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Skew t Mixture Latent State-Trait
Analysis: A Monte Carlo Simulation
Study on Statistical Performance
Louisa Hohmann*, Jana Holtmann and Michael Eid

Department of Education and Psychology, Freie Universität, Berlin, Germany

This simulation study assessed the statistical performance of a skew t mixture latent

state-trait (LST) model for the analysis of longitudinal data. The model aims to

identify interpretable latent classes with class-specific LST model parameters. A skew

t-distribution within classes is allowed to account for non-normal outcomes. This flexible

function covers heavy tails and may reduce the risk of identifying spurious classes,

e.g., in case of outliers. Sample size, number of occasions and skewness of the trait

variable were varied. Generally, parameter estimation accuracy increases with increasing

numbers of observations and occasions. Larger bias compared to other parameters

occurs for parameters referring to the skew t-distribution and variances of the latent trait

variables. Standard error estimation accuracy shows diffuse patterns across conditions

and parameters. Overall model performance is acceptable for large conditions, even

though none of the models is free from bias. The application of the skew tmixture model

in case of large numbers of occasions and observations may be possible, but results

should be treated with caution. Moreover, the skew t approach may be useful for other

mixture models.

Keywords: mixture modeling, skew t-distribution, latent state-trait analysis, longitudinal data, non-normality

INTRODUCTION

Many psychological theories aim to explain the determinants of behavior and assume influences
of the person, the situation and the interaction between person and situation: What persons do
depends on their personal disposition as well as their current situation, and individual behavior
may change over time (Funder, 2008). In order to distinguish between temporally stable and
variable (occasion-specific) components of behavior, a wide range of psychometric models to
analyze change has been developed.

Latent state-trait (LST) models (Steyer et al., 1992, 1999, 2015) are structural equation models
(SEMs) for longitudinal data. In LSTmodels, there are latent variables representing influences of (a)
the person, (b) the situation and the person-situation interaction as well as (c) measurement error
(Eid and Luhmann, 2012; Steyer et al., 2015). In contrast to other models for analyzing change (e.g.,
autoregressive or growth curve models), LST models focus on reversible short-term fluctuations
around general dispositions (Khoo et al., 2006).

In the past decades, LST models have been successfully tested and applied in various fields of
psychology (for an overview see Geiser and Lockhart, 2012). Furthermore, extensions have been
made to include additional features (e.g., autoregressive components; Cole et al., 2005; Eid et al.,
2017) or to account for difficult modeling issues, such as population heterogeneity (Courvoisier
et al., 2007).
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Typically, classical single group SEMs assume that the model
parameters are identical for all individuals. However, this
assumption might be too strict, as subpopulations with varying
degrees of state variability could exist. In some fields of research
sources of heterogeneity might be known beforehand, e.g., in
case of experimental and control groups, but in other domains
the groups are not clearly defined. To deal with population
heterogeneity when grouping variables are unknown, mixture
SEMs as extensions of single group SEMs have been developed.
They are used to identify subpopulations, so called latent classes,
with varying model parameters (Jedidi et al., 1997; Lubke and
Muthén, 2005). Mixture LST models represent a special variant
of mixture SEMs aiming to identify groups with class-specific
LST models (Courvoisier et al., 2007): It is assumed that an LST
model holds in each class, but the classes differ in their population
parameters. For example, a perfectly stable and a highly variable
class could exist (Eid et al., 2008).

From a technical viewpoint, observed variables in mixture
models are non-normally distributed, if, for example,
the variables are normally distributed within classes. The
observed distributions represent weighted sums of elementary
distributions which are a priori assumed to follow a specific
functional form. This assumption determines the number of
identified classes (McLachlan and Peel, 2004). Typically, due
to computational convenience and mathematical tractability,
normal distributions are assumed within classes (Hoeksma
and Kelderman, 2006), but this assumption might be wrong
if variables are non-normally distributed within classes. In
practice, non-normal data is often observed (Micceri, 1989).
A technical misspecification can lead to spurious classes and
misinterpretations in applications (Bauer and Curran, 2003).
Especially in case of outliers, as often observed in applied
problems, latent classes might be simply formed to match heavy
tails of the underlying distributions even though an additional
subpopulation would not be necessary when assuming a different
within-class distribution. Interpreting these classes as subgroups
of the population would be incorrect and may result in biased
effects (Muthén and Asparouhov, 2015).

To deal with this concern, a new method for mixture SEMs
based on the restricted skew t-distribution has been proposed
by Asparouhov and Muthén (2015). Instead of assuming within-
class normality, the variables are allowed to follow the more
flexible skew t-distribution. The standard structural equation
modeling framework based on fitting means and covariances
is extended, as the new approach additionally accounts for
skewness and kurtosis of the data. Thus, the risk of identifying
spurious classes due to heavy tails and skewed distributions is
reduced.

Good performance of the skew t approach in the context
of growth mixture models (Muthén and Asparouhov, 2015)
suggests that it might be a powerful tool for other mixture
models for longitudinal data, such as mixture LST models, as
well. Based on theories about possible population heterogeneity
with respect to the stability and variability of a given construct,
mixture LSTmodels could be used in various contexts in order to
investigate whether unobserved subgroups exist. In applications
of single group LST models the observed variables often show

skewed distributions and outliers (Kenny and Zautra, 1995; Eid
et al., 1999; Schmitt, 2000; Eid and Diener, 2004; Schermelleh-
Engel et al., 2004; Courvoisier et al., 2007). Thus, by assuming
a skew t-distribution within classes the underlying processes
determining the non-normality could be investigated in more
detail: Comparing normal and skew t mixture models could help
to find adequate and parsimonious explanations for phenomena
in various contexts.

The purpose of the current study is to examine the statistical
performance of a skew t mixture LST model, focusing on
realistic conditions in the domain of LST research in order to
develop guidelines regarding the model’s applicability in practice.
Therefore, the design is based on an empirical application and
simulation study by Courvoisier et al. (2007) examining a normal
mixture LST model. The article is structured as follows: First,
the basic ideas of single group and mixture LST models are
introduced. Second, the skewed structural equationmodel (SEM)
as introduced by Asparouhov and Muthén (2015) is described.
Third, previous findings regarding applications and simulations
of mixture SEMs and the skew t approach are summarized.
Fourth, the Monte Carlo (MC) simulation study on the statistical
performance of the skew t mixture LST model is reported, and
finally the findings are discussed.

MODELS

LST models are longitudinal models with different latent
variables representing time-stable and occasion-specific aspects
of behavior as well as measurement error.

General Single Group LST Model
Generally, an observed variable Yij representing an indicator i on
occasion j is decomposed into a latent state variable Sij and an
error variable Eij.

Yij = Sij + Eij. (1)

The measurement error-free (true) values on Sij, characterizing
an individual in a specific situation, can be further decomposed
into a latent trait variable T, the stable part across occasions, and
an occasion-specific variable Oj, the deviation of the momentary
state from the person-specific trait:

Yij = αij + λTijT + λOijOj + Eij. (2)

In this equation, it is assumed that the latent trait variables T
and the occasion-specific variables Oj are perfectly correlated
across the different indicators, where the intercept αij and
the loading parameters λTij and λOij are real constants. To
ensure identifiability some restrictions with respect to their
possible values have to be made. For this simulation study,
these restrictions and additional invariance settings are described
below in theMethods section. A single group LSTmodel for three
occasions of measurement is depicted in Figure 1A.

The occasion-specific variables Oj are random fluctuations
around the trait and are defined as residuals with respect to
T, so that their expectation is zero (Steyer et al., 1999, 2015).
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FIGURE 1 | Examples of latent state-trait (LST) models with two indicators (i =

1, 2) and three occasions of measurement (j = 1, 2, 3). (A) Single-trait LST

model; (B) LST model with an indicator-specific residual trait factor. Eij = error

variables; IST2 = latent indicator-specific trait residual variable for the second

indicator; Oj = latent occasion-specific variable; T = latent trait variable; Yij =

observed variable; λTij , λOij and λIij = loading parameters.

Furthermore, the Oj are uncorrelated with each other. Moreover,
in the model depicted in Figure 1A, correlations between T and
Oj, T, and Eij, as well as Oj and Eij are zero and the Eij are
uncorrelated with each other.

LST Model With a Common Trait and
Indicator-Specific Trait Residual Factors
To apply SEMs, multiple indicators i per construct are
necessary, for example different items, physiological measures
or different raters. From many empirical applications it
is known that different indicators representing the same
construct might not be unidimensional: They may contain
a unique part not shared by the other indicators. Due to
these indicator-specific parts, indicators are assumed to be
more highly correlated with themselves than with different
indicators over time (Eid et al., 1999; Geiser and Lockhart,
2012).

To account for the heterogeneity of indicators, an LST
model with a common trait and an indicator-specific trait

residual factor was introduced by Eid and Diener (2004). In
contrast to other models including indicator-specific influences
(e.g., an LST model with indicator-specific traits; Eid, 1996),
it includes a common trait, assuming that there is a general
disposition underlying all indicators. This specification can have
advantages with respect to the interpretation of the latent
variables. Furthermore, it can avoid improper solutions (e.g.,
correlations > 1) that could occur in LST models with indicator-
specific traits when the trait variables are highly correlated
(Courvoisier, 2006). In this model, an observed variable Yij with
i > 1 is decomposed as follows:

Yij = αij + λTijT + λIijISTi + λOijOj + Eij for i > 1 (3)

Observed variables Yij with i = 1 are decomposed according to
Equation (2). For all indicators with i > 1, an indicator-specific
trait residual factor ISTi with a loading parameter λIij is added in
Equation (3). It represents parts of the indicators with i > 1 that
are not shared with the first (reference) indicator. As ISTi are
defined as residuals with respect to T, their expectation is zero.
For example, positive values of IST2 reflect that the response on
the second indicator (i = 2) is higher than expected based on
the answer of the first indicator (i= 1). The interpretation of the
other latent variables is not different from their interpretation in
the general LST model. An LST model with a common trait, one
indicator-specific trait residual factor, two indicators per occasion
(i = 1, 2), and three occasions of measurement (j = 1, 2, 3) is
depicted in Figure 1B.

In single group LST models these coefficients are assumed
to be the same for the entire population. However, describing
the population with a single set of parameters might be
oversimplifying if structural differences between (unobserved)
subgroups exist (Lubke and Muthén, 2005). In the following,
a mixture LST model as a special variant of mixture
SEMs accounting for unobserved population heterogeneity is
described.

Mixture LST Models as Extensions of
Mixture Models and LST Models
Mixture models represent a flexible method of modeling complex
phenomena and have received attention from a theoretical as
well as a practical perspective (McLachlan and Peel, 2004). The
mixture LST model is a special case of mixture SEMs. Mixture
models can be viewed as multigroup SEMs with unobserved
and unknown grouping variables (Muthen, 2001). Thus, the
application of mixture SEMs is useful if subpopulations are
assumed but variables related to class affiliation are not easily
measured and/ or the underlying processes are not clear (Ram
and Grimm, 2009).

Mixture LST models combine the ideas of individual and
structural differences in intraindividual variability: Because of the
LST component of the model, interindividual differences in the
expected observed variability are allowed. Additionally, because
of the mixture component of the model, structural differences
between subgroups are possible as the model parameters can
differ between classes. Thus, to define the general mixture LST
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model for each latent class c, Equation (3) is extended to:

Yijc = αijc + λTijcTc + λIijcISTic + λOijcOjc + Eijc, (4)

with probability πc of belonging to a specific class. The
interpretation of the components remains the same within
classes. In order to identify the model, the same restrictions
have to be made within classes as for a single group LST model
(Courvoisier et al., 2007).

Applications of mixture models should be based on theories
about population heterogeneity in order to retrieve interpretable
results (Bauer and Curran, 2003). Many psychological theories
deal with individual and structural differences in intraindividual
variability (Molenaar et al., 2003; Molenaar and Campbell, 2009;
Kuppens et al., 2010; Brose et al., 2012; Röcke and Brose,
2013). Different trait variances between latent classes observed
in mixture LSTmodels may for example differentiate “traited and
untraited individuals” (Baumeister and Tice, 1988). Furthermore,
mixture modeling is considered as a promising tool with respect
to psychiatric research (Miettunen et al., 2016). By applying
mixture LST models in this context, for example subgroups with
varying patterns of stable or variable psychiatric symptoms could
be detected.

The Skew t Structural Equation Model
The number of identified classes in mixture models is
determined by the functional form of the observed and latent
variables’ distributions assumed within classes. Typically, normal
distributions are used due to feasibility and computational
advantages (Dolan and van der Maas, 1998). An important
disadvantage of this assumption is that in case of strongly non-
normal outcome variables, latent classes might be formed to
cover skewness and/ or heavy tails of the distribution. Thus, there
are ongoing debates about whether small classes should be seen as
subpopulations or technical devices (McLachlan and Peel, 2004).
Relaxing the assumption of within-class normality and assuming
another, more flexible functional form instead may reduce the
risk of identifying classes without substantive meanings (Muthén
and Asparouhov, 2015).

From a practical point of view, assuming skew t-distibutions is
reasonable in different contexts: Not only for biological variables
(e.g., fluorphorelabeled antibodies or flow cytometric data; Ho
et al., 2012) and physical and hematological measurements
(e.g., BMI, height and body fat; Lee and McLachlan, 2014;
Muthén and Asparouhov, 2015), but also for psychological
variables (e.g., fatigue; Ho et al., 2014; perceived severity
of uisng steroids; Asparouhov and Muthén, 2015; cogniitve
abilities and depression; Muthén and Asparouhov, 2014)
or economic variables (e.g., excess rates; Arellano-Valle and
Azzalini, 2013).

Asparouhov and Muthén (2015) introduced an SEM
framework, namely “skewed structural equation models” (p.
1), based on the skew t-distribution that can also be applied to
mixture SEMs. They use the restricted skew t-distribution, since
it allows for explicit maximum likelihood (ML) estimation. A
multivariate p-dimensional variable Y following this flexible

functional form is denoted by

Y ∼ rMST (µ,6, δ, ν) . (5)

In this Equation, µ represents a p × 1 location vector, 6 equals
a p × p scale matrix, δ reflects a p × 1 skewness vector, and ν

is a positive degrees of freedom parameter. Thus, a multivariate
skew t-distribution has p + 1 more parameters compared to a
multivariate normal distribution: For each variable a parameter
δ is added indicating the skewness of the distribution to the
left (positive values) or the right (negative values). Furthermore,
the degrees of freedom parameter ν reflects the deviation from
normality in terms of the thickness of the tails. This parameter
is the same for all variables. Generally, values of ν < 3 are only
recommended for distributions with substantially heavy tails (Lee
and McLachlan, 2014; Muthén and Asparouhov, 2015).

The multivariate restricted skew t-distribution encompasses a
multivariate t-distribution in the case of δ = 0. Furthermore,
it is reduced to a multivariate skew-normal distribution when ν

is fixed to a large value, i.e., 10,000. As a third special case, the
multivariate normal distribution is given when fixing both δ to
zero and ν to a large value (Muthén and Asparouhov, 2015).

For a skew t SEM, only p skewness parameters δ can be
identified (Muthén and Asparouhov, 2015). In this simulation
study, the Tc follow a skew t-distribution whereas for the other
latent variables normal distributions are maintained. Thus, the
skewness of the observed variables is explained by the skewness of
the general disposition. The Ojc and ISTic are defined as residuals
with respect to Tc, i.e., unstructured fluctuations around the
general disposition, and are assumed to be normally distributed.

Thus, the class-specific trait factors Tc are expressed as:

Tc = µTc + ξTc (6)

with µTc representing the location parameter of Tc and,

ξTc ∼ rMST
(

0, σ 2
Tc, δTc, νc

)

, (7)

where 0 is the zero location parameter for ξTc, σ 2
Tc is the scale

parameter of ξTc, δTc is the within-class skewness parameter for
ξTc and νc is the degrees of freedom parameter.

Muthén and Asparouhov (2015) describe advantages of the
skew t approach for SEMs in general and specifically for mixture
models: Fitting this more flexible form to the data generally
allows extracting more (higher-order) information, i.e., not
only means and covariances but also skewness and kurtosis.
The skew t models can provide better model fit than normal
models as they account for imperfections of reality, for example,
nonlinearity, to a greater degree. Compared to skew-normal
distributions it is possible to handle larger skewness, i.e., |δ| >

1, of the data (Asparouhov and Muthén, 2015; Muthén and
Asparouhov, 2015). Thereby, regarding mixture modeling, more
parsimonious models can be identified and the risk of spurious
classes is reduced compared to normal mixture SEMs: Applying
the skew mixture SEM, within-class distributions are allowed
to be skewed and include heavy tails. Thus, additional classes
at the ends of the distribution to account for non-normality
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are not formed. Subpopulations identified by a skew mixture
SEM can be more meaningfully compared to classes of normal
mixture SEMs. Furthermore, the stability and reproducibility
of a normal mixture solution can be checked as the restricted
skew t-distribution encompasses the t-distribution, the skew-
normal distribution and the normal distribution as special
cases (Asparouhov and Muthén, 2015; Muthén and Asparouhov,
2015).

Nevertheless, disadvantages of the skew t approach should be
considered as well: Computation times are larger as compared to
the normal approach, larger sample sizes and more random start
values are needed in applications. Classification entropy often
appears to be lower. Additionally, the method is restricted to
continuous variables and Likert scales may not contain enough
information to estimate δ and ν (Asparouhov and Muthén, 2015;
Muthén and Asparouhov, 2015).

PREVIOUS RESEARCH

Applications of Mixture Models
Mixture models have been frequently applied in the past several
years. GMMs have been used in order to identify subpopulations
in the longitudinal change of various variables such as cortisol
stress response (Ram and Grimm, 2009; Koss et al., 2013), drug,
alcohol or tobacco use (Colder et al., 2001; Li et al., 2001; Hix-
Small et al., 2004; Greenbaum et al., 2005), psychiatric symptoms
(Stoolmiller et al., 2005; Armour et al., 2012; Hallquist and
Lenzenweger, 2013), intelligence (Morgan and Beaujean, 2014),
cognitive abilities (Espy et al., 2009), aggression (Brame et al.,
2001; Petras et al., 2004), subjective well-being (Pinquart and
Schindler, 2007; Li and Hser, 2011), prevalence of delinquent
behavior (Reinecke, 2006), or sexual functioning (Legler et al.,
2004). Furthermore, mixture SEMs assuming more complex
relationships between several latent variables have been applied
in various contexts as well, for instance psychopathology (Jonas
and Markon, 2013; Litson et al., 2017), mood (Courvoisier et al.,
2007), treatment effects (Peugh et al., 2017), cognitive abilities
(McArdle and Prindle, 2008; Van Horn et al., 2009; Brandt et al.,
2015), achievement goals (Wang et al., 2010), personality and
life satisfaction (McIntyre, 2011; Heidemeier and Göritz, 2016),
customer satisfaction (Jedidi et al., 1997; Herrmann et al., 2002),
or job satisfaction (Lee and Song, 2003). Compared to the large
body of GMMs, other mixture SEMs have been used to a lesser
degree. Recently, mixture LST models have been examined solely
by Courvoisier et al. (2007) with an application in the context of
mood assessment.

Typically, within-class normality was assumed in previous
studies of mixture SEMs, and some authors used log
transformations to normalize the variables prior to the analysis
(Lin et al., 2002; Wiesner and Windle, 2004; Greenbaum et al.,
2005; Bollen and Curran, 2006; McArdle and Prindle, 2008). The
skew t approach has not been frequently applied yet. Muthén
and Asparouhov (2015) analyzed a GMM for body-mass index
(BMI) with normal or skewed distributions within classes. With
the skew t-distribution a more parsimonious model with two
instead of three classes could be identified. In another study
investigating longitudinal changes in purpose of life, a one

class skew t growth curve model showed better model fit as
compared to two- or three-class normal GMMs (Ko et al., 2016).
Furthermore, Kooken (2015) examined the longitudinal growth
of student classroom behavior with skewed observed variables.
In this study, the skewed approach produced a non-positive
definite covariance matrix and, therefore, a normal GMM was
applied instead.

Simulation Studies for Mixture SEMs
A large number of simulation studies in the context of
mixture modeling has been conducted on various topics, e.g.,
performance of model selection criteria (Jedidi et al., 1997; Lee
and Song, 2003; Brame et al., 2006; Courvoisier et al., 2007;
Henson et al., 2007; Nylund et al., 2007; Kim, 2014; Morgan
and Beaujean, 2014; Usami, 2014), class enumeration (Lubke
and Tueller, 2010; Liu, 2011; Martin and von Oertzen, 2015;
Diallo et al., 2016), parameter estimation (Jedidi et al., 1997; Lee
and Song, 2003; Courvoisier et al., 2007; Lubke and Muthén,
2007; Tolvanen, 2007; Tueller and Lubke, 2010), class assignment
(Lubke and Tueller, 2010), confidence intervals (Dolan and van
der Maas, 1998), covariate inclusion (Li and Hser, 2011; Kim
et al., 2016), missing data (Lee and Song, 2003; Gottfredson et al.,
2014), local solutions (Hipp and Bauer, 2006), label switching
(Tueller et al., 2011) or comparison with other approaches
(Martin and von Oertzen, 2015).

With respect to parameter estimation accuracy, different
influence factors were identified: Tolvanen (2007) reported
positive effects of the degree of differences between latent
classes, sample size and reliability of the observed variables
on the performance of a two-class GMM. Tueller and Lubke
(2010) identified combined influences of sample size, class
separation, effect size, response format, proportion of class
sizes and differences in factor variances for mixture SEMs.
Within the framework of two-class factor mixture models,
greater class separation was associated with better coverage,
and also allowing class-specific parameters influenced statistical
performance (Lubke and Muthén, 2007). So far only one
simulation study (Courvoisier et al., 2007) was conducted for
a two-class mixture LST model with within-class normality.
Parameter estimation performance and behavior of the adjusted
likelihood ratio test (aLRT; Lo et al., 2001) were examined.
Parameter estimation efficiency and accuracy increased with
increasing numbers of observations and occasions. The authors
concluded that models with at least four measurement occasions
and 250 observations yield satisfactory parameter estimates.
Furthermore, the aLRTwas powerful even in case of small sample
sizes (N = 125).

For the skew t approach in mixture modeling only one
simulation study examined parameter estimation and the choice
of the correct number of classes in comparison to the normal
approach (Muthén and Asparouhov, 2015). For N = 2,000, the
skew t GMM always pointed to the correct two-class solution
whereas the performance of the normal GMM was worse (88%
correct identification). Furthermore, parameter and standard
error (SE) estimation accuracy were high for the key parameters
of the skew t GMM, namely class-specific means, skewness,
degrees of freedom and the logit parameter of belonging to
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the first class (referring to the class size). The authors reported
that results for N = 1,000 were good as well. Moreover,
Asparouhov and Muthén (2015) conducted a simulation study
on the performance of the skew approach for models with latent
variables in which they examined a single group factor analysis
model with a skew-normal distribution (N = 5,000). Again, the
skew model performed better than a normal model, with low
parameter estimation bias and high coverage. In this model, not
only the factor was assumed to follow a skewed distribution, but
also one indicator variable. Based on their results, Asparouhov
and Muthén (2015) pointed out that robust ML estimation may
not deal with non-normality in case of complex relationships
between latent variables. These results indicate that applying the
skew t approach might be of advantage in many cases, however,
there is still need to evaluate its performance. The authors did
not vary potential influence factors. For instance, larger degree of
skewness and sample sizes were found to positively influence the
performance of a skew t exploratory factor analysis model (Lin
et al., 2015). Due to the distributional similarities between the
skew t factor analysis model and the skew t mixture model, the
performance of the latter may vary depending on sample size and
skewness as well.

Previous results of skew tmixture models indicate that there is
still need to evaluate the statistical performance of these models
in order to identify conditions under which adequate results
can be expected. Mixture models can vary greatly with various
different specifications within and across classes (McLachlan
and Peel, 2004). As the aim of this study is to investigate the
mixture LST model under realistic conditions, the simulation
was designed closely to Courvoisier et al. (2007) examining the
same model type. Sample size and number of occasions were
considered as potential influence factors. Furthermore, different
degrees of skewness were investigated according to results by Lin
et al. (2015). Better model performance is hypothesized for larger
sample sizes, number of occasions and skewness.

METHOD

Data Generation and Population Model
As a general population model the LST mixture model with
one common trait, two indicators per occasion, one indicator-
specific trait residual factor and two latent classes as examined by
Courvoisier et al. (2007) was used. In addition to an empirical
application in the context of mood analysis, these authors
conducted a MC simulation study for the normal mixture LST
model that fitted their data best. To simulate realistic values in
the research domain of LST models, the same model parameters
were chosen for the present MC simulation study.

In contrast to a normally distributed variable, for a skew
t-distributed variable the parameter µ not simply equals the
mean and the parameter σ 2 not simply equals the variance, and
modeling mean, variance and skewness is not independent from
each other. Means, variances and univariate skewness values for
variables following a skew t-distribution can be calculated using
formulas based on µ,6, δ and ν presented in Asparouhov and
Muthén (2015). For this simulation,µTc (the location parameter)
and σ 2

Tc (the scale parameter) equal the class-specific means and

variances of the trait factors in the simulation of Courvoisier
et al. (2007). In line with Asparouhov and Muthén (2015), in
this simulation study for the skewed trait variable results are
presented forµTc, σ

2
Tc and δTc. For the normally distributed latent

variables, results are presented for the variances which equal the
scale parameters.

Due to identifiability reasons the following restrictions have to
be made within each class:

• Aminimumof one loading parameter per factor has to be fixed
to a positive value (typically 1).

• For factors with only two indicators that are uncorrelated to
all other factors (Ojc in this design), both loadings have to be
fixed.

• For the residual factors (IST2c andOjc in this design) themeans
are fixed to zero.

• One intercept αijc has to be fixed to zero to identify the mean
of the common latent trait variable Tc.

Class sizes were set to 76 and 24% and in the following the
first class is considered to be the larger one (referring to a
logit parameter of belonging to Class 1 of 1.15). In line with
Courvoisier et al. (2007), some parameters were held equal
across time within each class: Measurement invariance (MI) with
respect to the mean structure, loadings, and occasion-specific
variances was assumed. Thus, intercepts, αijc = αic, loading
parameters, λTijc = λTic, λIijc = λIic and λOijc = λOic, variances
of the occasion-specific factors, Var

(

Ojc

)

= Var(Oc) for all j, and
residual variances of the observed variables for j > 1, were set
equal across time. Therefore, the identifiability restrictions and
MI settings resulted in loadings λT1c, λI2c, λO1c and λO2c fixed to
1. Furthermore, the intercept of the first indicator α1cwas fixed to
0. With respect to the error variances, Courvoisier et al. (2007)
observed a so called Socratic effect (Jagodzinski et al., 1987), i.e.,
a larger error variance for the first as compared to the other
occasions, that was also modeled. Apart from this effect, the MI
restrictions regarding intercepts, loadings and residual variances
reflect strict MI (Meredith, 1993). Furthermore, the residual
variances were the same for both indicators. Equal intercepts
and loading parameters across occasions ensure that the same
construct is measured over occasions (Eid and Kutscher, 2014).

In addition toMI across time, the classes were allowed to differ
in the following parameters (The index c indicates class-specific
values):

• The loadings of the second indicator λT2c on the latent trait
variable Tc,

• the intercepts of the second indicator α2c,
• the location parameters of the latent trait variables µc,
• the scale parameters of the latent trait variables σ 2

Tc,
• the variances of the latent indicator-specific trait residual

variables Var(IST2c),
• the variances of the latent occasion-specific variables Var(Oc),
• and the residual variances at the first occasion Var (E1c) and at

the following occasions Var
(

Ejc
)

, j > 1.

Exact population parameters used in the simulation study are
presented in Table S1 in the Supplementary Material. The
larger (first) class is characterized by relatively lower average
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trait values, larger trait variances, and greater interindividual
differences in occasion-specific fluctuations. Influences of
measurement error (residual variances) are larger as compared
to the second class as well.

The common trait was simulated following a skew
t-distribution with νc = 5 (based on Muthén and Asparouhov,
2015) and different skewness parameters δTc depending on the
simulation conditions as described below. In line with Muthén
and Asparouhov (2015), these parameters were equal for both
classes, but estimated separately so that results are presented for
class-specific parameters. The model-implied distributions of the
class-specific trait variables for the two skewness conditions and
corresponding distributions of an observed variable (Y11) are
depicted in Figure 2.

Simulation Design
In this simulation study, the following aspects were manipulated,
resulting in 4× 5× 2 = 40 conditions:

• sample size (N= 125, 250, 500, 1,000),
• occasions of measurement (j= 2, 3, 4, 5, 6), and
• skewness (δTc = 2.8, 6).

Sample sizes and occasions of measurement represent realistic
numbers in the research domain of LST models (Geiser and
Lockhart, 2012) and are based on Courvoisier et al. (2007).
Sample sizes are within the “typical range of values” (p. 637)
proposed by Bandalos (2013). The values for δTc represent mild
and high skewness parameters, as also used in other simulation
studies (Wall et al., 2012; Lin et al., 2015). In line with Courvoisier
et al. (2007) andMuthén and Asparouhov (2015) 500 replications
were used.

All models were estimated with Mplus version 7.3 (Muthén
and Muthén, 1998-2007) and analyzed using the software
R (R Core Team, 2015). A sample input is provided in the
Supplementary Material. Similar to Muthén and Asparouhov
(2015) the default Mplus settings with respect to the number
of iterations, and convergence criteria were used (Muthén
and Muthén, 1998-2007). In the estimation of mixture models
multiple optima of the likelihood function can occur (Hipp and
Bauer, 2006). In line with other simulation studies on mixture
models (Courvoisier et al., 2007; Muthén and Asparouhov, 2015)
the population values were chosen as starting values in order
to reduce related problems and computation time. This can
also diminish the risk of label switching (Tueller et al., 2011) as
described below.

Evaluation Criteria
The performance of the skew t models was judged regarding the
following criteria:

• the rate of non-convergence after 500 iterations,
• the amount of parameter estimation bias (peb),
• the amount of standard error bias (seb),
• the mean squared error (MSE),
• and the 95 percent coverage of the data generating value.

In order to assess the accuracy of parameter estimation the peb
was calculated per parameter. It represents the estimated model
parameter’s deviation from the population value, relative to the

population value. Across replications it was calculated by

peb
(

θp
)

=
1

nr
·

nr
∑

r=1

θ̂pr − θp

θp
, (8)

with θp denoting the population parameter, θ̂pr representing
the estimate for model parameter p in replication r, and nr
representing the number of replications considered for the
calculation.

Similarly, the sebwas used tomeasure the accuracy of standard
error (SE) estimation for a parameter. It represents the difference
between an estimated sample SE from its population value
relative to the population value and was calculated by

seb
(

θp
)

=
1

nr
·

nr
∑

r=1

SE
θ̂ pr

− SDp

SDp
. (9)

While SE
θ̂ pr

denotes the SE of the estimate θ̂ for parameter p in

replication r, SDp represents the population value for the SE, that
is, the standard deviation (SD) of the parameter estimates over all
replications of the specific condition (Bandalos, 2013).

In line with Muthén and Muthén (2002) and Holtmann et al.
(2016), absolute values for peb and seb below the threshold of
0.1, i.e., less than 10% relative deviation from population value,
were considered acceptable. Values between 0.1 and 0.3 were
considered as medium bias (10–30% relative deviation from
population value) and values above 0.3 as large bias (more than
30% relative deviation from population value). In addition to the
average values calculated by Equations (8) and (9), distributions
of peb and seb based on the values per replication were inspected
using boxplot diagrams.

Both low bias and low variation of the estimates across
replications are desirable. In order to account for a possible trade-
off between bias and variance, the MSE was calculated. Small
values indicate small bias in combination with small variation
of the estimates across replications. Because the MSE depends
on the scale, comparisons between conditions were obtained
instead of interpreting the absolute values in relation to a specific
threshold (Muthén and Muthén, 1998-2007; Courvoisier, 2006;
Wall et al., 2012).

The 95% coverage represents the proportion of replications
for which the 95% confidence interval (CI) around the mean of
the estimated parameter includes the population value. It should
be near 0.95. Values between 0.91 and 0.98 were considered
acceptable (Muthén and Muthén, 2002).

Label Switching
In simulation studies with mixture modeling, the problem of
label switching can occur: The models are only identified up to
a permutation of the class labels, i.e., in replications influenced
by label switching, the classes swap their labels. With respect
to this simulation study, this means that “Class 2” becomes
the larger class with parameter estimates matching the values
for Class 1 in the population model and vice versa (Dolan
et al., 2005). Label switching can lead to incorrect conclusions
regarding the means and SDs of parameter estimates so that it
is necessary to control for it. Even though it can be prevented to
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FIGURE 2 | (A) Model-implied distribution of the trait variables per class for δTc = 2.8 and νc = 5; (B) Model-implied distribution of the trait variables per class for

δTc = 6 and νc = 5; (C) Model-implied distribution of the observed variable Y11 per class for δTc = 2.8 and νc = 5; (D) Model-implied distribution of the observed

variable Y11 per class for δTc = 6 and νc = 5; δTc = class-specific skewness parameter for the trait factor; νc = class-specific degrees of freedom parameter; Y11 =

observed variable for the first indicator at the first measurement occasion.

some extent by providing the true population values as starting
values for parameter estimation, it is still necessary to check
the data after the simulation has been conducted (Tueller et al.,
2011).

As the class assignment has to be sufficiently accurate to
detect label switching (Tueller et al., 2011), an accuracy criterion
for class proportions (Tueller et al., 2011) was applied. All
replications with class proportions between 40% and 60% for
the first class were excluded. Furthermore, all replications with
class proportions of less than 40% for the first class were
inspected in order to assess whether the labels may have switched.
This criterion referred to a total of 29 replications. As the
population values of the classes mostly differed with respect to
the mean values of the trait and the variances of the occasion-
specific factors, two criteria were applied to decide whether class
labels have to be changed: a lower σ 2

T in combination with a
higher µT for the first as compared to the second class. In
two cases labels were changed. Three replications fulfilled only
one of these criteria and were excluded from further analyses
as it could not be properly decided whether label switching
occurred or not. The other 24 replications fulfilled none of

the criteria and were further checked for estimation issues (see
below).

RESULTS

Convergence
In total, a large number of replications (98.89%; 19,778
out of 20,000) converged after 500 iterations. Increasing the
number of iterations did not result in enhanced convergence
rates. Generally, convergence was higher for models with
larger numbers of observations and occasions. For the normal
mixture LST model, Courvoisier et al. (2007) reported smaller
convergence rates in small conditions (j = 2, 3 and N = 125,
250), whereas for the other models convergence rates in the case
of normality were at least as high as for the skew t models.

Even though convergence was high for the skew t approach,
for many replications estimation issues occurred. Statistical
performance was examined solely for replications with clearly
separated classes and without warnings given by Mplus. As a
consequence, all of the 29 replications checked for label switching
were excluded from the analysis due to warning messages.
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With respect to the warnings, in a large number of replications
single or multiple parameters were fixed by Mplus to avoid
singularity of the information matrix. Detailed numbers of fixed
parameters per parameter and condition are given in Figure S1
in the Supplementary Material. Mostly, σ 2

Tc or Var(IST2c) and
in some cases the residual variances were fixed. For models
with few occasions (j = 2, 3), some Var(Oc) were fixed as well.
As the values were typically set to zero, including them would
have greatly influenced the calculation of the evaluation criteria.
Other warnings referred to problems with SE estimation due to a
non-positive definite first-order derivate product matrix, low νc
estimates1 or saddle points in the model estimation.

Regarding class separation, all replications with class
proportions between 40% and 60% for the first class (based
on the criterion of Tueller et al., 2011) were excluded. In these
models it remained unclear which of the classes was the first or
second class so that label switching could not be detected.

Figure 3 shows the amount of converged and included
replications. The exact numbers of included and excluded
replications permodel fulfilling aforementioned criteria are given
in Table S2 in the Supplementary Material. After exclusion,
only 47.2% of the converged replications (9,338 out of 19,778)
remained in the analysis. Thus, all results presented hereafter
should be interpreted considering the inclusion rates. As results
of conditions with fewer observations and occasions are based
on smaller proportions of replications, there is less confidence in
the findings compared to other conditions (visualized by error
bars representing standard errors in the figures). Comparisons
between the skew t method and the normal method examined by
Courvoisier et al. (2007) were not adequate due to the different
numbers of included replications.

For some conditions less than 50 replications remained. This
number appeared not to be sufficient for conclusions about
statistical performance so that the following five conditions were
excluded from further analyses:

• δTc = 6, j= 2, N= 125 and N= 250,
• δTc = 6, j= 3, N= 125,
• δTc = 2.8, j= 2, N= 125 and N= 250.

Generally, unclear class separation andMplus warnings occurred
less frequently with increasing number of observations and
occasions. Additionally, for models with larger skewness (δTc =

6) more estimation problems were detected. Nevertheless, it
should be noted that extreme values for parameter estimates were
still present in replications without any warning messages. For an
example see the boxplot diagrams of the peb values per replication
for the degrees of freedom parameter ν2 in Class 2 (Figure 4).

Model Performance Across All Parameters
ThemeanMSE across parameters is displayed in Figure 5. Values
steadily decreased with increasing number of occasions and
observations. Moreover, different effects of j and N depending
on the skewness were observed: Under conditions with high

1Warning given in Mplus: Due to a low estimate of the degrees of freedom

parameter in class 1/class 2 the estimated skewness in that class is infinity. The

distributional assumptions of the skew t-distribution may not be appropriate.

skewness (δTc = 6) sample sizes of N = 500 yielded rather low
MSE values even for three occasions, whereas for δTc = 2.8 five
occasions were necessary to reveal comparable values. Formodels
with 250 observations and δTc = 6 mean MSE was low for four
and five occasions and increased for j= 6. In contrast, for models
with 250 observations and δTc = 2.8, relatively low MSE values
were observed for six occasions only.

Average absolute peb values across parameters decreased
with increasing number of occasions and observations (see
Figure 6A). Furthermore, average bias was smaller for mild
(δTc = 2.8) as compared to high skewness (δTc = 6).With respect
to SE estimation accuracy no clear patterns with respect to effects
of j, N and δTc could be observed (see Figure 6B).

Differences Between Parameters
The analysis revealed great differences between parameters. Large
problems regarding parameter estimation accuracy across all
conditions occurred for ν2 and σ 2

T2 withmean absolute peb values
of 4.48 and 1.74, respectively (large bias). Furthermore, σ 2

T1and
δTc revealed average absolute peb values above 0.1 (medium
bias) across conditions. These parameters also showed high
mean MSE values across conditions, as displayed in Figure 7.
MSE values were lower for parameters in Class 1 compared
to Class 2 for νc, σ 2

Tc, δTc,α2c, and µTc, whereas for Var (Oc)

lower values for Class 2 were identified. With respect to the
other parameters the mean differences in MSE values between
classes were negligible (<0.02). Moreover, the effect of δTc on
MSE values differed between parameters: Greatest differences to
the disadvantages of high skewness were observed for σ 2

Tc, δT2,
ν2, µT2, and Var (O1) . In contrast, high skewness produced
better estimation for the intercepts. For the other parameters
the mean differences between the two skewness conditions were
small (difference ≤ 0.100). To shed a more detailed light on
the different parameters, results are described separately for
(a) the class sizes/logit parameter of belonging to Class 1, (b)
parameters referring to the skew t-distribution, i.e., δTc and νc,
(c) scale parameters/variances of the latent variables, (d) residual
variances, and (e) location parameters, intercepts, and loading
parameters in the following. A summary table for the results is
presented in the Supplementary Material.

Class Sizes
In most of the models the logit parameter was underestimated
indicating that the average proportion of observations belonging
to Class 1 was underestimated. Deviations decreased with
increasing number of occasions and observations and were
slightly smaller for δTc = 2.8 compared to δTc = 6. Absolute peb
values ranged between 0.126 for the condition with δTc = 2.8, j =
3 and N = 125 and 0.002 for the condition with δTc = 2.8, j = 5
and N = 125. For conditions with at least 500 observations
absolute peb values lay between 0.003 and 0.025 indicating small
deviations from the population value. It should be noted that all
replications with π1 values between 0.40 and 0.60 were excluded
as outlined above so that the following results are based only on
replications with clear class separations.

The evaluation criteria for the logit parameter are presented
in Figure 8. MSE (Figure 8A) decreased steadily with increasing
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FIGURE 3 | Number of converged and included replications in the simulation study. Included were replications without warning messages and with clear class

separation, i.e., the larger class contains at least 60% of the observations. j = number of occasions; skew = class-specific skewness parameter for the trait factor (δTc).

number of occasions and observations with similar patterns
for both skewness conditions. Coverage values (Figure 8B)
lay in the desired range for almost all conditions with rates
higher than 98% only for two conditions (j = 2, N = 500,
δTc = 6 and j = 3, N = 250, δTC = 2.8). With respect
to parameter estimation accuracy (Figure 8C), peb fell below
the cut-off for all conditions except for j = 3, N = 125,
δTc = 2.8. Regarding SE estimation accuracy (Figure 8D) at
least medium bias was identified in most conditions. Seb values
were acceptable for at least 5 occasions and 500 observations, but
regarding the differential effect of j, N, andδTc, there was no clear
pattern.

Parameters Related to the Skew t-Distribution
Coverage of νc and δTc, as displayed in Figure 9, showed too high
coverage for conditions with j = 2 (>0.98 for almost all four
parameters). Especially forν2, values below the desired interval
were observed for conditions with mild skewness and N =

125. Furthermore, in some conditions with N = 125 and 250
in combination with large j, coverage of δT1 was below 0.91.
Considering all four parameters in common, coverage fell in the
desired interval for models with at least 500 observations and 4
occasions in case of high skewness and for models with at least
250 observations and 4 occasions in case of mild skewness. With

respect to the other conditions no clear patterns regarding the
over- or underestimation of coverage were identified.

As depicted in Figure 10A, parameter estimation accuracy
generally increased with increasing number of observations and
occasions for all four parameters. For δTc and ν2 most conditions
with high skewness were less sensitive to bias compared to
the corresponding conditions with mild skewness. Nevertheless,
more conditions with δTc = 2.8 revealed unbiased estimates of
all four parameters in common. Whereas for N = 1,000 three
occasions were sufficient in case of δTc = 2.8, at least four
occasions were necessary for δTc = 6 and the same sample size.
For j = 5 all conditions with N ≥ 500 revealed unbiased degrees
of freedom and skewness parameters.

Peb values were highest for ν2, which was overestimated in
many conditions. Mean peb values between 11.96 and 39.89
occurred for ν2 under conditions with low sample sizes and
occasions. The cut-offs for medium (0.10 < peb < 0.30) and
large bias (peb > 0.30) were exceeded in 4 and 20 conditions,
respectively. Inspecting the boxplot diagrams of peb values per

replication (see Figure 4) revealed many outliers. For some

models (e.g., δTc = 2.8, j = 3, N = 125), even the central
50% of the distribution included values of 2.7 indicating
270% bias.

The other parameters related to the skew t-distribution were
less sensitive to bias: For ν1, unbiased estimates were observed
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FIGURE 4 | Distribution of parameter estimation bias (peb) values over all replications for the degrees of freedom parameter ν in Class 2. (A) Complete range

including all outliers; (B) restricted range between −0.6 and 6, illustrating the medium 50% of the distribution. j = number of occasions; N = sample size; skew =

class-specific skewness parameter for the trait factor (δTc).

for models with at least 3 occasions and 250 observations,
except for the condition with 3 occasions and 250 observations
in combination with δTc = 6 (peb = 11%). In the case of
bias, the population values of the skewness parameters were
underestimated. Downward bias for δT1 occurred only in few
conditions with 125 observations (maximum bias of 16%). Peb
of δT2 depended on the degree of skewness: When skewness
was high, at least 250 observations and four occasions or
fewer occasions in combination with at least N = 500 were
necessary for acceptable values. For mild skewness a minimum
of N = 500 and j = 5 was required for peb values below the
threshold.

SE estimation accuracy is displayed in Figure 10B. Patterns
with respect to influences of j, N and δTc on seb were not clear.
In general, solely for one model with j = 6, N = 1,000 and δTc =

2.8, acceptable seb values could be detected for all parameters
referring to the skew t-distribution.

Scale Parameters/Variances of the Latent Variables
Coverage of Var (IST21) ,Var(O1) and σ 2

T2 was below .91 for
only few conditions with N = 125 or N = 500 in combination
with j = 2. For conditions with N ≥ 500 in combination with
high skew conditions with j = 2 and j = 4 coverage values of

Var (IST21) lie above 0.98. For σ 2
T1 and the other latent variances,

coverage values fell in the desired interval.
Parameter estimation accuracy differed between parameters

as depicted in Figure 11: Whereas Var (Oc) were not sensitive

to bias and Var(IST21) exhibited medium bias (10–12%) only in
conditions with j= 2 and N = 500, peb values of Var (IST22) and
σ 2
Tc more often exceeded the cut-offs. For Var(IST22), population

values were overestimated in conditions with few occasions and

underestimated in conditions with more occasions. Some models
with j= 2 and j= 3 exhibited bias above 10% (16–37% bias) with
generally larger values for high skewness conditions. Values were
acceptable for most conditions with four or five occasions, but
increasing the number of occasions to j = 6 increased bias in
direction of the threshold of −0.1. Peb was even higher for the
variances of the traits. Bias decreased with increasing N and j as

well as decreasing δTc. Whereas for σ 2
T1 acceptable values for large

N and/or large j occurred, there was no condition for which the
bias of σ 2

T2 fell below the cut-off. Relative bias ranged between
17% and 609% for this parameter.

Again seb showed diffuse patterns for all parameters
(Figure 12). Acceptable seb values with respect to all
latent variances were identified for five occasions and 1,000
observations.
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FIGURE 5 | Average mean squared error (MSE) across all parameters (A) with unlimited y-axis, (B) with limited y-axis scaling to visualize models with low average

MSE values. Error bars represent standard errors. For j = 2 and j = 3 some conditions are not displayed, because they were excluded from the analysis. j = number

of occasions; N = sample size; skew = class-specific skewness parameter for the trait factor (δTc).

FIGURE 6 | Average absolute bias across parameters per condition. (A) Parameter estimation bias (peb); (B) standard error bias (seb). The horizontal dashed lines

represent the cut-off for medium bias (10% < peb/ seb < 30%), the horizontal dotted lines represent the cut-off for large bias (peb/ seb > 30%). j = number of

occasions; N = sample size; skew = class-specific skewness parameter for the trait factor (δTc).

Residual Variances
Generally, peb values exceeded the cut-offs solely in Class 2 for
few conditions: Var (E12) exhibited 10% (δTc = 6) and 11%

(δTc = 2.8) bias for models with j= 4 andN = 125, andVar (E22)
showed 11% (δTc = 6) and 12% (δTc = 2.8) bias for conditions
with j = 2 and N = 500. SE estimation accuracy was lower than

Frontiers in Psychology | www.frontiersin.org 12 August 2018 | Volume 9 | Article 1323

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Hohmann et al. Skew t Mixture Latent-State Trait Modeling

FIGURE 7 | Average mean squared error (MSE) across conditions for the different parameters. The range of the y-axes differs between panel (A) displaying

parameters with comparably high MSE values and panel (B) displaying parameters with comparably low MSE values. To compare the skewness conditions, the

model with 3 occasions, 125 observations and δTc = 2.8 was eliminated for this visualization as a corresponding model with δTc = 6 was previously excluded from the

analysis. The bars for ν2 were cut off in order to ensure visibility of the values for the other parameters (mean MSE for ν2 in conditions with δTc = 2.8 was 20,694;

mean MSE for ν2 in conditions with δTc = 6 was 30,281). c = index for class; Ejc = residual variable; j = index for occasions; O = latent occasion-specific variable;

ISTc = latent indicator-specific residual trait variable for the second indicator; Tc = latent trait variable; α2c = intercept of the second indicator; νc = degrees of

freedom parameter; δTc = skewness parameter for Tc; λT2c = trait loading of the second indicator; µTc = location parameter for Tc; σ2
Tc

= scale parameter for Tc.

parameter estimation accuracy without clear effects of j, N and
δTc. Severe bias occurred even in conditions with large j and N,
and only conditions with j≥ 4 and N = 1,000 showed acceptable
seb values across all four residual variance parameters.

Intercepts, Trait Loadings, and Location Parameters

of the Latent Trait Variables
Coverage showed the most problems for λT22 with values >

0.98 under most conditions with high skewness and 125 or 250
observations. Increasing the sample size to 1,000 revealed values
near 0.95 for at least four occasions. With respect to µTc and
α2c coverage did not reach 0.91 under some conditions with N
= 125. Furthermore, for j = 2 and N = 500 in combination with
mild skew, coverage values for µT1 lay above the desired interval
and for µT2 below the desired interval.

With respect to parameter estimation, λT2c and µTc were
not sensitive to bias. The intercepts were biased solely in few
conditions. α21 was only afflicted by bias in conditions with
δTc = 2.8 and acceptable values occurred for all conditions with
at least 500 observations and 4 occasions. Absolute bias values
for Class 2 were higher with also some conditions with high
skewness being biased. For N ≥ 500 in combination with j ≥ 3,
parameter estimation appeared to be unbiased for both degrees
of skewness.

Again average seb for intercepts, trait loadings and location
parameters of the trait variable exceeded the cut-offs for many
conditions without clear patterns regarding the effects of j, N,
and δTc. Mostly SEs were biased upwards. Patterns for intercepts

and trait loadings were very similar and generally large j in
combination with largeN revealed acceptable values. Patterns for
µTc were similar to the patterns for σ 2

Tc.

Trends of Common Bias Between Parameters
By inspecting correlations and bivariate distributions of absolute
peb values of the different parameters, some patterns could be
observed as depicted in Figure 13. Within classes, trait loadings
and intercepts were nearly perfectly correlated (r > 0.96).
Furthermore, δTc, µTc, and σ 2

Tc showed similar trends for the
first class (0.28 < r < 0.56) as well as for the second class
(0.37 < r < 0.47). For absolute seb values similar patterns
were identified. Bias often occurs for all three parameters related
to the (skewed) class-specific trait value in common. Across
classes bias did not show common trends. Tables with bivariate
Spearman’s ρ correlations can be found in the Supplementary
Material.

Model Performance Considering Different
Parameter Types
In order to evaluate model performance considering the
estimation accuracy of different parameter types, it was inspected
how many parameters per model exceeded the cut-offs for peb,
seb and coverage. As displayed in Figure 14, none of the models
was free from bias. At least one parameter, σ 2

T2, was biased in each
of the conditions. For N ≥ 500 in combination with j ≥ 5 and
N = 1,000 in combination with j = 4 (high skewness) or N =
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FIGURE 8 | Evaluation criteria for the logit parameter per condition. (A) Mean squared error (MSE); (B) 95% coverage with desired range printed in green; (C) average

parameter estimation bias (peb) across replications; (D) average standard error bias (seb) across replications, to visualize small values, the y-axis was cut off; the

horizontal dashed lines represent the cut-offs for medium bias (10% < absolute peb/ seb < 30%), dotted lines represent the cut-offs for large bias (absolute peb/ seb

> 30%). Error bars represent standard errors. The scaling of the y-axis differs between panels. j = number of occasions; N = sample size; skew = class-specific

skewness parameter for the trait factor (δTc ).

1,000 in combination with j ≥ 3 (mild skewness) peb of all other
parameters lay in the desired range.

The total number of exceeded cut-offs for coverage, peb and

seb mostly decreased with increasing j, N and lower skew. For
j = 3 and j = 4 in combination with high skewness, some

diffuse patterns were identified. Differences between skewness

conditions declined for conditions with larger numbers of
occasions and observations. In general, most problems occurred
with respect to SE estimation accuracy (seb), but in contrast to

parameter estimation accuracy, one condition (j = 6, N = 1,000,
δTc = 2.8) revealed acceptable seb values for all parameters.
In conclusion, the skew t mixture LST model exhibited many
problems with respect to SE estimation and failed to recover
the true population values for at least one parameter in all
conditions. Tables containing information about parameter and

SE estimation per parameter for each condition are provided in
the Supplementary Material.

DISCUSSION

The purpose of this MC simulation study was to evaluate
the statistical performance of a skew t mixture LST model,
a combination of the mixture LST model introduced by
Courvoisier et al. (2007) and the skew t approach proposed by
Asparouhov and Muthén (2015). The mixture LST model allows
for individual as well as structural differences in intraindividual
variability. It aims to identify distinct numbers of interpretable
latent classes with class-specific model parameters. According to
the skew t component of the model, non-normal distributions
within classes are allowed. This reduces the risk of identifying
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FIGURE 9 | 95% coverage for the parameters referring to the skew t-distribution. The desired range of 0.91–0.98 is printed in green. νc = degrees of freedom

parameter for class c; δTc = skewness parameter for Tc for class c.

spurious latent classes due to non-normality of the outcomes, as
this more flexible distribution accounts for asymmetry or heavy
tails (Lin et al., 2015).

In LST research non-normal variables are observed frequently
(Eid et al., 1999) and theories about population heterogeneity
with respect to the stability and variability of constructs are
present (Baumeister and Tice, 1988). Hence, LST models offer a
promising framework for both applications of mixture SEMs and
the skew t approach. As these aspects have not been combined
so far, the skew t mixture LST model fills a gap in the current
literature.

Previous simulation studies with (LST) mixture models and
skew t factor mixture models identified effects of sample
size, number of occasions and degree of skewness on model
performance (Courvoisier et al., 2007; Tueller and Lubke,
2010; Lin et al., 2015). These aspects were varied in this
simulation study in order to find out under which conditions
parameters of the skew tmixture LSTmodel can be appropriately
estimated.

In the following, the results regarding convergence, parameter
and SE estimation are discussed and recommendations for
applications in practice are given.

Convergence
Even though convergence rates for the skew t mixture LST
model were high and for small N and j even higher as
compared to the normal mixture LST model (Courvoisier
et al., 2007), many replications revealed improper solutions
as indicated by warnings given in Mplus. Conditions with
few observations and occasions exhibited more issues,
especially in combination with high skewness. This is in
line with Kooken (2015) applying a normal GMM with three
measurement occasions for skewed data where the skewed
approach produced an improper solution although the sample
sizes were relatively large (N ≥ 1,822 depending on the
occasion).

Lubke and Muthén (2007) state that class-specific covariance
matrices of the observed variables, determined by class-specific
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FIGURE 10 | Mean bias across conditions for parameters referring to the skew t-distribution. The horizontal dashed lines represent the cut-offs for medium bias (10%

< absolute peb < 30%), the horizontal dotted lines represent the cut-offs for large bias (absolute peb > 30%). To visualize small values, the y-axis of ν2 was cut off.

The scaling of the y-axis differs between parameters. Error bars reflect standard errors. νc = degrees of freedom parameter for class c; δTc = skewness parameter for

Tc for class c; (A) parameter estimation bias (peb); (B) standard error bias (seb).
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FIGURE 11 | Mean parameter estimation bias (peb) across replications for the variances/ scale parameters of the latent variables. Error bars reflect standard errors.

The red dashed lines represent the cut-off for medium bias (10% < absolute peb < 30%), dotted lines represent the cut-off for large bias (absolute peb > 30%). To

visualize small values, the y-axis of σ2
T2 was cut off. The scaling of the y-axis differs between parameters; c = index for class; ISTc = indicator-specific trait residual

factor; j = occasions; Oc = occasion-specific factor; skew = class-specific skewness parameter for the trait factor (δTc); σ2
Tc

= scale parameter for Tc.

parameters, may lead to singularities and convergence problems.
However, identification of the parameters that vary across classes
is a key goal in the context of mixture LST models. Lubke and
Muthén used fifty sets of random starting values in order to
reduce convergence problems. In our study, the true population

values were chosen as starting values for optimal starting
conditions for the estimation process. Additionally providing
multiple starting values may have decreased the rate of improper
solutions. However, by using population values as starting values,
the approach was investigated under ideal conditions, and bias

Frontiers in Psychology | www.frontiersin.org 17 August 2018 | Volume 9 | Article 1323

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Hohmann et al. Skew t Mixture Latent-State Trait Modeling

FIGURE 12 | Mean standard error bias (seb) across replications for the variances of the latent variables. Error bars reflect standard errors. The red dashed lines

represent the cut-off for medium bias (10% < absolute peb < 30%), dotted lines represent the cut-off for large bias (absolute peb > 30%). To visualize small values,

the y-axes of σ2
Tc

were cut off. The scaling of the y-axis differs between parameters; c = index for class; ISTc = indicator-specific trait residual factor; j = occasions;

Oc = occasion-specific factor; skew = class-specific skewness parameter for the trait factor (δTc); σ2
Tc

= scale parameter for Tc.

results are assumed to represent a lower limit of bias that can be
expected with less ideal starting values.

For the replications revealing warning messages in the current
simulation study, often variances of the latent variables were fixed
to zero in order to avoid the singularity of the informationmatrix.

This may be due to the relatively small population values of the
latent variances. From a theoretical viewpoint, zero variances
may be reasonable in research fields such as psychiatry: If a
subgroup not showing a specific symptom or behavior exists, this
leads to a zero variance for a latent trait variable. For example,
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FIGURE 13 | Relationships between absolute parameter estimation bias (peb) values of the different parameters across replications for (A) Class 1 and (B) Class 2.

The scaling of the axes differs between plots; α2c = intercept of the second indicator; c = index for class, δTc = skewness parameter for Tc; λT2c = trait loading of

the second indicator; µTc = location parameter for Tc; σ2
Tc

= scale parameter for Tc.

for the addiction severity index, a semi structured interview
assessing seven areas of functioning for patients with substance
use disorders, in practice often many zero values (no severity)
occur (Delucchi and Bostrom, 2004).

Parameter Estimation
MSE values steadily decreased with increasing N and j, although
none of the models was free from parameter estimation bias
(peb): Generally, cut-offs for bias were less frequently exceeded
for models with larger N and j. Nevertheless, at least one
parameter showed unacceptable peb values in each model.

Across all conditions, parameters related to the trait variables
Tc weremost sensitive to bias. In contrast, for the normal mixture
LST model bias was larger for the intercepts, trait loadings
and variances of the indicator-specific traits as compared to
the other parameters (Courvoisier et al., 2007). This underlines
that model performance greatly varies depending on the
assumption of the functional form of the distribution within
classes. Especially when skew t models are compared to (skew)
normal models, biased estimates for δTc and νc are problematic:
Values for δTc near zero and/or large values of νc may suggest
another functional form within classes and, therefore, lead to
misinterpretations.

Bias of the logit parameter was generally low for the skew t
mixture LSTmodel, exceeding the cut-off solely in one condition.
Parameter estimation accuracy appeared to be acceptable even for
models with small numbers of occasions and observations. Thus,
class proportions were recovered well and problems were mainly

related to parameters within classes. However, it should be noted
that all replications with unclear class separation were excluded
because it remained unclear whether label switching occurred or
not (Tueller et al., 2011).

Bias for νc, σ 2
Tc, δTc, α2c, and µTc was more pronounced

in Class 2 which may be due to the smaller class size (π2 =

24%) resulting in less information available to estimate the
parameters. For instance, for conditions with N = 125, solely 30
observations were expected in this class. Especially with respect
to the parameters belonging to the skewed trait factor, few
observations appear not to be sufficient for unbiased estimates.
As depicted in Figure 2, a degrees of freedom parameter of νc = 5
leads to heavy tails in the expected distribution. Within a small
sample there may be only very few outlier values so that the
skewed variables cannot be appropriately recovered. This seems
to be even more problematic for larger skewness, as higher MSE
values of σ 2

Tc, δT2, ν2, and µT2 for conditions with high
skewness indicate.

For some conditions with many observations (N ≥ 500)
and occasions (j ≥ 5) solely σ 2

Tc exhibited upward bias. In
these models, in contrast to peb values, 95% coverage of the
parameter was acceptable and MSE values were comparatively
small. These results indicate that increasing the number of

occasions and observations may lead to unbiased parameter
estimates. However, based on our results predictions regarding
the required sample size and number of measurement occasions
for unbiased estimates cannot be made. In practice j > 6
and N > 1,000 are rarely realized. According to formula
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FIGURE 14 | Number of parameters exceeding the cut-off values of the different criteria. The total number of estimated parameters in the design was 21. Coverage

was considered acceptable between 0.91 and 0.98. Cut-off (medium bias) for unacceptable peb and seb values was set to 0.1. j = number of occasions; peb =

parameter estimation bias; seb = standard error bias; skew = class-specific skewness parameter for the trait factor (δTc).

(19) (p. 4) given in Asparouhov and Muthén (2015), a larger
scale parameter σ 2 of a variable following a skew t-distribution
leads to a larger variance of this variable. From a theoretical
viewpoint upward bias of the trait variance indicates a greater
degree of interindividual differences of the general dispositions.
As the variance of the traits is used for the calculation of
important coefficients indicating the degree of stability and
variability within the LST framework (Steyer et al., 1992;
Eid and Luhmann, 2012), biased estimates of σ 2

Tc resulting
in biased trait variances, are crucial in applications. As MC
simulation studies evaluate models under ideal conditions
(Muthén and Muthén, 2002), even more bias can be expected in
applications.

SE Estimation
More problems as compared to parameter estimation occurred
with respect to SE estimation. Solely one condition was free from
bias, and no clear results regarding differential effects of N, j and
δTc could be observed. As coverage is influenced by SE estimation
(Muthén and Muthén, 2002), diffuse patterns regarding coverage
are in line with the diffuse patterns of seb across conditions.

For the calculation of seb values, the SDs of parameter
estimates serve as population values for SEs (Bandalos,
2013). SDs were large for some parameters (especially ν2)
in conditions with few observations and occasions even
though replications with warning messages were excluded. The
remaining replications also contained outliers enlarging the
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SDs. As the calculations of parameters related to the skew t-
distribution influence each other, outlier values of one parameter
may cause outlier values for another parameter as well. It remains
unclear whether the outliers represent parts of the distribution
or problematic values that should not be considered. Therefore,
the SDs influenced by these large values may not be trustworthy
and cause diffuse results regarding SE estimation. Furthermore,
the diffuse seb patterns may be due to the different numbers of
included replications.

For the normal mixture LST model, diffuse seb patterns were
observed as well, but for large N and j bias fell below the cut-
off for all parameters (Courvoisier et al., 2007). In contrast
to Courvoisier et al. (2007), some parameters of the skew t
mixture LSTmodel, i.e., location and scale parameters of the trait
variables or intercepts and loadings, exhibited similar seb patterns
within classes across conditions. This is in line with common
trends of absolute peb values for the respective parameters and
underlines that parameter estimation in skewed models is more
complex and entangled.

Peb and seb largely varied across replications for the skewness
parameters and the latent variances. In order to reduce the effect
of outliers and extreme values on bias calculation, we additionally
used the median as a measure of central tendency across
replications. The results are presented in the Supplementary
Material. Compared to the usual definition of bias using the
average across replications (see Equations 8 and 9), less bias
was observed for small conditions. However, as extreme values
can occur in simulation studies, eliminating the values reduces
the validity of the results. Therefore, we decided to base our
interpretation on the average bias values presented above.

Limitations and Future Research
The current work focused on realistic conditions in the LST
research domain and was, therefore, closely designed to the only
available application of mixture LST modeling. Thus, it remains
unclear whether the results are generalizable to other situations.
Statistical performance of mixture models depends on further
aspects, such as degree of class separation, effect size, proportion
of class sizes or parameter invariance between classes (Lubke
and Muthén, 2007; Tueller and Lubke, 2010), and these factors
may even interact with the skewness of the data. Thus, future
simulation studies could investigate (skew t) mixture LSTmodels
with different population parameters to consider these aspects.

Furthermore, the number of indicator variables for each
measurement occasion is known to affect the convergence
and parameter estimation (Marsh et al., 1998; Kenny and
McCoach, 2003). This may be an additional variable that
could be considered in a further simulation study. Moreover,
statistical performance may depend on the number of latent
subpopulations which may be investigated in further simulation
studies as well. In the current design, apart from the residual
variances at the first occasion of measurement, all parameters
were held equal across time. Due to this MI setting, increasing
the number of occasions is similar to increasing the sample
size. From a theoretical viewpoint in LST research, the numbers
of observations and occasions are two distinct aspects in
applications. Therefore, to examine differential influences of

these factors on statistical performance of models in more detail,
future simulation studies could include different degrees of MI
across time. However, it should be noted that less restrictive
models need more parameters to be estimated which may
complicate model estimation (Lubke and Muthén, 2007). This
study solely examined the statistical performance in terms of
parameter and SE estimation. Future work could focus on the
ability of the skew t approach to detect the correct number
of classes. Nevertheless, as starting values can greatly influence
estimation in mixture models, it should be carefully considered
which values to provide for three class solutions. Additionally,
class assignment accuracy and its relationship to parameter and
SE estimation could be studied. Some applications of mixture
SEMs focus on assigning individuals to their most likely class,
but even in case of accurate parameter estimation, classification
quality can be poor, so that individuals may be incorrectly
classified (Lubke and Tueller, 2010). Therefore, identifying
conditions under which class assignment accuracy is high may be
of particular interest for some research domains and applications
such as categorical diagnostic in psychiatry.

Future research could compare normal and skew t mixture
SEM and their respective identified number of classes, as done
for example by Muthén and Asparouhov (2015) in the context
of GMMs. In various contexts (e.g., biological, economic, and
psychological research), where non-normal distributions are
plausible, these comparisons may offer different perspectives and
therefore, improve the interpretability of the results.

In the current work, the number of included replications
greatly differed between conditions due to the exclusion of
improper solutions, so that the comparability between conditions
is limited. There are debates about how to handle estimation
issues (Boomsma, 1985; Chen et al., 2001), and some authors
include replications with warning messages in order to consider
the entire distribution of the parameters (Leite, 2007; Ulitzsch
et al., 2017). However, other authors not only delete replications
with improper solutions, but also unrealistic parameter estimates
provided by replications without any warning messages. For
example, Enders and Bandalos (2001) excluded replications with
absolute peb values greater than 4, but also state that this cut-
off was “clearly arbitrary” (p. 440), based on the rationale that
these values were considered problematic in applications. For
the current simulation, solely improper solutions were excluded
in line with other simulations (Nylund et al., 2007; Geiser and
Lockhart, 2012). Warning messages are generally considered
to be problematic in empirical applications, but heuristics for
additional “problematic” outlier values could not be defined,
as modeling with skew t-distribution has not been frequently
used in applications yet. Future studies could evaluate effects of
different inclusion strategies of replications.

CONCLUSION

In practice, when researchers are interested in population
heterogeneity with respect to reversible short-term fluctuations
around a stable trait, mixture LST models are a powerful
data-analytical tool. However, researchers should be aware of
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the classical assumption of within-class normality in normal
mixture models. The results should be treated with caution, as
in case of non-normality, classes may be simply formed to cover
heavy tails of the distributions. That is, if researchers encounter
small, non-substantial and hard-to-interpret subgroups or have
substantial reasons to assume an underlying skewed distribution,
the skew t approach might be a valuable alternative. Applying the
flexible skew t approach may offer different perspectives on the
underlying relationships.

The following recommendations for applications can be made
according to the results of this simulation study:

Unbiased parameter estimation was not possible for any of the
conditions considered in this design. Applying a skew t mixture
LST model with two classes and trait factor skewness of δTc = 2.8
and δTc = 6 in combination with five degrees of freedom is
not recommended for small sample sizes (N = 125, N = 250)
and few occasions (j = 2). However, the number of affected
parameters was relatively small for large sample sizes and number
of occasions, and in contrast to bias values, coverage values lay
in the desired range. In case of mildly skewed variables, 500
observations in combination with at least four occasions and
1,000 observations with at least three occasions may be sufficient.
For variables with high skewness, at least five occasions should
be investigated for 500 observations and at least four occasions
may be sufficient in case of 1,000 observations. However, as bias
still occurs in these large conditions, the results should be treated
with caution.

The current simulation underlines that larger sample sizes
are necessary for skew t mixture SEMs as compared to normal
mixture SEMs (Muthén and Asparouhov, 2015): For the normal
mixture LST model with two classes at least four occasions
and 250 observations were sufficient for unbiased estimates
(Courvoisier et al., 2007), but under these conditions parameter
estimation was not appropriate for the skew tmodel. Asparouhov
and Muthén (2015) reported good results for N = 2,000 for
skew t GMMs or N = 5,000 for skew-normal factor analysis, but
whether these numbers lead to unbiased results within the skew t
mixture LST framework has to be tested.

However, Muthén and Asparouhov (2015) argue that
successful analyses with the skew t approach may be possible for
sample sizes between 100 and 200. This may be true for other
SEMs with different structural relationships between parameters.

There is still more research necessary to investigate the approach
in other contexts. For instance, it may be advantageous to assume
skew t-distributions in other SEM models for longitudinal data.
Further simulation studies are needed in this context to evaluate
the statistical performance of these models.

In applications, multiple starting values should be used
to increase convergence, even more as compared to normal
mixture SEMs (e.g., 400 initial stage starts as used by Muthén
and Asparouhov, 2015). Furthermore, researchers should be
aware of the problem that skew t models may exhibit
estimation issues even though models converged, especially
in case of small sample sizes, few measurement occasions
and strongly non-normal data. Model parameters should be
carefully checked. Models with warning messages may include
meaningful information as well. For instance, fixed values,
such as zero variances, may characterize people with response
tendencies or, subgroups of specific patients in psychiatry
research. Compared to models with proper solutions, those
with improper solutions show larger bias across parameters
(Chen et al., 2001). Therefore, the models with estimation
issues should not be interpreted. Instead, additional models
with parameter constraints should be tested. Furthermore, it is
clearly recommended to conduct a simulation study with the
properties of the model in the respective application, in order
to ensure that the fit coefficients and parameter estimates can be
trusted.
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