources (Caviola et al., 2012). Thus, presentation format may
influence selection of strategies, however, this possibility has not
been assessed in children.

Methods for Studying Strategy Choices
In the strategy literature, among others, the twomost widely used
methods implemented to evaluate strategy choice and execution
are free-choice report and forced-choice methods. Free-choice
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reports require participants to verbally report which strategy they
used to solve a problem immediately after solving it with no
restrictions on the strategy repertoire ( e.g., Siegler, 1988; Davis
and Carr, 2001; Mabbott and Bisanz, 2003; Noël et al., 2004;
Torbeyns et al., 2005). This method leads to a broader collection
of strategies than forced-choice methods, under the assumption
that participants have sufficient metacognitive/introspective and
verbal abilities enabling them to provide accurate verbal report
of strategies used (Kirk and Ashcraft, 2001). Free-choice reports
may not be valid for processes that are fast and automatic
(Ericsson and Simon, 1993), and may not be appropriate for
children if their verbal abilities are limited (Siegler and Stern,
1998). On this view, free-choice reports may potentially lead to
biases, such as the over-reporting of strategies whose salience
is high, and conversely, the under-reporting of fast or less
procedural ones (Ericsson and Simon, 1993; Kirk and Ashcraft,
2001; Thevenot et al., 2010).

To address some of the limitations of free-choice retrospective
reports, Siegler and Lemaire (1997) developed a modified
method, known as the choice/no-choice paradigm. This method
consists of a forced choice condition, where individuals apply
a preferred strategy (chosen from a restricted set of two or
three options), and two or more no-choice conditions, where
they are required to solve all problems with a single strategy;
thus, the number of no-choice conditions corresponds to
the number of options in the forced-choice condition (e.g.,
Imbo and Vandierendonck, 2007a,b,c; Reed et al., 2015). The
choice/no-choice paradigm provides information on strategy
efficiency from the no-choice condition, independently of the
choice process, whereas the comparison of performance in
the no-choice and the choice condition gives an indication
of people’s strategy adaptivity (i.e., the selection of the most
efficient procedure from the limited set provided). Although
this method does address some of the problems of the free
choice approach, specifically, the concern that strategy choice
and efficiency are confounded, there are also criticisms (Luwel
et al., 2009). In particular, the choice/no-choice approach limits
the strategies that are available because a limited number of
no-choice conditions are included and thus may not provide
the “best” strategy on any given trial (cf. Imbo and LeFevre,
2011; Xu et al., 2014). In order to address these limitations,
some authors have implemented a method that we can define
as a discrete-choice method, where participants were asked to
select between a larger number of given strategy alternatives,
within the prospective that providing a broader choice of
strategies gives better information about children’s choices (e.g.,
Lemaire and Brun, 2018). The strength of this discrete-choice
approach lies in the opportunity to determine the effects of
explanatory variables from a more extensive set of options,
which provides less restriction on individuals’ strategy selection
(Xu et al., 2014). A similar discrete-choice strategy method,
in which a set of options was provided, has been used
extensively within the domain of simple arithmetic with adults
(e.g., Campbell and Xue, 2001; Campbell and Austin, 2002;
Imbo and Vandierendonck, 2007a, 2008) and with children,
combined with a choice/no-choice experimental design (Imbo
and Vandierendonck, 2007b).

In the present study, rather than focusing solely on one single
method to assess strategy choice, we tested two cohorts of third-
and fifth-school graders in two different experiments in order to
indirectly compare free-choice and a discrete-choice approaches.

The Present Research
The central questions in the present research were how children’s
strategy choices are influenced by (a) their level of expertise
(e.g., grade 3 vs. 5), (b) problem features (e.g., complexity and
contextual features), and (c) the type of strategy assessment
to collect strategy reports. In two experiments, children in the
same age-range were tested with the same pool of multi-digit
subtraction problems (e.g., 23–3; 47–19). Across experiments,
two methods of assessing children’s strategy choice were used. In
Experiment 1, strategies were assessed on a problem-by-problem
basis by means of immediate retrospective verbal self-reports. In
Experiment 2, children were asked to choose the strategies used
from among a list of alternatives that was based on the solution
procedures observed in Experiment 1.

In order to assess the role of expertise in strategy choices, we
tested Italian children in grades three and five. This age range
is assumed to cover an important transition period between
the use of mental and written strategies: children in third
grade have yet to fully master multi-digit calculation, but by
fifth grade they will have started to automatize more efficient
calculation skills (Baroody and Dowker, 2003). In particular,
Italian curriculum for teaching arithmetic is based on the written
standard approach that requires children in grade 1 (typically 6
years old) to consolidate their counting skills and start learning
the principles of adding and subtracting (left-to-right strategies).
In second grade, the procedures for solving written additions
and subtractions calculation are taught (in that order) using a
columnar (right-to-left) strategy (Cornoldi and Lucangeli, 2004).
Thus, third-grade children are expected to be reasonably skilled
at single-digit computations and are presumably more likely to
use simpler but less efficient strategies (e.g., counting) compared
to fifth-grade children. In contrast, fifth-grade children are
expected to have more efficient calculation skills —they should
be more likely to accurately retrieve arithmetic facts and to have
a greater knowledge of efficient strategies such as decomposition
or the right-to-left algorithm (Baroody and Dowker, 2003). Thus,
large differences in strategy selection could be anticipated in this
age range (cf. Lemaire and Calliès, 2009; Lemaire and Brun,
2018).

Problem features also expected to influence the choice of
strategy: Children are more likely to use memory retrieval
for easier problems when this strategy will probably produce
the right answer, whereas they choose computational strategies
for more difficult problems when retrieval is less likely to
generate the right answer (Siegler, 1996; Lemaire and Calliès,
2009). The likelihood of a given computational strategy being
chosen thus depends on the characteristics of the problem.
There is evidence to suggest that children are unlikely to use
the most advanced computational strategy available to them
unless the difficulty of the problem demands it. On this view,
increasing the difficulty of the problem will promote the use of
more advanced computational strategies because children will
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maximize efficiency while preserving accuracy. Efficiency usually
declines for problems that involve carrying or borrowing (Noël
et al., 2001; Imbo et al., 2007), as well as for problems with
increasing number of digits (Green et al., 2007; Imbo et al.,
2007). Thus, to explore how problem features influenced strategy
choices for these children, we manipulated the complexity of the
problems (i.e., whether a borrow was required and the number
of digits in the problem) and presentation format (i.e., horizontal
vs. vertical).

In summary, the goals of the present experiments were to
(a) compare two different methods to assess children’ strategy
choice; (b) replicate previous findings on how children’ age
effects performance in solving complex subtraction problems;
and (c) test the relations among children’ age, problem features,
and strategy choice. Further, we used a novel method to
analyze strategy choices, specifically, multinomial modeling of
the frequency of strategy choices. Accordingly, our emphasis was
not on strategy adaptivity (which is the focus of the choice-no-
choicemethod); instead, we explored the development of strategy
choices according children’s own repertoire.

Overall, we expected to find similar patterns in both
experiments. First, we predicted that fifth-graders would make
more use of retrieval and less use of counting than third-
graders in solving subtractions without borrowing (e.g., 24–3).
Second, we expected to see an increasingly efficient use of
the decomposition strategy by older children, and a more
consistent use of the right-to-left strategy, especially in problems
presented in columns with borrowing. Third, we expected that
children would perform better while solving single-digit no-
borrow problems (e.g., 45–2) than while solving double-digit
borrow problems (e.g., 45–19) and would use decompositions
(left-to-right procedures) and standard algorithms (right-to-
left procedures) more on complex problems than on simpler
problems. Finally, we predicted that children would be
more likely to solve horizontally-presented problems with
decomposition strategies and vertically presented problems
with the right-to-left algorithm (Trbovich and LeFevre, 2003;
DeStefano and LeFevre, 2004).

EXPERIMENT 1

In this study, we tested children’s strategy selection onmulti-digit
subtraction problems by means of immediate retrospective self-
report. In addition to replicating the results of previous studies on
complex subtraction (Torbeyns and Verschaffel, 2016; Lemaire
and Brun, 2018), we wanted to (a) determine the full repertoire of
strategies used by children in solving this type of problem, and (b)
analyze themediating roles of children’s age and problem features
on strategy choice.

METHODS

Participants
Participants included 155 children: 76 in third grade (50 boys, 26
girls) with a mean age of 105.9 months (SD = 3.8; range = 99–
112 months), and 79 in fifth-grade (42 boys, 37 girls) with a mean
age of 129.8 months (SD = 3.5; range = 124–143 months) who

were attending Italian urban state schools. Parental consent was
obtained. Children with special educational needs, intellectual
disabilities, or neurological/genetic disorders, as indicated by
their teachers, were not included in the study.

Materials
Arithmetical Achievement

To assess arithmetical achievement, participants were initially
presented with paper-and-pencil tasks adapted from an age-
standardized Italian battery (Biancardi and Nicoletti, 2004).
In the complex written calculation test, children attempted 12
written calculation problems (4 additions, 4 subtractions, and 4
multiplications; e.g., 46+18 = ?; 54–27 = ?; 23×41 = ?) without
time limits. Scores were total correct (Cronbach’s alpha = 0.78).
In the simple calculation test, children attempted 16 problems (8
additions and 8 subtractions) with operands between 1 and 9. For
both addition and subtraction half of the results were less than 10
(e.g., 4+2 = ?; 7−5 = ?), and the other half were more than 10
(e.g., 10+12 = ?; 30–6 = ?). The total time allowed to complete
the test was 200 s. Cronbach’s reliability coefficients were higher
than 0.80 for each set of problems.

Computer-Based Experimental Task

Children solved multi-digit subtraction problems. Two problem
sets were created, each with 32 problems (see the Supplementary
Material for the whole sets). In order to manipulate problem
difficulty, problems were characterized by the presence/absence
of borrowing procedure and by the number of digit of the
subtrahend. One set required a borrow procedure in the unit
position (e.g., 31–19 = ?), and the other set did not require
a borrow procedure (e.g., 38–26 = ?). Half of each set had a
subtrahend with a one-digit number (e.g., 58–6) and the other
half had a subtrahend with a two-digit number (e.g., 43–12).
The correct answers for all the 64 subtraction problems ranged
from 11 to 62. Following previous literature, to control the
difficulty of the individual problems, certain types were excluded
(e.g. Campbell, 2005): (a) no operand had 0 or 5 as the unit
digit; (b) digits were not repeated in the same decade or unit
positions across operands (e.g., 64−24 = ?); (c) no digits were
repeated within operands (e.g., 66−31 = ?); (d) no correct
answers for the decades or units equaled 0 (e.g., 36−16= ?); and,
finally, (e) no correct answers coincided with the second operand
(e.g. 24−12 = ?). Furthermore, the outcome of subtractions
(i.e., odd or even numbers) and the presentation format (i.e.
horizontal or vertical) were controlled. Within each set, half of
the problems were assigned to the vertical presentation and half
to the horizontal presentation.

Procedure

Children were tested in two sessions. At the beginning of the
experimental session, in a group session lasting about 30min,
individuals’ mathematical achievement was assessed with paper-
and-pencil tasks adapted from the standardized Italian battery
developed by Biancardi and Nicoletti (2004) in their classroom.
In an individual session lasting∼60min, the children were tested
in a quiet room using the computer-based experimental task.
The task was programmed using E-Prime software (Psychology
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Software Tools, Inc., Pittsburgh, PA, USA) and presented on a 15-
inch 1024× 768 pixel computer screen. Problems were shown in
72-point Times New Roman black font on a white background in
the center of the screen. Participants sat 60 cm from the screen.
The E-Prime software controlled how long time the stimulus was
displayed and recorded accuracy, response times (RTs), and the
selected strategies for each trial.

Each trial began with the presentation of a fixation point (∗)
in the center of the computer screen for 750ms. Then a problem
was displayed (horizontally or vertically) in the center of the
screen. Each trial was timed as of the moment when the problem
appeared on the screen and ended when the experimenter
pressed a button as promptly as possible after participants gave
their answers. Problems were presented in a pseudo-random
order.

Children were randomly assigned to one of two problem sets,
that is, problems with or without a borrow requirement, such that
there were 73 children (39 boys, 34 girls; 37 third- and 36 fifth-
graders) in the no-borrow condition, and 82 (53 boys, 29 girls; 39
third-, and 43 fifth-graders) in the borrow condition.

Each participant solved 4 practice trials and 32 experimental
trials. Trial-by-trial feedback on calculation accuracy was only
given during the practice trials. Children were told that they
would see two-digit subtraction problems (e.g., 79-37; 92-59) on
the computer screen: they were asked to do the calculation aloud
and to give their answers aloud, focusing equally on speed and
accuracy. Immediately after having provided each solution, they
were asked to verbally explain how they had reached the result
(each answer was recorded).

Classification of Self-Reports

Participants’ verbal self-reports were classified into five different
strategy categories by two trained judges on the basis of the
narrative procedure descriptions. The two judges agreed on
the classification of 97% of the problems. Five main strategies
emerged when children’s self-reports were analyzed. Trials were
categorized as: (1) retrieval when participants simply reported
remembering or knowing the answer (); (2) counting when
children described a sequential subtraction of a one unit at a time
(e.g., 24–3 as 24, 23, 22, answer 21); (3) left-to-right decomposition
when the answers were obtained by breaking a larger problem
down into smaller ones (e.g., regrouping strategies); (4) right-
to-left algorithm when children described arriving at the answer
by first subtracting the units and then the tens (e.g., . . . ); (5)
other when children reported guessing or a mixture of different
procedures on the same problem.

RESULTS

Arithmetical Achievement
Performance on the two arithmetic achievement tasks was
analyzed in 2 (grade) × 2 (condition: borrow, no-borrow)
ANOVAs. Consistent with the use of a grade-standardized score,
there were no effects of grade, and no effects of condition,
indicating that children at both grades had mathematical abilities
expected for their age, and that the two randomly assigned
groups of children (borrow and no-borrow conditions) were

equally matched on arithmetic skills. The descriptive statistics
and ANOVAs results for these analyses are presented in the
Supplementary Material.

Accuracy and Response Times
Accuracy was the percentage of correct responses; response times
were calculated on the basis of correct trials only.

The descriptive statistics for performance on the multi-
digit subtraction task are shown in Table 1 (upper panel). In
order to verify which manipulated variables influenced the
performance ofmulti-digit subtraction problems, response times,
and accuracy were analyzed in separate 2 (complexity: one- vs.
two-digit numbers in the subtrahend) by 2 (format: horizontal,
vertical presentation) × 2 (grade: 3, 5), × 2 (condition: borrow,
no-borrow) mixed ANOVAs, with repeated measures on the first
two factors. The results of these analyses are shown in Table 2.
For the sake of simplicity, the two-way interactions are discussed
only when the three-way interactions were not significant.

As expected, the main effect of grade was significant, showing
that children in third grade performed significantly worse
than those in fifth grade (84 vs. 89%). There were also main
effects of format, condition and complexity: children showed
a better performance when problems were vertically presented
(88 vs. 85%), they solved borrow problems less accurately
than no-borrow problems (82 vs. 91%), and they performed
less accurately on problems with double-digit subtrahends than
on those with single-digit subtrahends (82 vs. 92%). These
differences were confirmed also by the two-way interaction
between condition and complexity: the difference between
borrow and no-borrow problems was larger for problems with
double-digit subtrahends (i.e., 13%; 75% vs. 88%) than for
problems with single-digit subtrahends (i.e., 5%; 89% vs. 94%),
although both differences were significant (ps < 0.001). The
significant interaction between complexity and grade indicated
that the difference among grades was due to the complexity of the
problems: younger children registered lower performance only
when they solved subtractions with double-digit subtrahends
(i.e., 78 vs. 86%; p < 0.01).

Finally, the interaction between complexity × format and
between condition× format were significant, as well as the three-
way interaction among complexity, condition, and format. These
interactions revealed that the presentation format influenced
children’s performance only when they were asked to solve the
hardest problems, that is, double-digit subtrahends involving
borrowing (i.e., 71 vs. 81%; p < 0.001).

The analysis of response time showed significant main effects
of grade, condition (borrow status), and complexity. Hence,
third-graders were slower than fifth graders (17 vs. 10 s), children
who solved borrow problems responded more slowly than those
who solved no-borrow problems (19 vs. 9 s), and children
solved problems with double-digit subtrahends more slowly than
those with single-digit subtrahends (17 vs. 11 s), as highlighted
by the interaction of condition × complexity (ps < 0.001).
The complexity × format interaction was also significant. For
problems with two-digit subtrahends, children solved problems
in vertical format faster than those in horizontal format (16
vs. 18 s, p < 0.01) whereas, for problems with single-digit

Frontiers in Psychology | www.frontiersin.org 5 July 2018 | Volume 9 | Article 1209

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Caviola et al. Strategy Choice in Mental Subtraction

TABLE 1 | Descriptive statistics (M = mean; SD = standard deviations) of multi-digit subtraction problems.

Experiment 1

Third grade Fifth grade

Horizontal Vertical Horizontal Vertical

Group Complexity M SD M SD M SD M SD

ACCURACY

No-borrow One-digit 92.91 10.84 92.22 12.62 95.83 6.68 95.13 9.57

Two-digit 82.43 18.97 81.08 18.31 93.40 8.70 96.53 6.42

Borrow One-digit 89.10 13.51 87.50 13.14 90.41 13.59 89.83 13.15

Two-digit 69.55 27.48 79.16 20.75 71.80 23.64 82.56 16.62

RESPONSE TIME

No-borrow One-digit 8.73 4.03 8.96 4.17 3.66 1.07 4.03 1.34

Two-digit 15.92 7.32 14.21 4.38 6.84 2.23 6.80 2.13

Borrow One-digit 18.01 12.95 20.04 11.41 11.45 6.52 13.07 5.98

Two-digit 26.34 15.51 23.92 12.57 21.21 16.31 17.93 7.99

Experiment 2

ACCURACY

No-borrow One-digit 92.39 16.77 90.22 16.23 94.05 11.79 94.64 10.01

Two-digit 79.62 23.33 77.17 22.25 85.12 20.52 84.23 16.35

Borrow One-digit 72.87 27.23 74.39 26.21 83.42 21.25 81.79 22.00

Two-digit 46.65 32.12 52.74 32.66 65.22 31.61 68.48 24.96

RESPONSE TIME

No-borrow One-digit 6.82 3.51 7.60 4.70 5.28 4.71 5.46 4.72

Two-digit 14.15 5.65 13.38 4.48 10.65 7.92 9.89 6.11

Borrow One-digit 15.82 7.51 17.41 7.93 11.73 6.28 12.70 6.33

Two-digit 25.17 9.93 22.60 9.20 18.79 10.30 16.41 7.05

Accuracy refers to the percentage of correct problems; response times are expressed in seconds.

TABLE 2 | Results of the mixed-design 2 × 2 × 2 × 2 ANOVAs for the accuracy and RTs, with grade (third and fifth grade) and condition (absence or presence of

borrowing procedure) as the between-participants factors, and complexity (single or double-digit subtrahend) and format (horizontal or vertical presentation) as repeated

measures (Experiment 1).

Accuracy Reaction times

df F p LogBF F p LogBF

Grade (G) 1,151 8.44** 0.004 13.12 28.83** < 0.0001 40.43

Condition (Cond) 1,151 23.75** <0.0001 34.84 74.93** < 0.0001 93.18

Complexity (C) 1,151 55.32** <0.0001 73.45 125.88** < 0.0001 140.15

Format (F) 1,151 6.03* 0.015 9.16 1.14 0.288 1.74

G*Cond 1,151 2.58 0.110 4.18 0.06 0.802 0.10

G*C 1,151 4.84* 0.029 7.45 1.10 0.296 1.68

G*F 1,151 0.76 0.383 1.17 0.03 0.869 0.04

Cond*C 1,151 9.16** 0.003 13.90 4.60* 0.034 6.95

Cond*F 1,151 5.52* 0.020 8.52 0.09 0.765 0.14

C*F 1,151 12.75** <0.0001 18.95 11.62** 0.001 17.15

G*Cond*C 1,151 3.26 0.073 5.06 5.11 0.025 7.70

G*Cond*F 1,151 0.092 0.762 0.14 1.04 0.310 1.59

G*C*F 1,151 0.41 0.522 0.61 0.11 0.746 0.16

Cond*C*F 1,151 7.27* 0.008 11.20 4.13* 0.044 6.25

G*Cond*C*F 1,151 0.37 0.544 0.55 0.34 0.562 0.52

LogBF, approximated bayes factor; G, Grade; Cond, Condition; C, Complexity; F, presentation Format. *p < 0.05; **p < 0.01.
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subtrahends, they solved problems in vertical format more slowly
than those in horizontal format (12 vs. 10 s, p< 0.05). Finally, the
three-way interaction among condition, complexity, and format
is shown in Figure 1 (upper panel). Children who solved no-
borrow problems did not show any effects of format, whereas
those who solved borrow problems showed the interaction of
complexity and format (ps < 0.01).

Self-Report
The analyses of accuracy and response times showed that
problem features influenced children’s performance, and thus
their strategy efficiency. Descriptive data on strategy choices for
children in third- and fifth-grade are presented in Table 3 which
shows the number of children who used the strategy at least
once and the observed frequencies across grades, conditions,
complexity, and presentation format.

The Table shows the number of children who reported
using each strategy at least once: the use of strategies varied
significantly across ages, in particular for the more complex
strategies: more older children reported left-to-right strategy
than younger children (61 vs. 33%), χ

2 (1, N = 155) = 12.07,
p < 0.001, Cramer’s phi = 0.279 whereas younger children
reported to use more often the right-to-left-algorithm (93
vs. 93%), χ

2 (1, N = 155) = 8.05, p = 0.005, Cramer’s
phi = −0.228. For the simpler strategies, the differences are less
evident, but the emerged pattern seems to indicate that older
children are more likely to report retrieval and less likely to use
counting compared to the younger children. Thus, the overall
comparison of strategy repertoire across grade shows changes
as a function of children’s expertise: these shifts in strategy
repertoire with grade are consistent with increased access to
stored arithmetic facts and a greater conceptual understanding
of number.

Next, we explore the patterns of strategy selection in relation
to problem features. We analyzed strategy choices in order to
determine whether they varied with the same problem features as
did strategy efficiency. Of interest was the frequency of strategy
choice across all problems, regardless of whether those choices
resulted in accurate performance. As previously mentioned, the
155 children each solved 32 subtraction problems, hence there
were a total of 4,960 trials for analysis.

Analyses of strategy choices were performed using the
statistical software R (R Core Team, 2015) using the following
packages: vglm for the Multinomial models (Yee and Wild, 1996;
Yee, 2015) and Bayes Factor for Bayesian estimates (Morey and
Rouder, 2015). To determine the best fitting model for describing
the relation between problem features and strategy choices, we
analyzed the data with a series of multinomial models. Each
model included the four independent variables: grade, condition,
complexity, and presentation format. This type of discrete-choice
model permits the set of choice (the four strategy options) to
vary by participants and can incorporate explanatory variables
that can characterize the pattern of frequencies, in this situation,
strategy choice.

A model-selection strategy was performed using a procedure
to detect the best-fitting model (for an example, see Fox,
2015). The type of strategy that was selected on each trial

was the dependent variable and there were four predictors:
school grade attended (grade, with two levels: third and fifth
grade); presence or absence of borrowing procedure (condition,
with two levels: with or without borrowing); complexity of the
subtrahend (subtrahend with one- or two-digits) and stimulus
presentation format (two levels: horizontal or vertical). Then,
starting from the null model (M0–i.e., the model including
only intercepts and no predictors), we built the various models
developed from all the possible combinations of the four
predictors. After the null model (M0), we first explored the
additive model; next all the possible two-way interactions
were tested. Afterward, all the three-way interactions were
explored. In total there were 14 models resulting from all the
possible combination of the predictors—the saturated model
with all predictors did not converge and so it was not
included.

We used the likelihood ratio test to compare models, taking
into consideration the Bayesian information criterion (BIC;
Schwarz, 1978). In Table 3, the results of model comparisons
are reported. 1BIC indicates the differences between the null
model (M0) and each subsequent model; a positive 1BIC
value implies that a given model is better than the null
model. In order to compare the relative evidence for each
different model we calculated the Log Bayes Factor (BF)
approximations (see Table 4), using the formula (1BIC/2;
Raftery, 1995). For example, a Log BF value of 3 indicates
that one model is twenty [exp (3) = 20] times more likely
than the null model, a difference that has been characterized
as strong (Wagenmakers, 2007; Wetzels et al., 2011). More
generally, the higher the 1BIC and BF, the more likely the
model is in comparison to the null model and thus provides
a good fit to the data. Details of the multinomial process
and the indexes that guided the model selection are given in
Table 4.

In the first step, which involved considering additive effects
only (comparable to a main effects model), including all
four predictors, a positive 1BIC value of 3,364 was found,
indicating that it was a significantly better fit than the null
model. This finding indicates that all four predictors influenced
strategy selection. Subsequently, inclusions of two- and three-
way interactions improved the overall model fit. Following this
procedure, the best-fitting model was M11 (see Table 3), which
included the interaction of three factors, that is borrow × grade
× complexity and an additive effect of presentation format.
Comparing the 1BIC values, we found that M11 explained the
data more than a million times (Log BF = 14) better than
any of the other models. The interactive portion of the M11
model is represented in Figure 2 (upper panel), which shows
the estimated probability for each strategy as a function of
each combination of grade, complexity, and condition (borrow
vs. no-borrow). The three-way interaction reflects the influence
of the older children’s greater experience and reveals clear
differences in strategy choice across the problem features. In
particular, the strategy used most frequently was the right-to-
left procedure (i.e., St. Alg. In Figure 2): It was used on more
problems than other strategies by both third- and fifth-graders
on two-digit problems, but the younger children tended to
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FIGURE 1 | Representation of the three-way interaction of borrow*complexity*presentation format on correct RTs for Experiment 1 and 2.
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TABLE 3 | Descriptive data on strategy choices for children in third- and fifth-grade; showing the number of children who used the strategy at least once (n), the range,

and the observed frequencies according grade, condition, complexity, and presentation format.

Third graders Fifth graders

No borrow Borrow No borrow Borrow

Simple Complex Simple Complex Simple Complex Simple Complex

n Range Col Row Col Row Col Row Col Row n Range Col Row Col Row Col Row Col Row

Experiment 1 (n = 76) (n = 79)

Retrieval 29 0–14 90 94 0 1 1 1 1 0 38 0–18 188 192 5 7 2 0 2 1

Counting 31 0–23 47 50 2 3 28 29 10 17 28 0–16 27 28 5 0 18 24 1 2

Left-to-right 25 0–32 6 4 6 6 60 83 40 38 48 0–32 30 31 42 52 165 182 117 137

Right-to-Left 71 0–32 138 143 282 6 147 121 217 38 61 0–32 35 34 230 52 86 78 177 137

Other 34 0–32 15 5 6 7 76 78 44 52 34 0–30 8 3 6 3 73 60 47 45

Experiment 2 (n = 88) (n = 87)

Retrieval 39 0-19 59 74 27 20 28 29 12 14 70 0–27 171 181 48 40 60 86 24 25

Counting 76 0-32 121 127 98 95 115 109 59 56 59 0–30 40 44 43 35 81 77 71 52

Left-to-right 42 0-25 28 22 30 27 61 53 64 60 59 0–26 13 28 49 65 79 77 101 129

Right-to-Left 86 0-32 168 153 221 234 124 137 193 198 78 0–32 104 75 188 188 148 128 172 162

n is the number of individuals in each grade who reported using the procedure at least once. Col, columnar (vertical) presentation; Row, horizontal presentation.

TABLE 4 | Model comparison for strategy choice in Experiment 1.

BIC ∆BIC Log BF Model

M0 3832 0 1

M1 468 3364 37.31 pres.form + condition + grade + complexity

M2 445 3387 25.68 complexity + condition * grade + pres.form

M3 460 3371 33.40 pres.form + condition + grade * complexity

M4 478 3353 42.44 grade * pres.form + condition + complexity

M5 422 3410 14.31 pres.form + grade + complexity * condition

M6 470 3362 38.03 grade + condition * pres.form + complexity

M7 478 3354 42.29 condition + grade + pres.form * complexity

M8 432 3399 19.45 grade * pres.form + condition * complexity

M9 462 3370 34.13 condition * pres.form + complexity * grade

M10 455 3377 30.67 complexity * pres.form + grade * condition

M11 393 3438 condition * grade * complexity + pres.form

M12 466 3366 36.25 complexity + condition * pres.form * grade

M13 486 3346 46.20 condition + pres.form * grade * complexity

M14 439 3393 22.82 grade + condition * complexity * pres.form

BIC, Bayesian Information Criterion; ∆BIC, BIC difference with respect to the null model

(M0); LogBF, approximated bayes factor respect to the best model (M1) calculated

through the relative likelihood [i.e., (∆BIC/2)]. The higher the ∆BIC the better the model.

Strategy, type of strategy (i.e., counting, retrieval, decomposition, and written calculation);

Grade, 3rd and 5th grade; Complexity: single or double-digit subtrahend; Condition

(absence or presence of borrowing procedure); Pres.form, vertical and horizontal

presentation format.

use this procedural strategy even more often than the older
children.

Other differences in strategy choice were found that were
also related to grade. For example, retrieval was reported
more frequently by fifth- than by third-graders on the simpler
problems, that is, on no-borrow problems with a single-digit
subtrahend (e.g., 57– 6). Both counting and decomposition

strategies were generally reported less frequently than the right-
to-left algorithm, except on one-digit borrow problems for fifth
graders, where this strategy was the most frequent. Counting
was reported somewhat more often by third- than by fifth-
grade children, for all problems except the two-digit no-borrow
problems. The left-to-right decomposition strategy was reported
more often by fifth- than by third-grade children, specifically on
problems with two-digit subtrahends, although the differences
were modest. Finally, children’s strategy reports were more likely
to include a mixture of strategies (i.e., Other in Figure 2) borrow
problems, especially one-digit ones. In summary, across grades,
children showed a pattern of shifting from counting to retrieval
strategies on the easier problems, that is, those with one-digit
subtrahends, and a similar, but smaller shift toward left-to-
right strategies on the harder problems, especially in the borrow
condition. As Figure 2 (upper panel) highlights, the presence or
absence of borrowing as well as the complexity of the subtrahend
interacted to determine which strategy children selected on
specific problems, suggesting that they were influenced by these
factors as they chose which strategies to implement.

An additive effect of presentation format was observed,
showing that this feature did not interact with problem
characteristics in influencing children’s strategy choices: the
difference in the frequency use according the vertical or
horizontal presentation format was small but consistent across
other combinations of predictors. This is an interesting and novel
finding, because it indicates that strategy choice can be influenced
both by factors inherent to the solution process (i.e., problem
complexity) and by features of the visual display (i.e., format).

EXPERIMENT 2

In Experiment 2 we explored patterns of strategies chosen
by children using an extended forced-choice condition. As
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FIGURE 2 | Principal effects of the best model for prediction of strategy choice in both Experiments. Figures show a representation of the estimated probability of

strategy choice according the interaction of grade*borrow*complexity. Presentation format is not reported in the figure because it enters in the models as additive

factor. Retr., retrieval; Count, counting; Decomp, left-to-right procedure; St. Alg, right-to-left procedure; Other, confusing reporting.

in Experiment 1, children performed the same two tasks—
the paper-and-pencil tasks assessing arithmetical achievement
and the computerized mental subtraction task—with the only
difference related to the collection of the strategy used. In
this experiment, children were asked to choose the strategies
used among a repertoire of alternatives based on the solution
procedures resulted from Experiment 1. The goals of this
experiment were to (a) replicate the results emerged in
Experiment 1 and (b) determine whether the pattern of factors

that emerged in the multinomial analysis is generalizable to data
collected via another method of assessing strategy choice.

METHODS

Participants
Participants included 175 children: 88 in third grade (47 boys, 41
girls) with a mean age of 100.2 months (SD = 3.6; range = 93–
107.5 months), and 87 in fifth-grade (39 boys, 48 girls) with
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a mean age of 124.7 months (SD = 4.3; range = 109–140.5
months) who were attending Italian urban state schools.
Parental consent was obtained. Children with special educational
needs, specific learning disorders, intellectual disabilities, or
neurological/genetic disorders, as indicated by their teachers,
were not included in the study.

Procedure
The design and procedure exactly replicated those of Experiment
1, with the sole exception being the way children strategy choices
were collected. Children were asked to indicate how they had
solved each problem by choosing one of four strategies (counting,
retrieval, left-to-right decomposition, or right-to-left algorithm),
which were explained with examples at the beginning of the
individual session. Thus, in the present research, after completing
each operation, participants were asked to indicate which out of
four strategies they had used to solve each problem.

Children were randomly assigned to either the no-borrow or
borrow condition, such that there were 89 children (45 boys, 44
girls; 48 third- and 41 fifth-graders) in the no-borrow condition,
and 86 (41 boys, 45 girls; 40 third-, and 46 fifth-graders) in the
borrow condition.

RESULTS

Arithmetical Academic Achievement
Performance on the arithmetic achievement tasks was analyzed
in 2 (grade) × 2 (condition: borrow, no-borrow) ANOVAs. No
differences were observed neither in relation to the grade nor to
the assigned condition (see Supplementary Material).

Accuracy and Response Times
As in Experiment 1, the descriptive statistics for performance
on the multi-digit subtraction task are shown in Table 1 (lower
panel). Both percentage of correct responses and correct mean
latency were examined with separate 2 (complexity: one- vs.
two-digit numbers in the subtrahend) by 2 (format: horizontal,
vertical presentation) × 2 (grade: 3, 5), × 2 (condition: borrow,
no-borrow) mixed ANOVAs, with repeated measures on the first
two factors. The results of these analyses are shown in Table 5.

Regarding the accuracy, the main effect of grade was
significant, showing that younger children performed
significantly worse than the older ones (73 vs. 82%). Consistent
with Experiment 1, the effects of condition and complexity
were significant: No-borrow problems were easier to solve than
borrow problems (87 vs. 68%), and problems with one-digit
subtrahends were easier to solve than those with two-digit
subtrahends (85 vs. 70%). In contrast to Experiment 1, there
were no significant effects of format. The only significant
interaction was condition × complexity which confirmed that
difference between borrow and no-borrow problems was larger
for more complex problems (i.e., two-digit: +24%; 58 vs. 82%:
one-digit:+15%; 78 vs. 93%; ps < 0.001).

Similar to the results for accuracy, there were significant main
effects of grade, condition (borrow status), and complexity in
the analysis of response time. Hence, third-graders were slower
than fifth graders (15 vs. 11 s), children who solved borrow

problems responded more slowly than those who solved no-
borrow problems (17 vs. 9 s), and children solved problems
with double-digit subtrahends more slowly than those with
single-digit subtrahends (16 vs. 10 s). The interaction of grade
x complexity was significant. At both age groups, children were
faster to solve problems with one-digit than those with two-digits
subtrahends (ps < 0.001), however this difference was larger for
children in third grade than those in fifth grade (12 vs. 19 s for
third graders and 9 vs. 14 s for fifth graders). As in Experiment
1, the complexity x format and the condition x complexity x
format interactions were significant. In particular, children did
not show any effects of format during the execution of no-borrow
problems whereas when children solved borrow problems, they
were faster in vertical than in horizontal format with two-digit
problems (15 vs. 17 s, p < 0.001) and slower in vertical format
than in horizontal format with single-digit problems (11 vs.
9 s, p < 0.001). The three-way interaction among condition,
complexity and format is shown in Figure 1 (lower panel).

Strategy Choice
As in the previous experiment, we analyzed strategy choices in
order to determine whether they varied with the same problem
features as did strategy efficiency, regardless of whether those
choices resulted in accurate performance (see Supplementary
Materials for the observed frequency of the strategies). The
descriptive data on strategy choices are reported in Table 3.
As for Experiment 1, the number of children who reported
using each strategy at least once varied significantly across ages
for all four strategies. More older children reported retrieval
than younger children (80 vs. 44%), χ

2 (1, N = 175) = 24.38,
p < 0.001, Cramer’s phi = −0.373 whereas fewer older children
reported counting than younger children (68 vs. 86%), χ

2 (1,
N = 175) = 8.53, p = 0.003, Cramer’s phi = 0.221. For the
more complex strategies, more older than younger children
reported using the left-to-right strategy (68 vs. 48%), χ

2 (1,
N = 175) = 7.23, p < 0.007, Cramer’s phi = −0.203. Finally,
although a majority of children in both grades reported using the
right-to-left algorithm, more younger than older children used
the strategy at least once (98 vs. 90%), χ2 (1, N = 175) = 4.84,
p = 0.023, Cramer’s phi = 0.166. Thus, in line with the previous
experiment, the overall comparison of strategy repertoire across
grade shows changes as a function of children’s expertise. In
the next paragraph, we analyze the patterns of strategy selection
according to problem features.

Multinomial models and a model-selection strategy were used
to analyze strategy choices in relation to problem features and
grade on a trial-by-trial basis (175 × 32 = 5600 trials), as
described in Experiment 1. Details of the multinomial process
and the indexes that guided the model selection are reported in
Table 6.

These analyses precisely confirmed the former results: the
best-fitting model was M11, which included the interaction of
the three same factors, borrow x grade x complexity, and an
additive effect of presentation format. Comparing the 1BIC
values, we found that M11 explained the data more than 2,900
times (Log BF = 8) better than any of the other models. Figure 2
(lower panel) shows the estimated probability of this model
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TABLE 5 | Results of the mixed-design 2 × 2 × 2 × 2 ANOVAs for the accuracy and RTs, with grade (third and fifth grade) and condition (absence or presence of

borrowing procedure) as the between-participants factors, and complexity (single or double-digit subtrahend) and format (horizontal or vertical presentation) as repeated

measures (Experiment 2).

Accuracy Reaction times

df F P LogBF F P LogBF

Grade (G) 1,171 9.95** 0.002 14.75 17.86** < 0.0001 25.98

Condition (Cond) 1,171 45.64** <0.0001 61.95 78.99** < 0.0001 99.52

Complexity (C) 1,171 104.24** <0.0001 123.88 397.57** < 0.0001 315.29

Format (F) 1,171 0.27 0.604 0.31 3.47 0.064 5.25

G*Cond 1,171 2.24 0.136 3.41 1.99 0.160 3.04

G*C 1,171 3.50 0.063 5.29 8.63** 0.004 12.91

G*F 1,171 0.04 0.841 11.77 0.41 0.521 1.53

Cond*C 1,171 7.87** 0.006 0.06 1.01 0.318 0.64

Cond*F 1,171 2.89 0.091 4.36 1.36 0.245 2.08

C*PF 1,171 0.99 0.322 1.52 26.18** <0.0001 37.15

G*Cond*C 1,171 0.66 0.419 1.00 0.03 0.854 0.05

G*Cond*F 1,171 1.53 0.217 2.34 0.01 0.921 0.02

G*C*F 1,171 0.01 0.908 0.02 0.53 0.466 0.82

Cond*C*F 1,171 2.10 0.150 3.20 6.62* 0.011 9.97

G*Cond*C*F 1,171 0.04 0.843 0.06 0.01 0.916 0.02

Strategy, type of strategy (i.e., counting, retrieval, decomposition, and written calculation); Grade: 3rd and 5th grade; Complexity, single or double-digit subtrahend; Condition (absence

or presence of borrowing procedure); Pres.form, vertical and horizontal presentation format.

for each strategy as a function of each combination of grade,
complexity, and condition (borrow vs. no-borrow). The overall
pattern confirmed the strategy used most frequently was the
right-to-left procedure: It was used on more problems than other
strategies by both third-graders on all four types of problems and
by fifth-graders on all except single-digit no-borrow problems,
which were very frequently solved with retrieval. Retrieval was
reported more frequently by fifth- than by third-graders on all
problems, especially the simpler ones, and both counting and
decomposition strategies were generally reported less frequently
than the right-to-left algorithm. Compared to Experiment 1,
counting was generally used more often, especially by third-
grade children, for all problems except the hardest (i.e., two-
digit borrow problems). The left-to-right decomposition strategy
was reported somewhat more often by fifth- than by third-grade
children, specifically on problems with two-digit subtrahends,
although it was less used compared to Experiment 1. These
analyses confirmed that the presence or absence of borrowing
as well as the complexity of the subtrahend interacted with
children’s expertise to determine which strategy they selected on
a specific problem.

This pattern of results strengthens the secondary role of
presentation format that seems not to directly influence children’s
strategy choices: small differences in the frequency use emerged
according the vertical or horizontal format and, above all,
consistent across other combinations of predictors.

DISCUSSION

Children use a variety of strategies to solve mathematical
problems (e.g., Barrouillet et al., 2008). Their strategy repertoire

is assumed to reflect an integrated network of conceptual and
procedural knowledge that allows them to decide how to perform
a strategy, when to use it, and why (Hiebert and Lefevre, 1986;
Bisanz and LeFevre, 1990). The goal of the present research
was to explore key factors that influence children’s strategy
choices on multi-digit subtraction problems and to directly
compare two different methods for assessing children’s strategy
choices. To achieve this end, two different experiments were
conducted on similar cohorts of third- and fifth-grade children:
In the first experiment, strategy selection was investigated by
means of a free-choice (verbal self-report) paradigm, whereas in
the second study a discrete-choice approach was implemented.
Problem features, such as complexity (i.e., whether there were
one- or two-digit subtrahends) and whether the solution crossed
a decade boundary (i.e., required a borrow operation) were
manipulated, in addition to presentation format (i.e., horizontal
vs. vertical alignment). Classical statistical analyses were applied
to children’s performance (i.e., accuracy and response times),
and multinomial models were used to analyze strategy choices
in relation to problem features and grade on a trial-by-trial basis.

Analyses of accuracy and response times in both experiments
showed typical age-related improvement in performance: Fifth-
grade children solved problems more quickly and accurately
than third-grade children. Children’s accuracy was sensitive to
problem features that influence the difficulty of the problem,
specifically, children assigned to the borrow condition correctly
solved fewer problems than children assigned to the no-borrow
condition and both groups were less accurate in solving problems
with a double-digit subtrahend. A comparison of the results of
the two studies revealed a discrepancy related to the contextual
feature: In the first experiment children’s performance was
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TABLE 6 | Model comparison for strategy choice in Experiment 2.

BIC ∆BIC Log BF Model

M0 1453 0 1

M1 401 1052 16.20 pres.form + condition + grade + complexity

M2 385 1068 8.32 complexity + condition * grade + pres.form

M3 391 1061 11.55 pres.form + condition + grade * complexity

M4 400 1053 15.89 grade * pres.form + condition + complexity

M5 398 1055 14.59 pres.form + grade + complexity * condition

M6 406 1047 18.75 grade + condition * pres.form + complexity

M7 402 1051 16.66 condition + grade + pres.form * complexity

M8 397 1056 14.27 grade * pres.form + condition * complexity

M9 397 1056 14.09 condition * pres.form + complexity * grade

M10 386 1067 8.78 complexity * pres.form + grade * condition

M11 368 1084 condition * grade * complexity + pres.form

M12 396 1057 13.70 complexity + condition * pres.form * grade

M13 399 1054 15.29 condition + pres.form * grade * complexity

M14 409 1043 20.56 grade + condition * complexity * pres.form

BIC, Bayesian Information Criterion; ∆BIC, BIC difference with respect to the null model

(M0); LogBF, approximated bayes factor respect to the best model (M11) calculated

through the relative likelihood [i.e., (∆BIC/2)]. The higher the ∆BIC the better the model.

Strategy, type of strategy (i.e., counting, retrieval, decomposition, and written calculation);

Grade, 3rd and 5th grade; Complexity: single or double-digit subtrahend; Condition

(absence or presence of borrowing procedure); Pres.form, vertical and horizontal

presentation format.

influenced by the presentation format only when they had
to solve the hardest problems (vertical presentation improved
correct responses); whereas, in the second experiment, children’s
accuracy was not sensitive to presentation format. Children’s
latencies, in contrast, were related to all of the problem features,
and showed the same pattern of significant effects in both
experiments. Increased complexity (both in terms of borrowing
procedure and subtrahend size) slowed problem execution.

Presentation format also influenced solution latencies in
relation to problem difficulty: Children were faster to correctly
solve double-digit borrow problems presented in columns than
in rows, whereas the reverse pattern was found for single-
digit problems. The differential efficiency of performance shown
on correct latencies (i.e., for borrow problems, children were
faster in horizontal format for one-digit problems such as
73–5 but faster with vertical format for two-digit problems
such as 43–29) suggests that choices were not strategic, per
se, but were driven more directly by problem format. This
conclusion is consistent with the absence of any interactions
between presentation format and either grade or complexity
on strategy choice. Other research has suggested that different
working memory resources may be implicated as a function of
presentation format (e.g., Trbovich and LeFevre, 2003; Caviola
et al., 2012). Thus, manipulation of presentation format may
influence strategy choices independently of factors that are
related to expertise or problem complexity.

The increased level of performance with age corresponds to
similar patterns found in previous research (see Campbell, 2005;
Cohen Kadosh and Dowker, 2015 for a general overviews), such
that children’s performance on complex subtraction problems

is linked to their level of experience (i.e., school grade) and
to variability in problem features that reflect computational
processes (Imbo and Vandierendonck, 2007c; Lemaire and
Calliès, 2009). Novel results were obtained for presentation
format where effects occurred only on borrow problems and
varied with complexity. These patterns were further qualified
by the analyses of strategy choice, as described below. Further
research on the relations between superficial features and those
tied directly to computational demands may have important
implications for understanding children’s solution processes on
complex problems. For example, it would be interesting to better
understand how different combinations of characteristics, such as
problems presented in other familiar formats (e.g., auditory; Noël
et al., 1997; LeFevre et al., 2001), may also influence accuracy and
response times.

The second novel and interesting set of results concerns
children’s strategy choice. No previous research defined in detail
the full range of strategies used by children to solve complex
subtraction problems. In both experiments, we analyzed strategy
choices using multinomial modeling in which all factors, that
is, expertise (i.e., grade), complexity of problem, condition (i.e.,
borrow vs. no-borrow) and presentation format were included as
predictors. Interestingly, the best-fitting model was the same in
both experiments and included a three-way interaction of grade,
condition, and complexity, and an additive effect of presentation
format. First, consider problems with one-digit subtrahends.
We observed in both studies that fifth-grade children choose
retrieval more than third graders on no-borrow problems (e.g.,
78–5) whereas third-grade children were more likely to choose
the standard algorithm. In contrast, third-grade children chose
counting more often than fifth graders on both borrow (e.g.,
73–5) and no-borrow problems (e.g., 89–7). These patterns
for single-digit subtractions show a shift from less- to more-
sophisticated strategies with expertise (i.e., more retrieval, less
counting), accompanied by a higher reliance on algorithmic
solutions by the younger children.

For the more difficult problems with two-digit subtrahends,
compared to fifth-graders, third graders chose counting more
often on no-borrow problems (e.g., 68–41), and the standard
algorithm more often on borrow problems (e.g., 43–29).
Compared to third-graders, fifth graders more often chose
decompositions for both borrow and no-borrow problems.
Again, these patterns of strategy choice, emerged in both studies,
indicate that older children, relied more on strategies that were
efficient (i.e., less use of counting) and reflected their superior
conceptual understanding (i.e., more use of decompositions).
It is worth to remember that these differences which emerged
in strategies selection may reflect a schooling or recency effect
(Lemaire and Brun, 2018): third graders may be more likely to
choose a standard (written) algorithm solution because it is a
strategy that they recently learnt at school (it is taught during the
second and third grades in Italy), whereas older children can rely
onmore efficient strategies (i.e., decomposition) linked to a better
mastery of basic arithmetic knowledge.

At a more general level, multinomial modeling of strategy
choices confirmed the importance of some key influences
on children’s strategy choices for subtraction. The presence
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or absence of borrowing, the value of the subtrahend, and
presentation format all influenced which strategy was adopted
to solve the problems. Moreover, in line with our expectations,
children varied in their strategy repertoires and their use of
those strategies according to their level of experience and in
relation to problem complexity. These findings extend results
reported in previous studies, encompassing a wider range of
subtraction problems. Previous research on simple addition
problems indicated that children tend to shift from counting
(an inefficient procedural strategy) to more efficient memory-
based retrieval with increased age (Widaman et al., 1992; Lemaire
and Siegler, 1995; Geary, 2004; Reed et al., 2015). The present
results support a similar pattern for complex subtraction, but
show that shifts are related to problem features and that there
is also considerable persistence in strategy availability with
development from grades three to five. Taken together, these
outcomes support Siegler’s overlapping waves model (1996), at
least for the retrieval vs. non-retrieval strategies: Children do not
simply use a particular strategy until a better one is available,
instead they have many strategies at once and it is frequency
of use that changes across development (Lemaire and Siegler,
1995).

In previous research, children also showed developmental
and educational changes in the use of left-to-right and right-to-
left strategies (Fuson et al., 1988; Geary et al., 2004). Both the
methods we used to assess strategy choice showed that children
have a wide repertoire of strategies that overlapped from third-
to fifth-grade, and that, although strategy choice changed with
grade, it also depended heavily on problem features. Thus, the
present study was consistent with the findings of persistent
diverse strategy use across expertise, a finding observed even
among adults solving simple arithmetic problems (e.g., LeFevre
et al., 1996; Barrouillet et al., 2008), and extended the conclusion
that children do not use a single strategy to solve two-digit
subtraction problems (Lemaire and Calliès, 2009). Thus, our
findings replicated similar patterns from previous studies and
extended the overlapping waves model to a wider repertoire of
strategies. In fact, these four strategy categories were often used in
previous studies and account well for data observed in adults ( e.g.
Campbell and Xue, 2001; Campbell and Austin, 2002; LeFevre
et al., 2006) whereas all of them were never considered together
before in a developmental sample.

Finally, the present research shows the validity of two
different self-report methods for assessing strategy choice: Both
free-choice and discrete-choice approaches provided valuable
information about strategy repertoire and strategy choices.
Another important contribution of the present work is the use
of a novel analysis of categorical data on strategy choices on a
problem-by-problem basis. Together, the combination of self-
report method and categorical analyses of those self-reports
allowed us to document developmental changes in relation to
different problem features that are known to influence strategy
efficiency. Previously, the use of strategies has often been
examined in terms of strategy efficiency and adaptivity (Lemaire
et al., 2000), which refers to the speed and accuracy with which
strategies are implemented: A multilevel modeling approach
extends the analyses of these aspects from an individual to an
item level. Future studies may apply this approach which allows a

sufficient amount of data for establishing temporal and accuracy
characteristics of the strategies in a reliable way (Luwel et al.,
2009).

As always, this research had limitations. First, as noted
by Lemaire and Brun (2018), allowing students to have full
choice of strategies does not allow an unbiased investigation of
strategy execution and efficiency and so future studies should
specifically address this limitation. Second, further research
should explore how individual differences in cognitive resources
can differently affect the pattern of strategies that students
select and apply to different types of problems, maybe also
including both simple and complex problems in a within subject
design. For example, researchers have shown that children with
mathematical difficulties distribute working memory recourses
differently than do their typically-developing peers (Mammarella
et al., 2013a,b). Future research should address this important
issue because it has clear implications for scenarios outside the
experimental setting, such as in teaching decisions (e.g., when
teachers have to choose whether to focus on practice or on
exploration and flexibility; Imbo and LeFevre, 2009), and in the
clinical setting (e.g., for the development of effective intervention
programs; Caviola et al., 2016). It is generally assumed that
children experiencing mathematical learning difficulties find it
difficult to use both retrieval and right-to-left strategies (see
Geary, 2004, for a review). But a more in-depth knowledge of
which strategies prove more efficient in relation to a problem’s
complexity and an individual’s resources might help to improve
such children’s mathematical achievement and may be beneficial
in the design of appropriate diagnostic tools and educational
interventions. Finally, it is important to conduct cross-cultural
studies to understand how cultural and schooling effects may
influence strategy selection for children of various ages (Imbo
and LeFevre, 2009, 2011).

In brief, the present research showed that there is great
variability in strategy selection in complex subtraction problems
and revealed important effects of grade, problem complexity,
and presentation format on how participants solve complex
arithmetic problems, both in terms of performance and in
choice of strategies. We found that problem features influence
performance, either because these physical qualities compromise
the efficiency of strategies that they usually applied in mental
calculation or because one or more of these features directly
influences strategy choice.
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