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The most common process variable available for analysis due to tests presented in a

computerized form is response time. Psychometric models have been developed for joint

modeling of response accuracy and response time in which response time is an additional

source of information about ability and about the underlying response processes.

While traditional models assume conditional independence between response time and

accuracy given ability and speed latent variables (van der Linden, 2007), recently multiple

studies (De Boeck and Partchev, 2012; Meng et al., 2015; Bolsinova et al., 2017a,b)

have shown that violations of conditional independence are not rare and that there is

more to learn from the conditional dependence between response time and accuracy.

When it comes to conditional dependence between time and accuracy, authors typically

focus on positive conditional dependence (i.e., relatively slow responses are more often

correct) and negative conditional dependence (i.e., relatively fast responses are more

often correct), which implies monotone conditional dependence. Moreover, most existing

models specify the relationship to be linear. However, this assumption of monotone

and linear conditional dependence does not necessarily hold in practice, and assuming

linearity might distort the conclusions about the relationship between time and accuracy.

In this paper we develop methods for exploring nonlinear conditional dependence

between response time and accuracy. Three different approaches are proposed: (1) A

joint model for quadratic conditional dependence is developed as an extension of the

response moderation models for time and accuracy (Bolsinova et al., 2017b); (2) A joint

model for multiple-category conditional dependence is developed as an extension of the

fast-slow model of Partchev and De Boeck (2012); (3) An indicator-level nonparametric

moderationmethod (Bolsinova andMolenaar, in press) is used with residual log-response

time as a predictor for the item intercept and item slope. Furthermore, we propose

using nonparametric moderation to evaluate the viability of the assumption of linearity

of conditional dependence by performing posterior predictive checks for the linear

conditional dependence model. The developed methods are illustrated using data from

an educational test in which, for the majority of the items, conditional dependence is

shown to be nonlinear.

Keywords: response time, conditional dependence, nonlinear relationship, response processes, joint modeling,

hierarchical model, response moderation
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INTRODUCTION

When psychological and educational tests are presented in a
computerized form, it is feasible to not only record the product
of the response process (i.e., response accuracy), but also the
characteristics of the process itself. The most commonly used
process variable is response time. Various psychometric models
have been developed to jointly model response accuracy and
response time (van der Linden, 2007; Molenaar et al., 2015a,b)
which are aimed at (1) better measurement of the ability of
interest, and (2) investigating the relationship between the
time and accuracy components of the process. The prominent
framework for modeling the joint distribution of response time
and accuracy is the hierarchical modeling framework (van der
Linden, 2007), which specifies separate measurement models for
ability and speed and combines them on the higher level through
the dependence between speed and ability. In this way, when it
comes to the relationship between time and accuracy on the same
item, the only thing that the model estimates is the correlation
between the latent variables—speed and ability—and all the
observed correlations between time and accuracy are assumed to
be explained by that correlation. That is, conditional on speed
and ability, time and accuracy are assumed to be independent.
However, it has been shown inmultiple empirical data sets (Meng
et al., 2015; Bolsinova and Maris, 2016; Bolsinova and Tijmstra,
2016; Bolsinova et al., 2017a,b) that time and accuracy are in fact
not conditionally independent and there is more to learn from
the conditional dependence between response time and accuracy.

Several methods have been proposed for testing the
assumption of conditional independence (van der Linden
and Glas, 2010; Bolsinova and Maris, 2016; Bolsinova and
Tijmstra, 2016) and different extensions of the hierarchical
model have been proposed to relax this assumption (Ranger
and Ortner, 2012; Meng et al., 2015; Bolsinova et al., 2017a,b).
From these studies, it appears that a violation of conditional
independence is not a rare finding and that substantively
interesting phenomena may be revealed by investigating the
conditional dependencies (Bolsinova et al., 2017c).

When it comes to conditional dependence between time
and accuracy, authors typically focus on positive conditional
dependence (i.e., relatively slow responses are more often
correct) and negative conditional dependence (i.e., relatively
fast responses are more often correct). This implies, that
a monotone conditional dependence is assumed for time
and accuracy. Moreover, most existing models specify the
relationship to be linear. However, this assumption of monotone
and linear conditional dependence does not necessarily hold in
all situations. It could be that responses which are faster than
expected are less often correct than responses with response times
close to what is expected, but responses slower than expected
are not more often correct than those with response times close
to what is expected. Therefore, researchers should be able to
test whether linearity of conditional dependence between time
and accuracy is plausible and to investigate potential nonlinear
conditional dependence.

Nonlinear conditional dependence is interesting from the
substantive point of view because by abandoning the assumption

of monotonicity and linearity of the conditional relationship
between time and accuracy one can get a more complete picture
of the response process. Since a linear model can only reveal
positive or negative dependence, it may ignore important parts of
the response phenomena. Imagine a situation in which an item is
solved either using a fast optimal strategy or a slow error-prone
strategy (i.e., slow responses are less often correct than relatively
fast responses) and, in addition to that, some of the respondents
respond to the item by guessing (i.e., very fast responses are
rarely correct). If one of these phenomena is much stronger
than the other, then a linear effect in one of the directions would
be detected (i.e., positive conditional dependence if guessing is
the strongest factor, or negative conditional dependence if the
difference in strategies is the strongest factor). The linear model
might also find no evidence of conditional dependence if the
two opposing factors balance each other out. In none of these
scenarios, a valid conclusion about the relationship between
time and accuracy would be drawn. On the contrary, nonlinear
methods would allow one to detect a violation of conditional
dependence and to get a better understanding of the response
processes.

In this paper we develop methods for exploring nonlinear
conditional dependence between response time and accuracy.
Three different approaches are proposed. (1) The joint models
for conditional dependence between time and accuracy (see e.g.,
Bolsinova et al., 2017b) are extended to include quadratic effects,
which allows one to study nonlinear relationships between
residual time and accuracy. (2) Partchev and De Boeck’s (2012)
model is extended to allow for multiple categories of responses
which makes it possible to reveal nonmonotonic relationships
between time and accuracy. Moreover, the model is modified
in such a way that response time is treated as a continuous
variable following a log-normal distribution, and the categories
are defined based on the difference between the observed and
expected log-transformed response time. This allows one to study
the conditional dependence separately from the relationship
between speed and ability on the higher-level of the hierarchical
model. Bayesian estimation algorithms are developed for the
two new joint models for response time and accuracy. (3) We
propose using the indicator-level nonparametric moderation
method (Bolsinova and Molenaar, in press) with residual
log-response time as a predictor for the intercept and the slope
of the item characteristic curve (ICC), such that nonparametric
relationships between the residual response time and the item
parameters can be investigated. Furthermore, we propose using
nonparametric moderation to evaluate the viability of the
assumption of linearity of conditional dependence. This can be
done by performing posterior predictive checks for the linear
conditional dependence model.

The remainder of the paper is organized as follows. In
section 2 the hierarchical model for response time and
accuracy is presented and the assumption of conditional
independence is formally defined. In section 3 existing
models for conditional dependence are discussed. In
section 4 we propose three methods for exploring
nonlinear conditional dependence. Section 5 presents
an empirical example in which nonlinear conditional
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dependence is investigated, and the paper concludes with a
discussion.

JOINTLY MODELING RESPONSE TIME
AND ACCURACY USING THE
HIERARCHICAL MODEL

In the hierarchical model (van der Linden, 2007; Van Der Linden,
2009) the random variables response accuracy and response time
of person p on item i, denoted by Xpi (with realizations xpi = 0/1
for incorrect/correct) and Tpi (with realizations tpi), respectively,
are assumed to be independent, conditional on the latent variable
ability, denoted by θp, and speed, denoted by τp:

f (xpi, tpi | θp, τp) = f (xpi | θp, τp)f (tpi | θp, τp). (1)

Furthermore, it is assumed that response accuracy is independent
of speed given ability, and that response time is independent of
ability given speed. The full specification of the hierarchical
model for response times and accuracy requires four
model ingredients: (1) a measurement model for response
accuracy, typically an item response theory (IRT) model; (2)
a measurement model for response times; (3) a model for the
relationship between the latent variables; and (4) a model for the
relationship between the item parameters. In this section, we will
present a simple specification of the model, which we will use as
a basis for describing the existing extensions of the hierarchical
model allowing for conditional dependence.

For the response accuracy measurement model, we use a
two-parameter normal-ogive model (Lord and Novick, 1968) in
which the probability of a correct response to the item depends
on the ability of the person:

Pr(Xpi = 1 | θp) = 8(αiθp + βi), (2)

where αi and βi are the slope and the intercept of the ICC,
and 8(·) denotes the cumulative standard normal distribution
function. Alternatively, the three-parameter normal-ogive model
(Klein Entink et al., 2009), logistic IRT models (Bolsinova et al.,
2017a), and cognitive diagnostic models (Zhan et al., 2018) have
been used as the first ingredient for the hierarchical model.

For the response time measurement model, we use a log-
normalmodel (van der Linden, 2006) in which the response times
are assumed to have a log-normal distribution with the mean
equal to the difference between the time intensity of the item,
denoted by ξi, and the speed latent variable:

f (tpi | τp) = lnN (ξi − τp; σ 2
i ) (3)

where σ 2
i is the residual variance of the log-transformed

response time. Here, 1
σ 2
i

can be considered a time discrimination

parameter since the smaller σ 2
i is, the larger the proportion

of the variance of response times explained by speed is. This
model can also be seen as a constrained linear factor model
with all factor loadings equal to each other (Molenaar et al.,
2015b). Alternatively, one can use an unconstrained linear factor

model with additional item-specific factor loadings (Fox et al.,
2007). Different choices for the response time model, used as an
ingredient for the hierarchical model, include a model based on
Box-Cox transformation of response times (Klein Entink et al.,
2009), and a Weibull model (Rouder et al., 2003).

For the relationship between the latent variables and for the
relationship between the item parameters we use multivariate
normal distributions. For identification, the mean vector of
the latent variables is constrained to zero, and the variance
of θ is constrained to one1. For the relationship between the
item parameters (αi,βi, ξi) we also use a multivariate normal
distribution. Unlike the distribution of the person parameters,
here the mean vector and the covariance matrix can be estimated
freely.

The conditional independence assumption in Equation (1)
means that accuracy and time can be correlated only if ability
and speed, which determine their expected values, are correlated.
The residual response accuracy and residual log-transformed
response time are taken to be noise and the fluctuations on the
response accuracy and response time sides of the model are taken
to be uncorrelated.

MODELING CONDITIONAL DEPENDENCE
BETWEEN TIME AND ACCURACY

The conditional independence assumption can be relaxed and
the relationship between residual response time and residual
response accuracy can be incorporated into the model. One
way to do that is to model the joint distribution of time and
accuracy to the same item as a bivariate distribution with a non-
zero correlation parameter. Ranger and Ortner (2012) proposed
modeling the joint distribution of log-transformed response time
(denoted by t∗pi) and augmented continuous response accuracy

(denoted by x∗pi defined such that xpi = I(x∗pi > 0)) as a

bivariate normal distribution with an item-specific conditional
correlation, denoted by ρi:

f (x∗pi, t
∗
pi | θp, τp) = N2

([

αiθp + βi

ξi − τp

]

,

[

1 ρiσi
ρiσi σ 2

i

])

. (4)

Here, the marginal distribution of response accuracy and
response time are the two-parameter normal-ogive model and
log-normal model, the same as in the hierarchical model
presented in the previous section. Meng et al. (2015) have further
extended this model to allow the conditional correlation to vary,
not only across persons, but also across items.

Bolsinova et al. (2017b) have shown that the joint model in
Equation 4 is equivalent to amodel in which the joint distribution
of accuracy and time is factorized as a product of the marginal
log-normal model for time and a conditional model for accuracy
given time, which is a two-parameter normal-ogive model,
with the intercept being a linear function of the standardized

1Note that if the factor model with item-specific factor loadings is used, then the

variance of speed also has to be constrained.
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difference between the observed and expected log-transformed
response time:

Pr(Xpi = 1 | tpi, θp, τp) = 8

(

αiθp + βi0 + βi1
ln tpi − (ξi − τp)

σi

)

,

(5)
where βi0 is the baseline intercept and β1i is the linear effect
of standardized residual log-transformed response time on the
intercept of the ICC. In addition to the linear effect on the
intercept, the model can be extended with a linear effect on the
slope of the ICC (Bolsinova et al., 2017b)2:

Pr(Xpi = 1 | tpi, θp, τp) = 8((αi0+αi1zpi)θp+βi0+βi1zpi), (6)

where zpi denotes the standardized difference between the
observed and expected log-transformed response time
ln tpi−(ξi−τp)

σi
, and αi0 and αi1 are the baseline slope and the

linear effect of zpi on the slope of the ICC, respectively. The
parameters βi1 and αi1 can be interpreted as the main effect of
residual log-transformed response time on response accuracy,
and the interaction effect between ability and zpi on accuracy,
respectively. Throughout the paper we refer to this model as the
linear conditional dependence model.

The approaches discussed above treat the response time as a
continuous variable and relate the parameters of the IRT model
for accuracy to deviations of the observed log-response time from
its expected value. An alternative proposal has been to categorize
response time into two classes—fast and slow—and jointly model
the dichotomized response time and response accuracy using an
IRTree model (De Boeck and Partchev, 2012). In this case, the
ICC parameters can differ between the two classes (Partchev and
De Boeck, 2012; DiTrapani et al., 2016). If the two-parameter
normal-ogive model is used, then the probability of a correct
response given response time is:

Pr(Xpi = 1|tpi, θp) = 8
((

αiFI
(

tpi ≤ t̃i
)

+ αiS

(

tpi > t̃i
))

θp

+βiFI
(

ti ≤ t̃i
)

+ βiSI
(

ti > t̃i
))

, (7)

where t̃i denotes the median response time to item i, and
subscripts F and S denote the fast and the slow class, respectively.
Since, only two classes of response time are defined, only a
monotonic relationship between response time and accuracy can
be explored, for example responses in the slow class being more
often correct than responses in the fast class (βiS > βiF), or
responses in the slow class being less informative about ability
than responses in the fast class (αiS < αiF).

It is important to note that separation of the response times
into two classes is typically done using an item-level median
split. Therefore, this approach is different from the linear models
discussed above, since the ICC parameters are related to the
categorized observed response time, and not to the difference
between the expected and observed response time, such that the
differences between the fast and slow classes capture not only
the conditional dependence, but also the relationship between

2Note, that alternatively it has been proposed to include a linear effect on the

log-transformed slope of the ICC (Bolsinova et al., 2017a)

ability and speed (persons for whom the responses to item i are
categorized as fast on average would have a higher speed latent
variable in the log-normal model than persons for whom the
responses to item i are slow).

MODELING NONLINEAR CONDITIONAL
DEPENDENCE

The linear conditional dependence models and the fast-slow
model provide quite a simplistic picture of the relationship
between response time and accuracy. The residual dependence
between time and accuracy is not necessarily monotone and the
change of the ICC parameters is not necessarily linear in zpi.
To further investigate the relationship between response time
and accuracy, we propose two new joint models for conditional
dependence between response time and accuracy, and also use
a nonparametric moderation method to explore the relationship
between the residual log-transformed response time and the
parameters of the response accuracy model.

Joint Model for Quadratic Conditional
Dependence
To allow for a nonlinear relationship between residual log-
transformed response time and the ICC parameters, we extend
the conditional model of response accuracy in Equation (6)
with quadratic effects. To simplify the notation, we introduce
a function 9(·, x) = (8(·))x(1 − 8(·))1−x. The resulting joint
model for time and accuracy is then the following:

f (xpi, tpi | θp, τp) = f (xpi | tpi, θp, τp)f (tpi | τp)

= 9

(

(αi0 + αi1zpi + αi2z
2
pi)θp + βi0

+βi1zpi + βi2z
2
pi, xpi

)

1

tpi
√
2πσi

exp

(

−
(ln tpi − ξi + τp)

2

2σ 2
i

)

, (8)

where αi2 and βi2 are the quadratic effects of the residual log-
transformed response time on response accuracy. If α2i < 0,
then the strength of the relationship between ability and the
probability of a correct response first increases with residual log-
transformed response time and then decreases, and vice versa
if αi2 > 0. Similar interpretations can be given to the sign of
βi2. When the quadratic effect is negative, the corresponding
parameter of the ICC (i.e., slope or intercept) is the highest when
zpi = − αi1

2αi2
.

Our joint model is an extension of the hierarchical model,
therefore in addition to the specification of the joint distribution
of the outcome variables, we also need to specify the distribution
of the latent variables and the distribution of the item parameters.
On the person side we use N2(0,6) where the variance of θ

is contrained to be 1. On the item side, we use N7(µI ,6I) for
{αi0,αi1,αi2,βi0,βi1,βi2, ξi}, whereµI and6I are themean vector
and the covariance matrix of the item parameters, respectively.
Note, that while we are including nonlinear effects in modeling
the conditional dependence between time and accuracy given
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ability and speed, we do not extend the standard hierarchical
model with nonlinear effects on the higher level, since it goes
beyond the scope of the current paper. However, one may
consider more complex models for the joint distribution of the
person parameters and for the joint distribution of the item
parameters that would allow for a nonlinear relationship on the
higher level as well as on the lower level.

This extended joint model for conditional dependence
between response time and accuracy can be estimated in a similar
way as the linear conditional dependence models (Bolsinova
et al., 2017b) using Bayesian estimation. The Appendix contains
the full specification of the density of the data, prior and posterior
distributions, and the detailed steps of the Gibbs Sampler, in
which the parameters are consecutively sampled from their full
conditional posteriors.

Multiple-Category Conditional
Dependence Model
An alternative to the quadratic conditional dependence model
for exploration of nonmonotone dependence is an extension
of the slow-fast model. Allowing the ICC parameters to differ
not just across two classes of responses, but across multiple
classes, makes it possible to uncover nonmonotone relationships
between residual response time and the ICC parameters (e.g., an
item being most informative for the middle categories and least
informative for the extreme categories).

Considering multiple categories is not the only way in which
our joint model differs from the existing fast-slow models.
Instead of categorizing the response time itself, we are going
to use the residual log-transformed response time, since we are
interested in the conditional dependence between response time
and accuracy, taken separately from the relationship between
speed and ability.

The joint distribution of response time and accuracy in this
model is:

f (xpi, tpi | θp, τp) = 9







αim +
M
∑

k=1,k 6=m

αikz
∗
pik



 θp

+βim +
M
∑

k=1,k 6=m

βikz
∗
pik, xpi





1

tpi
√
2πσi

exp

(

−
(ln tpi − ξi + τp)

2

2σ 2
i

)

, (9)

whereM is the number of categories of residual log-transformed
response time, m is the baseline category, z∗

pik
= I(qk ≤

zpi ≤ qk+1), and q1, . . . , qM+1 are the a priori defined thresholds
between the categories (q1 = −∞, qM+1 = +∞). Note, that
in this joint model response time is modeled as a continuous
variable such that there is no loss of information in the
measurement of speed due to categorization.

Given that residual log-transformed response time belongs to
the baseline category, the item parameters are equal to {αim,βim}.
When zpi belongs to one of the remaining categories k 6= m, the
parameters are equal to {αim + αik,βim + βik}. When M > 2

the model allows for nonmonotone conditional dependence. For
example, if m is the middle category and βik < 0,∀k 6= m,
then it means that both responses that are slower than expected
and those that are faster than expected are less often correct
than responses for which the observed response time is closer
to the expected response time. The more categories are used the
more flexibly the model can account for different patterns of
conditional dependence. However, the more categories there are
the smaller the sample size per category is and the less precise the
estimates of the item parameters are.

Analogous to the quadratic model, this joint model for time
and accuracy can also be estimated using a Gibbs Sampler (see
Appendix for details). Here we specify the same distribution for
the latent variables, and similarly N2M+1(µI ,6I) is specified for
{αi1, . . . ,αiM ,βi1, . . . ,βiM , ξi}.

Nonparametric Approach
The third approach to exploring nonlinear conditional
dependence is in line with the nonparametric indicator-level
moderation approach developed by Bolsinova and Molenaar
(in press), which is a extension of the local structural equation
modeling approach from Hildebrandt et al. (2016). The idea
of the method is to explore the nonparametric relationship
between the indicator-level covariate and the parameters of the
latent variable model. In the case of investigating the conditional
dependence between response time and accuracy, this method
can be applied by using the residual log-transformed response
time as the covariate for the intercept and the slope of the ICCs
of the items in the accuracy measurement model. Using residual
log-transformed response time instead of the observed response
time itself is important because in that way one can investigate
the relationship conditional on the latent variables and not the
marginal relationship between time and accuracy. By including
the residual log-transformed response time as a covariate in
the analysis we can look at how the probability of a correct
response changes depending on whether the response is shorter
than expected or longer than expected (i.e., the intercept being
a function of residual log-transformed response time) and how
the relationship between ability and the probability of a correct
response changes depending on the response being relatively
fast or slow (i.e., the slope being a function of the residual
log-transformed response time).

Unlike the first two approaches in which the joint distribution
of response time and accuracy is modeled, in nonparametric
moderation it is not possible to model the two outcome variables
jointly since in this approach residual log-transformed response
time is treated as an observed covariate. Therefore, we propose
using a two-step procedure. First, the measurement model for
response times is fitted and the estimates of the standardized
residual log-transformed response time are computed:

ẑpi =
ln tpi − ξ̂i + τ̂p

σ̂i
. (10)

Second, the estimates ẑpi are included in the analysis of response
accuracy as indicator-level moderators.
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For each item, a set of focal points F1, . . . , FJ for the value
of the standardized residual log-transformed response time are
defined for which the slope and intercept of the ICC are
estimated. Since for all items the moderator has a mean of zero
and a standard deviation of one, it makes sense to have the same
focal points for different items. For each focal point j and for
each item, the estimates of αji and βji are obtained by weighting
the responses to the item from each person p using the distance
between the value ẑpi and the focal point. For each combination
of an item i and a focal point j a vector of weights wji is defined
with each element corresponding to a particular person p:

wpji = exp






−

(ẑpi − Fj)
2

2
(

hN− 1
5

)2
)






, (11)

there h is the bandwidth factor which serves as a smoothing
parameter and determines how far from the focal point ẑpi has
to be to have a relatively large impact on the estimates of the
parameters αji and βji. We will use the vale of 1.1 for h, which has
been proposed in the nonparametric literature (Silverman, 1986)
and has been successfully used for indicator-level moderation
(Bolsinova and Molenaar, in press).

The item slopes and intercepts of the K items in the test
are estimated in an iterative procedure. To start, the values of
the slope and intercept are initialized for each combination of
a person and an indicator, that is N × K matrices of response-
specific slopes and intercepts, denoted by α∗ and β∗ respectively,
are defined. The estimates of the item slopes and intercepts from
the conditional independence hierarchical model can be used as
starting values. After initialization, repeatedly for each item the
estimates of αji and βji are obtained for each focal point j by
maximizing the weighted log-likelihood:

lnL(αji,βji |X,α∗,β∗,wji)

=
∑

p

ln

∫

(

9(αjiθ + βji, xpi)
)wpji

∏

k 6=i

9(α∗
pkθ + β∗

pk, xpk)N (θ; 0, 1)dθ , (12)

where the responses to item i are weighted with wji, while for the
rest of the items k 6= i the current values of response-specific
slopes and intercepts contained in α∗

·k and β∗
·k are used.

After αji and βji are obtained, we update the values of α∗
·i and

β∗
·i as follows:

α∗
pi =











α1i if ẑpi < F1,

αji + (ẑpi − Fj)
α(j+1)i−αji

Fj+1−Fj
if Fj ≤ ẑpi ≤ Fj+1, ∀j ∈ [1, J − 1],

αJi if ẑpi > FJ;
(13)

with a similar specification for β∗
pi. That is, if ẑpi is outside of the

range of the focal points, then the parameters are set equal to the
parameters at the nearest focal point, and otherwise α∗

pi and β∗
pi

are computed using piece-wise linear regression.
Under this nonparametric approach the significance of

conditional dependence can be tested using permutation tests.

To perform these tests, one needs to repeatedly estimate
the nonparametric relationship between the residual log-
transformed response time and the parameters of the ICCs in
permuted data sets, that is, data sets in which the response
accuracy data points are kept intact but the residual log-
transformed response times are randomly assigned to different
persons in the sample. As a first tool to draw inferences about
the significance of the relationship between the residual log-
transformed response time and the ICC parameter, one can use
graphical checks of deviations of the observed relationship and
the relationship in the permuted data sets. However, a more
rigorous test is to use the variance of the parameters across
focal points as a statistic and compare the observed value to
its distribution in the permuted data sets. The proportion of
permuted data sets in which the variance is larger than in the
observed data can be used to approximate the p-value for testing
the hypothesis of conditional independence.

Furthermore, nonparametric moderation can be used to
evaluate the viability of the assumption of linearity of conditional
dependence. This can be done by performing posterior predictive
checks (Meng, 1994; Gelman et al., 1996) for the linear
dependence model. The idea of posterior predictive checks is
to compare the observed relationship between the residual log-
transformed response time and accuracy (as estimated using the
nonparametric method) with its posterior predictive distribution
under the linear conditional dependence model. To do so one
needs to (1) sample from the posterior distribution of the model
parameters of the linear conditional dependence model, (2)
using the values of the parameters sampled from this posterior
generate replicated data under the model, and (3) evaluate the
relationship between residual log-transformed response time
and the parameters of the ICCs in each of the replicated data
sets using the nonparametric method. In addition to the visual
comparison of the estimated relationship in the observed data
set and multiple replicated data sets, one can also use some
measure quantifying a deviation from linearity and compare
the observed measure with its posterior predictive distribution
in the replicated data sets. To obtain such a measure one can
first compute residuals in a simple linear regression model with
the estimates of the ICC parameter at focal points (α̂1i, . . . , α̂Ji

or β̂1i, . . . , β̂Ji) as an outcome variable and the focal points as
a predictor, and then compute the maximum of the absolute
value of the cumulative sum of these residuals. The higher this
value, the larger the deviation from linearity is. The proportion
of replicated data sets in which the deviation from linearity
is larger than in the observed data approximates the posterior
predictive p-value. Small posterior predictive p-values (i.e., below
0.05) indicate that the deviation from linearity in the observed
data is too large to conclude that the assumption of linearity of
conditional dependence is viable.

EMPIRICAL EXAMPLE

Method
To illustrate how the nonlinear conditional dependence between
response time and accuracy can be investigated, the proposed
methods were applied to a data set of a high-stakes arithmetic
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test3. One of the test versions with 38 items answered by 4,632
persons was available for analysis. For this data set several
models were fitted: (1) the conditional independence model,
(2) the linear conditional dependence model, (3) the quadratic
conditional dependence model, and (4) the multiple-category
conditional dependence model. In Model 4 we considered 5
categories for residual log-transformed response time and the
thresholds between the categories were set equal to -1.5, -0.5,
0.5, and 1.5 (i.e., the thresholds are symmetric around zero and
each two neighboring thresholds are one standard deviation away
from each other), themiddle category (i.e., the category where the
response times are the closest to their expected values) was used
as a baseline.

The four models were fitted using Gibbs Samplers with 10,000
iterations including 5,000 iterations of burn-in. For the details of
the estimation algorithm for the conditional independencemodel
and the linear conditional dependence model see Bolsinova
et al. (2017b). Gibbs Samplers for Models 3 and 4 are described
in the Appendix. The fitted models were compared using the
modified Bayesian information criterion (BIC) which has been
previously used for comparing and selecting joint models for
response time and accuracy (Bolsinova et al., 2017b)4. The
criterion is modified in the sense that posterior means of the
model parameters are used instead of the maximum likelihood
estimates of the parameters. The models allowing for nonlinear
conditional dependence have a larger penalty term based on their
larger number of parameters (i.e., quadratic effects in addition to
the baseline ICC parameters and the linear effects in the quadratic
model, and category-specific ICC parameters for the multiple
category model).

In addition to fitting the joint models for response time and
accuracy, the nonparametric moderation method was applied to
the data. To do so the standardized residuals of log-transformed
response time in the one-factor model with equal factor loadings
(i.e., which is equivalent to the log-normal model in Equation 3)
were computed using “lavPredict” function from the R-package
“lavaan” (Rosseel, 2012). As focal points we used [-2, -1.5, -1,-0.5,
0, 0.5, 1, 1.5, 2], that are the points where the observed log-
transformed response time is equal to the expected value, and
where the deviation from the expected value are equal to 0.5, 1,
1.5, and 2 residual standard deviations. To test the significance
of the effect of residual log-response time on the slopes and the
intercepts of the ICCs, permutation tests with 500 replications
were performed.

Finally, to test the linearity of conditional dependence,
posterior predictive checks were performed for the linear
conditional dependence model. Given each 10th sample of the

3We would like to thank Dutch National Institute for Measurement in Education

(CITO) for making this data set available to us. For confidentiality reasons we

cannot disclose the content of the test items analyzed in this paper, but example

items can be found at http://www.cito.nl/onderwijs/voortgezet%20onderwijs/

rekentoets_vo/voorbeeldtoetsen. IRB approval was not needed for the study, since

the data were collected previous to the study within high-stakes testing, and only

response time and accuracy data and no information identifying the respondents

was available for analysis.
4We are only using the modified BIC and not the modified Akaike information

criterion (AIC) which has also been evaluated by the authors because they have

shown that AIC tends to be too liberal.

TABLE 1 | Information criteria for the four joint models for time and accuracy.

Model -2LL P Modified BIC

Conditional independence 2046864 – 2126317

Linear conditional dependence 2042274 76 2122368

Quadratic conditional dependence 2040146 152 2120882

Multiple-category model 2039572 304 2121591

P is the number of additional parameters compared to the conditional independence

model.

model parameters after the burn-in a replicated data set was
generated under the linear conditional dependence model (i.e.,
500 replicated data sets were generated). The nonparametric
moderation method was applied for each of the replicated data
sets in the same way as for the observed data. The relationship
between standardized residual log-transformed response time
and the ICC parameters in the replicated data sets and the
observed data were compared graphically. Furthermore, in each
data set for each effect, the maximum of the absolute value
of the cumulative sum of the residuals in the simple linear
regression model with the focal points as a predictor and the ICC
parameter as an outcome variable was computed. For each effect,
the proportion of replicated data sets in which the deviation from
linearity (quantified by the maximum of the absolute value of the
cumulative sum of the residuals) was larger than in the observed
data was computed to approximate the posterior predictive p-
value for the linearity check.

Results
Table 1 shows the information criteria for the fitted joint models.
The conditional independence model has the worst values
compared to all models which take conditional dependence into
account. This result shows that the conditional independence
assumption does not hold for this test. Furthermore, models
allowing conditional dependence to be nonlinear have lower
information criteria values than the linear conditional
dependence model, which shows that the assumption of
linearity of conditional dependence also does not hold. The
quadratic model was better than the multiple-category model,
which points in the direction that the ICC parameters are not
homogeneous within each category.

It is important to investigate whether the main inferences
that are made based on the linear conditional dependence
model would also hold for the nonlinear conditional dependence
models and for the nonparametric moderation method. The first
question is about the presence of the effects on the intercept
and the slope of the ICCs of the separate items. In the linear
conditional dependence model for 24 and 30 items, the 95%
credible intervals of α1i and β1i respectively, did not include zero,
which can be seen as evidence of the presence of the effects.
In the quadratic model for 33 and 37 items the 97.5% credible
intervals5 of either αi1 or αi2, and of either βi1 or βi2 did not
contain zero, which can be seen as evidence of the presence of

5We decided to use a wider credible interval for the quadratic model because here

two parameters are evaluated for each ICC parameter to make a conclusion about

the presence of the effect instead of one, that is the area outside of the credible

interval was divided by the number of parameters which were evaluated.
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FIGURE 1 | Intercept of the item characteristic curve of item 7 (β7, on the

y-axis) as a function of residual log-transformed response time (z7, on the

x-axis) estimated with different methods. The item intercept is modeled as a

function of residual log-transformed response time, such that the intercept is

different depending on the value of that residual.

conditional dependence for these items. In the multiple-category
conditional dependence model for 29 and 37 items the 98.75%
credible intervals6 of at least one of αik, k 6= m and one of βik, k 6=
m did not contain zero. For 25 and 35 items the permutation
test had p-values below 0.05 for the effects on the slopes and
the intercept respectively, pointing to the presence of main and
interaction effects of residual log-transformed response time on
response accuracy.

We note that the nonlinear methods are more flexible and
complex and therefore provide noisier results and have less power
for detecting the effects, so it would not be surprising if a linear
effect is detected by the simpler linear method, but not by more
complex nonlinear methods. On the contrary, having items for
which the linear conditional dependence model does not detect
the effect, while it is detected by the nonlinear models should
be worrying, since it would mean that the effect is not detected
due to its nonlinear nature. This is the case, for example, for the
effect on the intercept of item 7: Figure 1 shows the estimated
relationship between the residual log-transformed response time
and the intercept of the ICC for this item under the linear
conditional dependence model and under the three nonlinear
methods. It can be seen that when we allow the effect to be
nonlinear and nonmonotone there is a clear relationship, while
with the linear model the resulting relationship is close to a
horizontal line.

The second kind of conclusion that is typically made based on
the linear conditional dependence model is about the correlation

6We decided to use a wider credible interval for the multiple-category model

because here four parameters are evaluated for each ICC parameter to make a

conclusion about the presence of the effect instead of one parameter, that is the area

outside of the credible interval was divided by the number of parameters which

were evaluated.

between the baseline intercept of the items and the effect of
residual log-transformed response time on the intercept. In
multiple data sets previously this correlation was found to be
negative (Bolsinova et al., 2017a,b). In our data set we found
the same relationship. Figure 2 (top left) shows the relationship
between the estimates of βi0 and βi1 in the linear conditional
dependence model. For easier items the effects are more often
negative, and for more difficult items the effects are more
often positive. To check whether a similar conclusion would be
made using the nonlinear methods we performed the following
analyses: (1) For the quadratic model for the items with negative
βi2 (i.e., items for which there exists a value of zpi which
maximizes the intercept of the ICC) we plotted the points at
which the intercept is maximized (− βi1

2βi2
) against the baseline

intercept (see Figure 2, top right); (2) For the multiple-category
model we plotted the category for which the item intercept is
the highest against the intercept in the baseline category (see
Figure 2, bottom left); (3) For the nonparametric method we
plotted the focal points for which βji is the highest against the
overall proportion of correct responses to the item (see Figure 2,
bottom right). In all three additional plots we see a similar
relationship as for the linear conditional dependence model: For
easier items relatively fast responses tend to bemost often correct,
while for difficult items relatively slow responses tend to be most
often correct.

The comparison of the information criteria shows that
linearity of conditional dependence does not hold for the test
as a whole. Additionally, we examined the estimates of the item
hyper-parameters specifying the mean and the variance of the
quadratic effects. The means of the quadratic effects across items
were estimated to be -0.02 [-0.07, 0.04] for αi2s, and -0.09 [-0.15,
-0.03] for βi2s. The variances of the quadratic effects were 0.03
[0.02, 0.05] for αi2s and 0.03 [0.02, 0.05] for βi2s. For the effects
of the item intercepts there is a clear pattern of the intercept first
increasing and then decreasing with residual log-transformed
response time since the mean of βi2 is negative, but for the effects
on the item slopes the pattern is not so clear.

In addition to the overall conclusions about the presence of
nonlinear effects, at least for some of the items, it is also important
to look at each item separately and evaluate the results of the
posterior predictive checks for linearity. For 27 and 30 items the
posterior predictive p-value for linearity was below 0.05 for the
effects on the slope and the intercept of the ICC, respectively.
Figures 3–6 give examples of some of the items with the largest
deviations of conditional dependence from linearity. For item
1 the intercept of the ICC increases very steeply when the
response is faster than expected, while positive deviations from
the expected response time hardly result in further increase of the
probability of a correct response (see Figure 3). From this figure,
one can also see that the strength of the effect is underestimated
in the linear conditional dependence model since the effect is
averaged across the ranges of z in which there is an effect and
where there is no effect. The slope of item 2 first increases and
then decreases, for which the quadratic model gives quite a good
approximation, while the linear conditional dependence severely
misrepresents the relationship between residual log-transformed
response time and the item slope (see Figure 4). For items 28
and 30 (see Figures 5, 6), the direction of the effect changes
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FIGURE 2 | Differences in the effect of residual log-transformed response time (z) on item easiness depending on the baseline easiness.

FIGURE 3 | Intercept of the item characteristic curve of item 1 (β1, on the

y-axis) as a function of residual log-transformed response time (z1, on the

x-axis) estimated with different methods.

in the area where the observed response time is close to its
expected value: Responses both faster than expected and slower
than expected are less often correct than the responses with

response times close to their expected values. Figures 5B, 6B
illustrate the posterior predictive check for the intercepts of items
28 and 30. Here, the relationships in the observed data (black
lines) clearly deviate from what would be expected if the data
were generated under the linear conditional dependence model
(gray lines). Note, that for the first of these two items the linear
conditional dependence model reports a positive conditional
dependence between response time and accuracy and for the

second one it reports a negative conditional dependence, which is

correct only for a part of the scale of the residual log-transformed

response time and does not adequately represent the pattern of
conditional dependence as a whole.

Additionally, we compared the estimates of ability under

the conditional independence model, the linear conditional

dependence model and the two nonlinear conditional
dependence models (quadratic and multiple-category models)

to check how the inclusion of conditional dependence in a

model (and the exact way in which it is modeled) influences
the inferences about the respondents. The correlations between

the estimates of θ under each pair of models was very high,
the lowest value of the correlation was above 0.988, and the
highest value of the correlation was above 0.999. Therefore, in
this example modeling conditional dependence does not change
the measured construct, while it does allow learning more about
the relationship between time and accuracy compared to the
standard conditional independence model.
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FIGURE 4 | (A) Slope of the ICC of item 2 (α2, on the y-axis) as a function of residual log-transformed response time (z2, on the x-axis) estimated with different

methods; (B) posterior predictive check for linearity of conditional dependence: each gray line represents the relationship between the residual log-transformed

response time of item 2 (z2) and the slope of the ICC of item 2 (α2) estimated in the replicated data generated under the linear model, and the black line represents the

relationship in the observed data.

FIGURE 5 | (A) Intercept of the ICC of item 28 (β28, on the y-axis) as a function of residual log-transformed response time (z28, on the x-axis) estimated with different

methods; (B) posterior predictive check for linearity of conditional dependence: each gray line represents the relationship between the residual log-transformed

response time of item 28 (z28) and the intercept of the ICC of item 28 (β28) estimated in the replicated data generated under the linear model, and the black line

represents the relationship in the observed data.

DISCUSSION

Our empirical example shows that conditional dependence
between response time and accuracy can be nonlinear: in
this example models allowing for nonlinear dependence are
preferred over the linear dependence model, and for the
majority of the items the posterior predictive checks indicate
violations of linearity of the relationship between residual log-
transformed response time and the ICC parameters. Using a
linear conditional dependencemodel may in some situations lead
to incorrect conclusions about the relationship between response
time and accuracy: (1) One may conclude that conditional
independence holds, when conditional independence is violated
in a nonmonotone way such that the positive dependence in one
range of the z-values and the negative dependence on another
range cancel each other out; (2) The strength of the effect may
be underestimated, when the effect is strong in some range of z-
values and is either very weak or is absent in another range; (3)
One may conclude that the dependence is, for example, negative
while in fact it is both positive and negative depending on the

range of z-values. In such situations, by modeling nonlinear
conditional dependence one can get a better picture of the
relationship between response time and accuracy in the data and
get closer to understanding the response processes behind this
relationship.

The approaches proposed in this paper make use of the
difference between the observed and expected log-transformed
response times, zpi, as a predictor variable to account for
unobserved heterogeneity in the responses. In the model, we do
not explicitly separate the unobserved heterogeneity by means
of additional latent variables. As a result, zpi, which contains
noise, is fully incorporated in the responsemodel which decreases
the power to detect an effect as the parameter estimates will
have increased sampling fluctuations due to the noise in the
residual log-transformed response time. However, we did not
want to further complicate the model by introducing additional
latent variables. In addition, introducing more latent variables
may also decrease the power to detect an effect due to increased
estimation error. Another aspect of the conditional dependence
models is that false positives may arise if the response time model
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FIGURE 6 | (A) Intercept of the ICC of item 30 (β30, on the y-axis) as a function of residual log-transformed response time (z30, on the x-axis) estimated with different

methods; (B) posterior predictive check for linearity of conditional dependence: each gray line represents the relationship between the residual log-transformed

response time of item 30 (z30) and the intercept of the ICC of item 30 (β30) estimated in the replicated data generated under the linear model, and the black line

represents the relationship in the observed data.

is misspecified. That is, such misspecifications will be absorbed
in zpi which in turn may be detected as a linear or non-linear
conditional dependence effect if the misspecification is large
enough. As a result, ideally one should carefully consider model
fit of the response time measurement model before interpreting
the results of the present parametric approach.

The conclusion about the negative relationship between the
baseline intercept of the items and the effects of residual log-
transformed response time on the intercept, previously found
in other datasets (see e.g., Bolsinova et al., 2017b) and also
found in our empirical example, seems to be robust regarding
the violation of the linearity of the effect. With all three
methods allowing for nonlinear dependence, we observed a
relationship between the overall easiness of the item and the
pattern of conditional dependence. When nonlinear conditional
dependence is considered, we can no longer talk about the single
effect on the intercept, instead we are considering the range of
values of zpi for which the intercept (and therefore response
accuracy) is the highest. For easier items, the optimal values of zpi
tend to be more negative (responses faster than expected), while
for difficult items, the optimal zpi is positive (responses slower
than expected).

In this paper we used three different approaches to modeling
nonlinear conditional dependence: (1) the quadratic conditional
dependence model, (2) the multiple-category conditional
dependence model, and (3) the nonparametric modeling
approach. These three approaches all have their comparative
advantages and disadvantages. An important difference between
the first two methods and the third one is that the first two
methods allow modeling response time and accuracy jointly,
while the third method requires a two-step procedure in
which the estimates ẑpi are treated as observed covariates for
the distribution of response accuracy. This can be seen as a
disadvantage of the nonparametric approach. At the same time,
the nonparametric approach allows for more flexibility in the
relationship between residual log-transformed response time
and the ICC parameters. A limitation of the quadratic approach
is that it restricts the possible relationship between the residual
log-transformed response time and the ICC parameters to having
a particular parametric shape and does not allow exploration

of the shape of the conditional dependence. One way in which
the quadratic shape of the relationship between zpi and the
ICC parameters is restrictive is that the function is symmetric,
whereas it could be that the decrease of the parameter when
moving away from the maximum point (given that the quadratic
effect is negative and there is a maximum) is stronger when zpi
is becomes smaller that its optimal value than when it becomes
larger. The nonparametric method allows us to more closely
follow the shape of the relationship, however due to its flexibility
the method requires larger sample sizes. A limitation of the
multiple-category approach is that it assumes that within each
category of residual log-transformed response time the item
parameters are constant, which might not necessarily be the case
in practice.

While the empirical example considered an application from
educational measurement, the developed methodology can be
expected to be relevant for applications relating to ability
measurement in general, in cases where both response time and
accuracy are recorded. Like the traditional hierarchical model,
the models proposed in this paper make it possible to obtain
additional information about ability based on the observed
response times, but the methods also allow one to further study
and model the complex relationship that may exist between
response time and accuracy. This can, for example, be considered
relevant in the context of developing and applying intelligence
tests or other complex cognitive tests, where one might expect
that items display relevant patterns of conditional dependence.
For example, it may be that response time is indicative of the
particular problem solving strategy that a respondent employs,
which may also affect how likely one is to provide a correct
response. Additionally, it may be that long response times are
indicative of aberrant test taking behavior, such as inattention
or distraction, which makes it plausible that such responses
should be seen as less informative of ability than responses for
which the response times do not indicate aberrant behavior.
Our methods allow one to take this into account, by allowing
the discrimination parameter of the item to be influenced by
residual response time. In this way, the proposed methods allow
researchers to work with models for ability measurement that
take both response time and accuracy into account and that are
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highly flexible with regard to the relationship between these two
outcome variables that can be dealt with, and can accommodate
a variety of deviations from conditional independence that
can be expected in both high- and low-stakes psychological
testing.
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