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Although considerable developments have been added to the cognitive diagnosis

modeling literature recently, most have been conducted for dichotomous responses

only. This research proposes a general cognitive diagnosis model for polytomous

responses—the general polytomous diagnosis model (GPDM), which combines the

G-DINA modeling process for dichotomous responses with the item-splitting process

for polytomous responses. The polytomous items are specified similar to dichotomous

items in the Q-matrix, and the MML estimation is implemented using an EM algorithm.

Under the general framework, different saturated forms, and some reduced forms, can

be transformed linearly. Model assessment and adjustment under the dichotomous

context can be extended to polytomous responses. This simulation study demonstrates

the effectiveness of the model when comparing the two response types. The real-data

example further illustrates how the proposed model can make a difference in practice.
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INTRODUCTION

Cognitive diagnosis models (CDMs) have received increasing attention in educational and
psychological measurement. CDMs are used to assess the strengths and weaknesses of test takers
across a set of attributes. Diagnostic measurements based on CDMs can provide diagnostic and
domain-specific information on finer grain size that can be used for different testing purposes.
Recently, considerable developments had been added to the CDM literature. Among others, these
included additive models like the additive CDM (A-CDM; de la Torre, 2011), the linear logistic
model (LLM; Maris, 1999), and the reduced reparameterized unified model (R-RUM; Hartz, 2002;
DiBello et al., 2007); highly constrained models like the deterministic inputs, noisy “and” gate
(DINA; Junker and Sijtsma, 2001) model, and the deterministic inputs, noisy “or” gate (DINO;
Templin andHenson, 2006) model; and saturatedmodels like the log-linear CDM (LCDM;Henson
et al., 2009) and the generalized DINA (G-DINA; de la Torre, 2011) model. Applied researchers
are also equipped with models that can accommodate higher-order structure (de la Torre and
Douglas, 2004), polytomous attributes (e.g., vonDavier, 2008; Chen and de la Torre, 2013), multiple
strategies (de la Torre and Douglas, 2008), partial credit (de la Torre, 2010), nominal responses
(Templin et al., 2008; Chen and Zhou, 2017, March), and multiple-choice (MC) items (de la Torre,
2009). In terms of model assessment, various methods or procedures are provided for Q-matrix
validation or more general model misfit (e.g., de la Torre, 2008; Chen et al., 2013; Chiu, 2013; de
la Torre and Chiu, 2015; Chen, 2017). With these developments, one can find a growing number
of CDM applications across different educational and psychological areas. Specifically, CDM-based
measurement can be found in topics such as math (Tatsuoka, 1990), reading (Jang, 2009; Chen and
Chen, 2015, 2016), psychological disorder (Templin and Henson, 2006), and situational judgment
(García et al., 2014).
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The significance of polytomous responses for diagnostic
measurement has been realized for quite a while, with different
conceptual models available (e.g., Rupp et al., 2010, p. 98).
However, we can only identify three estimable CDM frameworks
for polytomous responses up to date (von Davier, 2008; de
la Torre, 2010; Ma and de la Torre, 2016). The partial-credit
DINA model (de la Torre, 2010) is a direct extension of the
highly constrained DINA model. In the general diagnostic
model (GDM), von Davier (2008) accommodated polytomous
responses based on the idea of the generalized partial credit
model (GPCM; Muraki, 1992). The GDM framework for
polytomous responses is a linearly additive model and no
interaction term is involved (see Equation 2 in p. 290). The
sequential CDM for polytomous responses (Ma and de la Torre,
2016) adopted the G-DINA model as the process function. But it
required that the item categories were attained sequentially and
associated with specific attributes explicitly, which might not be
always applicable. Moreover, it is unclear how the monotonicity
assumption that the probability of responding in higher category
will increase monotonically for examinees with more required
attributes can be satisfied. Although polytomous responses can
be dichotomized, it is suboptimal, and can result in a dramatic
loss of information. What is missing is a general, saturated
framework for polytomous responses similar to the G-DINA
model or LCDM for dichotomous responses, which can subsume
a variety of reduced models.

Without a more general and comprehensive modeling
framework for polytomous responses, the power of CDMs cannot
be fully appreciated by applied researchers and practitioners
across a wide range of areas. This research proposes a general
cognitive diagnosis model for polytomous responses, the basic
logic of which is to combine the G-DINA modeling process
for dichotomous responses with the item-splitting process
similar to the graded response modeling (Samejima, 1969). The
G-DINA monotonicity constraint that examinees with more
attributes will not have lower probability of success (Hong
et al., 2016) is also extended to polytomous responses. The
resulting model will be called the general polytomous diagnosis
model (GPDM), which is saturated, and subsumes various
saturated and reduced forms for polytomous and dichotomous
responses. Themarginal maximum likelihood (MML) estimation
is adopted and implemented using an expectation-maximization
(EM) algorithm. Although the GPDM will reduce to the G-
DINAmodel for dichotomous responses, the varieties of reduced
models within the GPDM exceed those under the G-DINA
model, owing to the complexity of polytomous responses. Model
assessment and adjustment under the dichotomous context will
be also extended to polytomous responses.

THEORETICAL FRAMEWORK

Model Formulation
For a diagnostic test with J items and K dichotomous attributes,
there will be L = 2K attribute patterns and a J × K Q-matrix.
Let α

l
= (αl1, · · · ,αlK)

T denote the attribute vector where l =
1, . . . , L, and qjk is the element in row j and column k of the Q-
matrix. Denote the polytomous responses for item j asXj = cwith

Cj response categories, where c = 0, . . . , Cj – 1. For polytomous
responses, one can specify qjk as 1 if mastery of attribute k is
required to respond c or above on item j, and as 0 otherwise
for any c > 0. If one sets c > 1 (e.g., c = 2) however, it will
result in a loss of information since any response below c will
not be modeled (e.g., 1 will be treated as 0 when c = 2). Note
that if one sets c = Cj – 1, the polytomous responses reduce to
dichotomous responses. For maximal information, this research
proposes to specify qjk as 1 if mastery of attribute k is required
to respond 1 or above to item j, and as 0 otherwise. Stated
differently, instead of specifying each item category, one only
needs to specify the polytomous items similar to dichotomous
items in the Q-matrix. The modeling process will take care of
the difference across item categories. Accordingly, the Q-matrix
is subjected to same criteria of completeness or identifiability
for dichotomous responses (e.g., Köhn and Chiu, 2016; Xu and
Zhang, 2016).

For item j, irrelevant attributes can be omitted and the
required attributes is represented by the reduced attribute vector

ηjh = (ηh1, · · · ηhg , · · · , ηhGj
)T , where h = 1, . . . ,Hj = 2Gj and

Gj =
∑K

k=1 qjk. Similar to the G-DINAmodel (de la Torre, 2011),
the attribute vector αl is simplified as the reduced attribute vector
ηjh, the elements of which correspond to the required attributes
in Item j. It means that the L attribute patterns or latent classes
of the whole test are simplified to Hj latent groups in item j. The
simplification proceeds with the help of Item j’s q-vector qj. Note
that attributes in the reduced vector should follow the same order
as the required attributes in αl. For a test with four attributes for
example, α

l
= (αl1,αl2,αl3,αl4)

T and l = 1, . . . , L = 16. If only
the first and third attributes are required in Item j, the q-vector
is qj = (1, 0, 1, 0). Accordingly, Gj = 2 and the reduced vector is

ηjh = (ηh1, ηh2)
T = (αl1,αl3)

T , with h = 1, . . . ,Hj = 4.Working
with ηjh instead of αl on Item j, one only needs to handle four,
instead of 16, latent groups.

For latent variable modeling with polytomous responses, it
is convenient to split the polytomous item with Cj response
categories into Cj dichotomous sub-items, each of which then
can be formulated using models for dichotomous responses.
The GPDM splits the item indirectly based on the difference
of cumulative probability between response categories. The
probability of examinees responding c, conditional on reduced
attribute vector ηjh, is P(Xj = c|ηjh) ≡ Pc(ηjh), with
∑Cj−1

c=0 Pc(ηjh) = 1. The cumulative probability of response
in Category c or above can be denoted as P(Xj ≥ c|ηjh) ≡

P∗c (ηjh). Under the graded response approach (Samejima,
1969), the relationship between the conditional and cumulative
probabilities is:

P∗c (ηjh)− P∗c+1(ηjh) = Pc(ηjh) (1)

with P∗0(ηjh) = 1 and P∗Cj
(ηjh) = 0. For item j, the number of

independent probabilities in P∗c (ηjh) and Pc(ηjh) is the same and
equals (Cj − 1)Hj. It is more straightforward to formulate the
model directly with the conditional probabilities Pc(ηjh) rather
than the cumulative probabilities P∗c (ηjh).
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The monotonicity assumption under the G-DINA model for
dichotomous responses (de la Torre, 2011) can be extended to
polytomous response. Specifically, the relationship between two
attribute vectors ηjh and ηjh′ can be defined as ηjh ≥ ηjh′ if
and only if ηhg ≥ ηh′g for g = 1,. . . , Gj. Equality between the
two vectors (i.e., ηjh = ηjh′ ) holds if and only if ηhg = ηh′g for
g = 1,. . . , Gj. If ηjh > ηjh′ , it means that attribute vector ηjh has
more required attributes compared to ηjh′ . In its most general
formulation, the GPDM allows P∗c (ηjh) < P∗c (ηjh′ ) for ηjh > ηjh′ .
In many CDM applications however, it would be reasonable to
impose the monotonicity assumption that P∗c (ηjh) ≥ P∗c (ηjh′ )
whenever ηjh > ηjh′ . Namely, the cumulative probability of
responding in higher category will increase monotonically for
examinees with more required attributes. Note that polytomous
items with decreasing monotonicity (i.e., negative items) can be
addressed by reversing the items, in case needed.

Using different linking functions, Pc(ηjh) can be linearly
transformed into item effects in different saturated forms, as

F[Pc(ηjh)] = βjc0 +

Gj
∑

g=1

βjcgηhg +

Gj
∑

g′>g

Gj−1
∑

g=1

βjcgg′ηhgηhg′ ...

+ βjc12...Gj

Gj
∏

g=1

ηhg , (2)

where F(·) is a specific linking function and βjc0, βjcg , and
βjcgg′ are the baseline, main, and interaction effects for Category
c, respectively. Some widely used linking functions include
the identity, logit, and log links. The conversion from Pc(ηjh)
to different item effects βjc. can be facilitated with a design
matrix as discussed later. Note that model-data fit for different
linking functions in saturated forms is theoretically identical
since no estimation is involved. For dichotomous responses, the
formulation is equivalent to the G-DINAmodel with the identity
link or LCDM with the logit link functions.

Model Estimation
The above GPDM, in the saturated form with the identity
linking function, can be estimated with the MML method
and implemented using an EM algorithm. A large number
of structural parameters can be involved as the number of
attributes increases. Although it is possible to simplify the
joint distribution of the attributes with specific constraints on
the structural relationships (e.g., higher-order or hierarchical
structures) in future studies, this research only considers the
general or unconstrained structure. In general, there are (L-
1) independent structural parameters p(αl), which is the prior
probability of the attribute vectorαl with

∑L
l=1 p(αl) = 1. Denote

Xijc = 1 if Xij = c and zero otherwise. The conditional likelihood
of the response data Xi for examinee i given αl is

L(Xi|αl) =
∏J

j=1

∏Cj−1

c=0
Pc(ηjh)

Xijc (3)

where the attribute vector αl is reduced to the reduced attribute
vector ηjh for item j. The marginalized likelihood of the data is

L(X) =
∏N

i=1
L(Xi) =

∏N

i=1

∑L

l=1
L(Xi|αl)p(αl), (4)

where N is the sample size. The MML estimation of the
conditional probabilities P̂c(ηjh) can be implemented with an EM

algorithm. The standard error (SE) of the estimate, SE[P̂c(ηjh)],
can be approximated with the information matrix given by the
second derivative of the log-marginalized likelihood with respect
to Pc(ηjh) and Pc′ (ηjh′ ). Details of an algorithm for the estimates

P̂c(ηjh) and corresponding SEs can be found in the Appendix in
Supplementary Material.

During each iteration of the estimation, the monotonicity
assumption can be imposed top-down as a constraint with
the help of (1). For an item with four categories for instance,
one can first impose the constraint on the top category with
P∗3(ηjh) = P3(ηjh), and then on the second top category
with P∗2(ηjh) = P2(ηjh) + P∗3(ηjh), till the second lowest category
with P∗1(ηjh) = P1(ηjh) + P∗2(ηjh). For each category, one
can choose between the upward or downward approaches to
implement the constraint, although the upward one would be
generally preferred as in the case for dichotomous response
(Hong et al., 2016). Alternatively, one can choose to check the
monotonicity assumption post hoc (i.e., after the estimation),
which could help to inform item development.

Different Saturated and Reduced Forms
TheGPDM is a saturatedmodel, with equivalent saturated forms,
and subsumes a variety of reduced CDMs for polytomous and
dichotomous responses. For different saturated forms and some
reduced forms, the estimates P̂c(ηjh) can be linearly transformed
to item parameters (i.e., item effects or βjc.) without requiring
additional estimation. Corresponding linking functions and
design matrices somewhat similar to those in the G-DINAmodel
(de la Torre, 2011) can be used. The design matrix for item j, Dj,
is a Hj × V matrix, where V is the number of item parameters
of the targeted form. For other reduced forms however, the
item parameters might involve a second step of estimation from
P̂c(ηjh), which is beyond the scope of this research.

For saturated forms, the design matrix is a square matrix with
element

dhh′ =

{

1
0

ηjhη
T
jh′

= Gj

otherwise
, (5)

where h and h′ = 1, . . . ,Hj. The item parameters can be obtained
by finding the least-squares estimate

β̂ jc = (DT
j Dj)

−1
DT

j F(P̂jc), (6)

where F(.) is the linking function (e.g., identity, logit, or log) and

Pjc =
{

Pc(ηjh)
}

jc
includes all independent Pc(ηjh) for item j.

The standard errors can be approximated via the multivariate
delta method (Lehmann and Casella, 1998). Denote f (·) ≡

(DT
j Dj)

−1
DT

j F(·) and ∇f (·) as the gradient of f (.). We have

SE (β̂ jc)
2
= Var[f (P̂jc)] ≈ ∇f (P̂jc)

T
Var(P̂jc)∇f (P̂jc), (7)

where Var(P̂jc) is the negative of the inverse of the information

matrix for P̂jc.
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By constraining the item parameters, one can get different
reduced CDMs for polytomous responses. The DINA model for
polytomous responses (PDINA) can be expressed as

Pc(ηjh) = βjc0 + βjc12...Gj

Gj
∏

g=1

ηhg , (8)

with 2(Cj – 1) parameters per item. The conjunctive attribute
relationship in the DINA model is extended to every above-
zero category in the PDINA model. Consistent with terminology
in previous literature, we can set gjc = βjc0 and sjc = (1 −

βjc0 − βjc12...Gj ) as the guessing and slip parameter for Category
c, respectively. Similarly, one can obtain the DINO model for
polytomous responses (PDINO) by adopting the identity link
with

Pc(ηjh) = βjc0 + βjcgηhg , (9)

where

βjcg = βjcg′g′′ = ... = (−1)Gj+1βjc12...Gj , (10)

for g = 1, ...,Gj, g
′ = 1, ...,Gj−1, and g′′ > g′, ...,Gj. PDINO also

has 2(Cj – 1) parameters per item, and the compensatory attribute
relationship in the DINO model is extended to every above-
zero categories in the PDINO model. For this model, gjc = βjc0

and sjc = (1 − βjc0 − βjcg) is the guessing and slip parameter
respectively, for Category c. The item parameters of both the
PDINA and PDINOmodels can be linearly transformed from the
P̂jc using the design matrices, which are

Dj[Hj×2] =















1 0
1 0
...
...

1 0
1 1















(11)

and

Dj[Hj×2] =















1 0
1 1
...
...

1 1
1 1















(12)

for the PDINA and PDINO models, respectively. Moreover,
to account for the relative size of the latent class, the item
parameters of the above models should be weighted by the class
size, as:

β̂jc = (DT
j WjDj)

−1
DT

j WjP̂jc (13)

where Wj = diag
{

Njh

}

is a diagonal matrix, with Njh =
∑N

i=1 p(ηjh|Xi) as the expected number of examinees in latent
group h of item j (i.e., with the reduced attribute vector ηjh). The

standard errors of these estimates can also be computed as given

in (7), except that f (P̂jc) is defined as (DT
j WjDj)

−1
DT

j WjP̂jc.

Similar to the cases for dichotomous responses, a linear
transformation of the saturated models to the reduced models is
equivalent to a direct estimation of the reduced models using the
same MML method (de la Torre and Chen, 2011).

However, not all reduced forms can be obtained through
linear transformation. By dropping all interaction terms in (2),
one can obtain different additive forms of CDMs for polytomous
responses, as

F[Pc(ηjh)] = βjc0 +

Gj
∑

g=1

βjcgηhg (14)

The formulation with the identity, logit, and log linking function
corresponds to the A-CDM for polytomous response (PA-
CDM), LLM for polytomous responses (PLLM), and R-RUM
for polytomous responses (PR-RUM), respectively. The additive
forms have a common feature that there are (Cj − 1)(Gj + 1)
parameters or effects per item. Although the additive forms are
subsumed under the GPDM, linear relationship between the
(Cj−1)(Gj+1) item parameters and (Cj−1)Hj P̂c(ηjh) estimates
cannot be established, except for the case of a single attribute.
Additional estimation analyses are required to obtain the item
parameters of these reduced forms, which is not covered in this
research but could be a topic for future studies.

Model Assessment and Adjustment
Model assessment and adjustment for dichotomous responses
can be extended to polytomous responses. This research builds
on the simulation- and residual-based method (Chen et al.,
2013) and applies the correlation of item pairs for such
purpose. Specifically, after obtaining the estimates Pc(ηjh) and
p(αl|X), one can simulate a large number of item responses by
sampling from the multinomial distribution of the conditional
probabilities and joint distribution of the attributes. Let Xj and

X̃j denote the observed and predicted response vector for item
j, respectively. The residual between the observed and predicted
Fisher-transformation of correlation of item pairs (referred to as
r) is

rjj′ =
∣

∣Z[ρ(Xj,Xj′ )]− Z[ρ(X̃j, X̃j′ )]
∣

∣ , (15)

where Z[ρ(·)] is the Fisher transformation of Pearson’s
correlation. The approximate SE can be computed as:

SE(rjj′ ) = [N − 3]1/2. (16)

With the SEs, the z-score of r can be computed. The expected
response patterns can be simulated stably with a large sample
size, although randomness is inevitable due to simulation. For
an assessment with J items, (J – 1) and J(J – 1)/2 item pairs
of z-scores need to be evaluated at the item and test levels,
respectively.

One can examine the significance of the maximum z-score for
model misfit at the test level, with the Bonferroni correction to
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control for the Type I errors (Chen et al., 2013). In case of misfit,
we can use the root mean square (RMS) of the z-scores at the item
level to identify possibly misspecified items, as

srj =

[

∑J

j′=1
(rjj′/SE(rjj′ ))

2/(J − 1)

]1/2

(17)

The item with the maximum value srj (called the hit item) is most
likely misspecified and should be considered for adjustment. The
test-level RMS of the z-scores is

sr =

[

2
∑J

j=1

∑j−1

j′=1
(rjj′/SE(rjj′ ))

2/J(J − 1)

]1/2

(18)

sr should be less sensitive to simulation randomness due to the
accumulation of all residuals z-scores, and its reduction can aid
in item adjustment. Findings for dichotomous responses (Chen,
2017) can be applied to polytomous responses.Misspecified items
can be evaluated as the hit item and adjusted sequentially when
Q-matrix misspecification occurs at the item level. Adjustments
can proceed based on the maximum reduction of the sr statistics.
Attribute-level misspecification is of concern when adjustment to
individual items tends to be useless.

SIMULATION STUDY

Design
A simulation study was conducted to investigate if the GPDM
can perform as expected. The true CDM was the PA-CDM
with the identity link, and Cj = C = 3 for all items. The
cumulative probabilities of the highest category, P∗2(0) and P

∗
2(1),

were randomly generated from Unif (0.0, 0.3) and Unif (0.7,
1.0), respectively, with those of the middle category [i.e., P∗1(0)
and P∗1(1)] fixed as half of the highest category. It means that
the conditional probabilities of both categories were equally
contributed [i.e., P1(0) = P2(0) and P1(1) = P2(1)]. All main
effects (i.e.,βjk) were set to be equal so that each required attribute
contributed equally to Pc(ηjh). The number of attributes K was
fixed to five and the Q-matrix consisted of one- to three-attribute
items, with each attribute specified the same number of times
(Table 1). The number of items was set as J = 20 and 40, and two
sample sizes were considered asN = 500 and 1,000. TheQ-matrix
for J = 40 is just twice the Q-matrix for J = 20.

The multivariate normal threshold method (Chiu et al., 2009)
was used to simulate the joint distribution of the attributes.
One can assume a multivariate normal distribution, MVN(0,
Σ), of K continuous latent variables underlying the K discrete
attributes, with all variances and covariance in Σ equal to 1.0
and R, respectively. R is the correlations of the latent variables
and was set as 0.5. In addition to the GPDM, the G-DINA model
was also fitted to allow for comparisons. For the G-DINA model,
the polytomous responses were converted to dichotomous by
replacing responses in the highest category with 1 and those
in other categories with 0. Each simulation cell was replicated
500 times, and the estimation code was written in Ox (Doornik,
2003)1.

1The updated estimation code in Ox is available from the first author.

TABLE 1 | Q-matrix for J = 20.

Attribute Attribute

Item α1 α2 α3 α4 α5 Item α1 α2 α3 α4 α5

1 1 0 0 0 0 11 1 1 1 0 0

2 0 1 0 0 0 12 1 1 0 0 1

3 0 0 1 0 0 13 1 0 0 1 1

4 0 0 0 1 0 14 0 1 1 1 0

5 0 0 0 0 1 15 0 0 1 1 1

6 1 1 0 0 0 16 1 0 1 0 0

7 1 0 0 0 1 17 1 0 0 1 0

8 0 1 1 0 0 18 0 1 0 1 0

9 0 0 1 1 0 19 0 1 0 0 1

10 0 0 0 1 1 20 0 0 1 0 1

The Q-matrix for J = 40 was duplicated.

Results
Table 2 gives the mean estimates and related standard deviation
(SD) of the classification accuracy for individual attributes
[CA(αk)] and for the attribute vector [CA(αl)]. For both
individual attributes and the attribute vector, the accuracy
improved with the larger sample size or number of items.
The number of items was more influential, especially on the
attribute vector. Comparing the two models, the GPDM always
produced more accurate classifications than the G-DINA model
did, and the improvement was more dramatic for the attribute
vector (about double or more) than individual attributes. The
findings simply reflected the loss of diagnostic information by
treating the polytomous responses as dichotomous under the
settings used in this study. The classifications were also more
stable (i.e., smaller SD) with either larger sample size or larger
number of items for the GPDM, with the latter being more
influential. For the G-DINA model, the classifications of the
attribute vector were found to be more stable with a smaller
number of items, or compared with those for the GPDM. Taking
into account the CA(αl) values however, the stability suggested
that the G-DINA-based accuracy was consistently low under the
situation.

Although one cannot investigate the recovery of all item
parameters as the true and fitted models were different, some
item estimates can be evaluated. Specifically, the true and
estimate Pc(0) and Pc(1) should be approximately identical with
the GPDM. Table 3 gives the mean bias and root mean square
error (RMSE) of the estimates of the conditional probabilities.
As shown, both statistics improved with the larger sample size or
number of items, with the former being slightly more influential.
The item parameters were recovered equally well across the two
response categories, reflecting the design of equal contribution of
both categories.

REAL-DATA ILLUSTRATION

In this section real data were used to illustrate the application
of the GPDM in practice and how different results one might
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get whether polytomous items were dichotomized or not. The
PISA 2000 reading assessment (OECD, 1999, 2006a) with the
released items (OECD, 2006b) was used, which contained both
polytomous and dichotomous items. The data were retrofitted by
some researchers with a new set of attributes (Chen and Chen,
2015), but only part of the released items were dichotomously
fitted with the G-DINA model. With the same set of attributes
and the help of same content experts, a subset of the released
items was used to construct a Q-matrix (Table 4) for illustration
purpose. The final data set consisted of responses of 1,039 English
examinees to 20 items in specific test booklet, five out of which
were polytomous. Both the GPDM and G-DINA model were
fitted. For the G-DINA model, the polytomous items were again
dichotomized by setting the highest level to 1 and all other
levels to 0.

Table 5 presents the results of model fitting and attribute
estimation. For both models, the maximum z-score of r were well

below the critical value at α = 0.1 significance level, suggesting
that no misfit could be found for either model. However,
there was slight to moderate difference in classifications across
attributes between the two models, as shown by the attribute
prevalence and classification consistency based on Cohen’s kappa
(to adjust for chance of consistency). The difference was most
salient for Attribute 4, suggesting that the loss of information
was most severe for this attribute if polytomous responses were
dichotomized. As a result, only 68% of examinees were identically
classified (i.e., same attribute vector) across the two models.

Table 6 presents the estimates of the polytomous items
using the GPDM. Except for the last item, number 20, at
least some of the conditional probabilities for the middle
response category [i.e.,P1(ηjh)] were not trivial. Among these
polytomous items, examinees were most likely to get partial
credit for Item 10 and 11. For both items, the conditional
probabilities P1(10) or P1(01) > P1(11) or P1(00), whereas

TABLE 2 | Classification accuracy and related SD.

GPDM G-DINA

J N CA(αl ) CA(αk ) SD(αl ) SD(αk ) CA(αl ) CA(αk ) SD(αl ) SD(αk )

20 500 0.609 0.901 0.055 0.035 0.257 0.729 0.031 0.041

1000 0.643 0.911 0.051 0.030 0.281 0.747 0.030 0.036

40 500 0.848 0.966 0.033 0.017 0.381 0.811 0.044 0.037

1000 0.865 0.970 0.029 0.014 0.440 0.837 0.033 0.026

For αk , the values are averaged across all individual attributes.

TABLE 3 | Recovery of item estimates with the GPDM.

Mean bias RMSE

J N P1(0) P1(1) P2(0) P2(1) P1(0) P1(1) P2(0) P2(1)

20 500 0.008 0.008 −0.007 −0.008 0.027 0.027 0.044 0.044

1000 0.005 0.005 −0.005 −0.005 0.018 0.019 0.031 0.031

40 500 0.003 0.004 −0.005 −0.004 0.022 0.022 0.039 0.039

1000 0.002 0.003 −0.002 −0.003 0.015 0.015 0.028 0.028

All values are averaged across items.

TABLE 4 | Items and Q-matrix for the PISA data.

No. Code C α1 α2 α3 α4 α5 No. Code C α1 α2 α3 α4 α5

1 R040Q02 2 1 0 1 0 0 11 R088Q04T 3 1 0 1 0 0

2 R040Q03A 2 1 0 1 1 0 12 R088Q05T 2 0 1 1 1 0

3 R040Q04 2 0 1 1 1 0 13 R088Q07 2 0 1 0 0 1

4 R040Q06 2 1 0 1 0 0 14 R216Q01 2 0 1 0 0 0

5 R077Q03 3 0 1 0 1 1 15 R216Q02 2 1 0 0 0 1

6 R077Q04 2 1 1 1 0 0 16 R216Q03T 2 0 1 1 0 0

7 R077Q05 3 0 1 1 1 0 17 R216Q04 2 0 1 1 0 0

8 R077Q06 2 0 1 0 0 1 18 R216Q06 2 0 1 0 1 0

9 R088Q01 2 0 1 1 0 0 19 R236Q01 2 1 0 1 0 0

10 R088Q03 3 1 0 1 0 0 20 R236Q02 3 0 0 1 1 0

C, number of categories; α1, retrieving information; α2, forming a broad general understanding; α3, developing an interpretation; α4, reflecting on and evaluating the content of a text;

α5, reflecting on and evaluating the form of a text.
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TABLE 5 | Fitting and attribute estimation for the PISA data.

Attribute prevalence Cohen’s kappa CC

Model zc mzr p(α1) p(α2) p(α3) p(α4) p(α5) α1 α2 α3 α4 α5 αl

GPDM 3.47 2.54 0.66 0.68 0.53 0.65 0.49 0.89 0.94 0.89 0.49 0.92 0.68

G-DINA 3.47 2.88 0.63 0.69 0.56 0.46 0.51 – – – – - -

zc, critical z-score at 10% significance level (the Bonferroni correction); mzr, maximum z-score of r; CC, classification consistency.

TABLE 6 | Estimates of conditional probabilities for polytomous items.

pc(ηjh) Required attributes

(00) (10) (01) (11)

Item c (000) (100) (010) (001) (110) (101) (011) (111) α1 α2 α3 α4 α5

5 0 0.90 0.38 0.37 0.26 0.20 0.54 0.50 0.05 0 1 0 1 1

1 0.02 0.05 0.29 0.10 0.20 0.21 0.25 0.04

2 0.08 0.57 0.34 0.64 0.60 0.24 0.25 0.90

7 0 0.92 0.47 0.58 0.29 0.37 0.34 0.50 0.23 0 1 1 1 0

1 0.06 0.33 0.20 0.40 0.46 0.23 0.25 0.18

2 0.02 0.20 0.21 0.32 0.17 0.43 0.25 0.60

10 0 0.59 0.21 0.15 0.09 1 0 1 0 0

1 0.38 0.62 0.61 0.28

2 0.02 0.16 0.24 0.63

11 0 0.72 0.29 0.47 0.14 1 0 1 0 0

1 0.27 0.67 0.48 0.48

2 0.02 0.04 0.05 0.38

20 0 0.99 0.96 0.92 0.52 0 0 1 1 0

1 0.01 0.03 0.01 0.06

2 0.01 0.01 0.07 0.42

Numbers with parentheses, e.g., (00) or (000), represent different attribute vectors, with the first row for two-attribute items and the second row for three-attribute items.

the cumulative probabilities P∗1(11) > P∗1(10) or P∗1(01). In
reflection, this implied that the middle category (i.e., partial
credit) was specifically oriented toward examinees mastering
some but not all required attributes, which can be regarded as
a useful way to design the item category. For Item 5 and 7,
there was little chance to get partial credit for some reduced
attribute patterns (e.g., 000). The small values of all P1(ηjh) for
Item 20 suggested that the middle category was unnecessary.
Finally, the monotonicity assumption was not imposed, and one
can find that there were some mild violations in Item 5 [e.g.,
P∗2(001) > P∗2(101) or P∗2(011)] and Item 7 [e.g., P∗1(001) >

P∗1(110) or P
∗
1(011)], which might be useful information to adjust

the items.
Table 7 compares the model-data fits between the saturated

GPDM and the reduced PDINA or PDINOmodels. Both reduced
models were worse than the saturated model based on any of the

relative fit indices. Furthermore, both the PDINA and PDINO

models were rejected at α = 0.01 significance level based on
the maximum z-score, which suggests that highly constrained

relationships are not appropriate. It would be interesting to see
how less-restricted reduced models (e.g., linear models such as
the PLLM or PA-CDM) will perform under similar context in
future studies, when an estimation algorithm is available for those
models.

TABLE 7 | Model-data fit comparisons between the saturated and reduced

models.

Model mzr sr NP −2LL AIC BIC

GPDM 2.54 0.89 161 25,179 25,501 26,297

PDINA 9.22 4.45 81 26,488 26,650 27,051

PDINO 10.36 4.20 81 26,568 26,730 27,130

Mzr, maximum z-score; the critical z-score was 4.04 at 0.01 significance level; sr, test-

level RMS of the z-scores; NP, number of parameters; −2LL = −2 × log-likelihood;

AIC, Akaike’s information criterion (Akaike, 1974); BIC, Bayesian information criterion

(Schwarzer, 1976).

DISCUSSION

Although considerable developments have been added to
the CDM literature recently, most have been conducted
for dichotomous responses only. Without a comprehensive
modeling framework for polytomous responses, the advance
of CDMs cannot be fully appreciated by applied researchers
and practitioners across a wide range of areas. This research
proposes a general cognitive diagnosis model for polytomous
responses, which split the polytomous items indirectly based on
the difference-between-category approach. The GPDM can be
regarded as a natural extension of the G-DINA model, and the
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MML estimation is implemented using an EM algorithm. Under
the GPDM framework, different saturated forms, and some
reduced forms, can be transformed linearly. Model assessment
and adjustment under the context of polytomous responses can
proceed with the simulation- and residual-based method using
the correlation of item pairs. The simulation study demonstrated
the effectiveness of the model, especially when compared to
dichotomizing polytomous responses with the G-DINA model.
The improvement of classification accuracy of the attribute vector
was dramatic with the use of the GPDM. Note that the number of
items was more influential than the sample size on classification
accuracy. This seems to be a good news for practitioners as
increasing the number of items administered is usually more
controllable in practice. Some item parameters of reduced CDMs
for polytomous responses can be also recovered well with
the GPDM. The real-data example further illustrated how the
GPDM can make a difference in practice by providing additional
diagnostic information and contributing to item development.

Although the GPDM appears to be promising, some issues
should be addressed in future research for the framework to
be more comprehensive and versatile. First, various reduced
forms are subsumed under the framework and it would be
useful to study some reduced CDMs in more details. As the

number of response categories increases, the GPDM gets more
complex, with a large number of parameters, where reduced

models have fewer parameters and hence require smaller sample
sizes for accurate estimation. Reduced models also have more
straightforward interpretation of the attribute-item relationships
when the models fit the data. In this regard, it would be helpful
to investigate how various reduced models can effectively be
estimated and compared within the general framework. Second,
it would be valuable to assess whether Q-matrix validation

procedures under the dichotomous context can be extended
to polytomous responses, as Q-matrix plays a critical role in
CDM-based measurement. It is also useful extend efficient
and exhaustive search algorithm similar to the general method

based on the discrimination index (de la Torre and Chiu,
2015) to polytomous responses. Third, the GPDM represents a
specific approach to modeling polytomous responses. It would
be interesting to compare other approaches of modeling to see
how they could differ. Moreover, it is desirable to develop CDMs
that can accommodate various response formats already covered
under the IRT context (e.g., nominal, forced choice, graded
unfolding), which can offer applied researchers a new perspective
to re-conceptualize their research. Finally, the current treatment
of the issue tended to be statistically oriented and compact. It
would be desirable to have a didactic companion expanding
and illustrating the modeling processes and procedures of model
assessments and adjustments for practitioners. This would be
especially useful when effective estimation methods for various
reduced models are available.
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