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Conduct disorder (CD) is a psychiatric disorder of childhood and adolescence which has
been linked to deficient emotion processing and regulation. The behavioral and neuronal
correlates targeting the interaction of emotion processing and response inhibition
are still under investigation. Whole-brain event-related fMRI was applied during an
affective Stroop task in 39 adolescents with CD and 39 typically developing adolescents
(TD). Participants were presented with an emotional stimulus (negative/neutral)
followed by a Stroop task with varying cognitive load (congruent/incongruent/blank
trials). fMRI analysis included standard preprocessing, region of interest analyses
(amygdala, insula, ventromedial prefrontal cortex) and whole-brain analyses based on
a 2(group) × 2(emotion) × 3(task) full-factorial ANOVA. Adolescents with CD made
significantly more errors, while reaction times did not significantly differ compared to
TD. Additionally, we observed a lack of downregulation of left amygdala activity in
response to incongruent trials and increased anterior insula activity for CD relative to
TD during affective Stroop task processing [cluster-level family-wise error-corrected
(p < 0.05)]. Even though no three-way interaction (group × emotion × task) interaction
was detected, the findings presented still provide evidence for altered neuronal
underpinnings of the interaction of emotion processing and response inhibition in CD.
Moreover, our results may corroborate previous evidence of emotion dysregulation as
a core dysfunction in CD. Future studies shall focus on investigating the interaction
of emotion processing and response inhibition in CD subgroups (e.g., variations in
callous-unemotional traits, impulsivity, or anxiety).

Keywords: conduct disorder, emotion processing, response inhibition, amygdala, insula

INTRODUCTION

Conduct disorder (CD) is a psychiatric disorder of childhood and adolescence marked by emotion
processing and regulation deficits (American Psychiatric Association, 2013; Fairchild et al., 2013).
CD youths typically engage in aggressive and antisocial behavior [e.g., rule breaking, stealing, and
lying (Lahey and Waldman, 2012)], present with high rates of comorbidity (Nock et al., 2006),
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and are at risk for academic failure, delinquency, and mental
disorders in adulthood (Swanson et al., 1994; Fergusson et al.,
2005; Biederman et al., 2008; Erskine et al., 2016). CD is
categorized according to its age of onset (childhood-onset
versus adolescent-onset), severity (mild, moderate, or severe),
and the presence or absence of callous-unemotional (CU)
traits (DSM-5 specifier “with limited prosocial emotions”).
Moreover, adolescents with CD can exhibit either predominantly
reactive/impulsive or proactive/instrumental aggression, which
is associated with the levels of CU traits (Mathias et al.,
2007; Freitag et al., 2018). While adolescents with reactive
aggression mainly show impulsive behavior, those with proactive
aggression usually present with increased CU traits. Together
with oppositional defiant disorder (ODD), a milder form
and developmental precursor of antisocial behavior, CD has
been categorized as a disruptive behavior disorder (DBD)
(Loeber et al., 2000). Antisocial youths are phenotypically
characterized by a heterogeneous symptomatology, reflected in
different etiological paths and variations in response to treatment
(Steiner et al., 2017). Main forms of neurocognitive dysfunctions
include deficient emotion processing, reduced affective empathy,
and altered response inhibition (Blair et al., 2016). Indeed
the mechanisms underlying deficient emotion processing and
response inhibition have been hypothesized to increase the risk
for antisocial behavior (Campbell et al., 2000; Davidson et al.,
2000; Young et al., 2009; Wang et al., 2017). As such, a failure
to inhibit negative affect and to respond appropriately to negative
cues has been proposed to lead to aggressive behaviors (Davidson
et al., 2000), as for example observed in CD. Consequently,
adolescents with CD have been shown to be impaired when
negative cues are presented prior to cognitive task performance,
e.g., during response inhibition (Euler et al., 2014; Hwang et al.,
2016). In other words, previous findings demonstrate an inability
to adequately process distracting emotional information, which
results in impaired cognitive performance. Consequently, this
may lead to an inability to suppress impulsive and/or antisocial
behaviors as observed in CD [similar to observations in family
violence (Chan et al., 2010)].

While altered response inhibition has been observed in
adolescents with DBD (Prateeksha et al., 2014; Hwang et al.,
2016), results are inconsistent in regards to the direction of
findings. Some studies measuring response inhibition report no
differences in performance of CD or DBD youths (Banich et al.,
2007; Rubia et al., 2008, 2010b). Others indicate higher error
rates and/or longer reaction times (RTs) (Rubia et al., 2009a;
Euler et al., 2014; Prateeksha et al., 2014; Hwang et al., 2016).
Importantly, when response inhibition is preceded by emotional
(both negative and/or positive) stimuli, decreases in performance
are more commonly reported (Euler et al., 2014; Prateeksha et al.,
2014; Hwang et al., 2016).

Studies using functional magnetic resonance imaging (fMRI)
have shed light on the neuronal phenotype characteristic for
CD youths. Most commonly, alterations in neural recruitment
in frontal and limbic lobes (including insula, amygdala, and
anterior cingulate) are reported (Stadler et al., 2007; Sterzer
and Stadler, 2009; Blair, 2010; Rubia, 2011; Raschle et al.,
2015; Hwang et al., 2016), which are likely to depend on the

levels of CU traits (Blair, 2010; Baker et al., 2015). Previous
studies investigating response inhibition (e.g., stop, Simon,
switch, or Stroop tasks) in CD have revealed decreased and
increased neuronal activity in medial prefrontal cortex, insula,
cingulate gyrus, temporoparietal junction, subcortical regions,
and occipital lobe (Banich et al., 2007; Rubia et al., 2008, 2009a,
2010b). To our knowledge, only one neuroimaging study has yet
directly tested the interaction of emotion processing and response
inhibition in DBD youths. In this study, Hwang et al. (2016)
detected reduced ventromedial prefrontal cortex (vmPFC) and
amygdala activity in response to negative affective stimuli and
reduced insula activity with increasing cognitive load in DBD
compared to typically developing (TD) youths.

The present study aims at adding to this first evidence in DBD
by investigating the neuronal and behavioral correlates of the
interaction of emotion processing and response inhibition in CD
youths through fMRI during affective Stroop task performance.
The affective Stroop task is a variation of a response inhibition
task and comprises a number Stroop task with trials which vary
in cognitive load. Additionally, negative and neutral images are
presented prior to the Stroop trials. By combining emotional
images and number Stroop trials, the affective Stroop task allows
the investigation of the interaction of emotion processing and
response inhibition. In the present study, only adolescents with
a clinical diagnosis of CD were included. This is unlike previous
studies using a similar task design, but a more lenient DBD
diagnosis. We used a task design adapted from Hart et al. (2010),
which was previously validated in a sample of healthy young
adults (Raschle et al., 2017). In contrast to Hwang et al. (2016),
our task included a set of child-appropriate images, reduced task
complexity, and adapted presentation times (e.g., shorter image
presentation, longer Stroop task presentation). Additional efforts
were made in order to develop a protocol that meets the demands
of an adolescent sample (e.g., attention and time constraints, see
also Raschle et al., 2009, 2012. For further specifications on the
task design see section “fMRI Task: The Affective Stroop Task”).
Using both region of interest and whole-brain approaches, we
hypothesized (I) to observe emotion × task interactions for the
Stroop effect (i.e., delayed RTs for trials with increased cognitive
load and prior negative stimulation) in CD compared to TD
youths, in line with previous work (Euler et al., 2014); (II) to
detect reduced neuronal activity within brain regions involved
in emotion processing and response inhibition (amygdala, insula,
and vmPFC) during the affective Stroop task in CD relative to TD
youths in line with previous findings (Hwang et al., 2016).

MATERIALS AND METHODS

Participants
Seventy-eight youths (39CD/39TD) were included in the present
analyses (age range: 10.1–19.1 years, mean age: 15.7 years, 10
males in each CD/TD group were assessed in Berlin). CD was
diagnosed according to DSM-5 criteria by trained PhD students.
Seventeen CD youths (43.6%) additionally met DSM-5 criteria
for present attention-deficit hyperactivity disorder, while 20 CD
youths (51.3%) additionally met diagnostic criteria for ODD. TD
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were included if no current psychiatric diagnosis was reported
by either the participant and/or the parents/legal guardians. CD
and TD groups were matched for age [t(76) = 0.87, p = 0.390]
and non-verbal IQ [t(76) = −0.72, p = 0.472] (Table 1 and see
section Supplementary Material – Additional Information on
Participants”). Moreover, both CD and TD groups from Basel
and Berlin did not differ in age [CD: t(37) = 1.04, p = 0.303; TD:
t(37) = −0.92, p = 0.365] or non-verbal IQ [CD: t(37) = 1.12,
p = 0.269; TD: t(37) = 1.47, p = 0.151]. Participants were
recruited through referrals from child and adolescent psychiatric
institutions, public schools, and the general public through the
use of fliers.

Ethics Statement
All adolescents and parents/legal guardians gave written
informed consent as approved by the local ethics committee
‘Ethikkommission der Nordwest- und Zentralschweiz’ and
received vouchers for their participation.

Clinical Testing and Questionnaires
Conduct disorder youths and their legal guardians completed
the Schedule for Affective Disorders and Schizophrenia for
School-Age Children – Present and Lifetime version (K-SADS-
PL; Kaufman et al., 1997) in order to assess CD criteria and
comorbid disorders according to the DSM-5 (Table 1). CD
and TD participants completed the Youth Psychopathic traits
Inventory (YPI, Andershed et al., 2007) and the matrix reasoning
subtest of the WISC-IV (ages ≤ 16 years; Petermann, 2011) and
the WAIS-III (ages ≥ 17 years; Petermann, 1997) measuring
non-verbal IQ. For 10 participants (9 CD and 1 TD), only a
composite IQ score was obtained. CD and TD legal guardians
moreover completed a socioeconomic status (SES) questionnaire

(see section “Supplementary Material – Psychometric Testing:
Socioeconomic Status”). Participants were asked to report any
medication administered prior to the MRI session (see section
“Supplementary Material – Medication of Adolescents With
Conduct Disorder (N = 35) and Typically Developing Controls
(N = 39) at MRI Session”).

fMRI Task: The Affective Stroop Task
We applied an affective number Stroop task as previously
described in Raschle et al. (2017) (Figure 1). Each trial
started with an emotional stimulus, i.e., a negative (Neg) or
neutral (Neu) stimulus (150 ms), followed by a task trial
(congruent/incongruent/neutral Stroop trial or a blank screen)
and finally a relaxation period, i.e., blank screen (350 ms). All
pictures were selected from a child-appropriate image system
[Developmental Affective Photo System (DAPS); Cordon et al.,
2013]. During task trials, participants were presented with an
array of 1 to 4 digits or a blank screen and were asked to
press a button corresponding to the number of items displayed.
The number of items was either congruent (C; e.g., number
3 in an array of 3) or incongruent (IC; e.g., number 1 in an
array of 2) with the digits presented. Star shaped stimuli (S;
as a neutral baseline counting condition) and blank trials (B;
no response expected from participants) were used as control
conditions (for further details see Raschle et al., 2017). Trial
order and interstimulus intervals (which were 350–1850 ms) were
randomized using Optseq1 and kept constant across participants.
A total of 300 task and 100 blank trials were administered (100
for C/IC/S trials, 50 with preceding negative images, 50 with

1http://surfer.nmr.mgh.harvard.edu/optseq

TABLE 1 | Behavioral group characteristics.

CD TD p

Mean ± SD Mean ± SD Significance two-tailed

N = 39 N = 39

Age (in years) 15.94 ± 1.88 15.54 ± 2.15 0.390

Sex (male/female) 29/10 29/10

No. per site (Basel/Berlin) 28/11 28/11

Handedness (right/left/
ambidextrous)

36/2/1 36/2/1

IQ Matrix reasoning 99.47 ± 12.02 101.54 ± 11.31 0.472

Comorbidities (DSM-5) Attention-deficit hyperactivity disorder 17 0

Oppositional defiant disorder 20 0

Major depression 2 0

Anxiety disorder 6 0

Substance/alcohol abuse/dependence 16 0

YPI N = 39 N = 38

Grandiose-manipulative (interpersonal) dimension 8.68 ± 2.74 7.89 ± 1.90 0.117

Callous-unemotional (affective) dimension 11.23 ± 3.08 9.55 ± 1.94 0.006∗∗

Impulsive-irresponsible (behavioral) dimension 13.57 ± 2.80 10.68 ± 1.72 <0.001∗∗∗

Total score 11.16 ± 2.38 9.37 ± 1.21 <0.001∗∗∗

∗∗p < 0.01; ∗∗∗p < 0.001, two-tailed t-test; all other t-tests non-significant at threshold p = 0.05. For IQ, standard scores are reported; for YPI, mean scores are reported,
missing data are due to time constraints. CD, conduct disorder patients; TD, typically developing adolescents; SD, standard deviation; YPI, Youth Psychopathic traits
Inventory.
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FIGURE 1 | fMRI task design including three exemplary affective Stroop trials. (A) Negative-congruent trial; (B) neutral-incongruent trial; (C) negative-blank trial.

neutral images, in 2 runs), with a total scan time of about 16 min
(7.59 min each run).

Behavioral Measures: In-Scanner
Performance
All participants scored > 60% correct responses per task
condition and run. RTs and task accuracy (raw scores) were
analyzed using 2x2x2 full-factorial ANOVAs with the between-
subject factor group (CD and TD) and within-subject factors
emotion (negative and neutral) and task (congruent and
incongruent) for RTs and accuracy separately using SPSS, version
24. Data was unavailable for a minority of responses because
of technical difficulties with the response box (for a detailed
description see section “Supplementary Material – Button Box
Responses”).

fMRI Data Acquisition and Analysis
Acquisition Parameter
In Basel, whole-brain blood oxygen level-dependent (BOLD)
fMRI data and structural T1-weighted magnetization prepared
rapid gradient echo imaging images were acquired on a Siemens
3T Prisma MRI system using a 20-channel phased-array radio
frequency head coil. In Berlin, a Siemens 3T TimTRIO MRI
system equipped with a 12-channel head coil was used. At

both sites a T2∗-weighted EPI (echo-planar imaging) sequence
with TR = 2000 ms, TE = 30.0 ms, FOV = 192 mm, image
matrix = 64 mm × 64 mm, voxel size = 3 mm × 3 mm × 3 mm,
and number of slices = 37 was used. We further acquired
high-resolution T1-weighted structural images for coregistration
during fMRI preprocessing using the following specifications:
TR = 1900.0 ms, TE = 3.42 ms, FOV = 256 mm, image
matrix = 256 × 256, voxel size = 1 mm.

fMRI Analysis
Functional MRI data were analyzed using the Statistical
Parametric Mapping software, version 12 (SPM122).
Preprocessing of the data included realignment, co-registration
to the structural image, segmentation, normalization to the
Montreal Neurologic Institute (MNI) standard brain, and
spatial smoothing using an 8 mm Full Width at Half Maximum
Gaussian kernel.

Single-subject fMRI data was analyzed using the general
linear model. The model comprised eight task regressors [each
combining a negative or neutral stimulus with congruent,
incongruent, or neutral (stars/blank) Stroop trials, namely
negative-congruent (NegC), negative-stars (NegS), negative-
incongruent (NegIC), negative-blank (NegB), neutral-congruent

2www.fil.ion.ucl.ac.uk/spm/
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(NeuC), neutral-stars (NeuS), neutral-incongruent (NeuIC),
neutral-blank (NeuB)], one regressor for incorrect/missed
responses, and six motion regressors. The task regressors were
modeled as stick functions convolved with the hemodynamic
response function as implemented in SPM12. Stars trials were not
considered in further analyses.

At the second level, hypothesis-based ROI and whole-brain
analyses were performed. A priori defined anatomical ROIs
included bilateral amygdala, insula, and vmPFC based on
previous literature (Rubia et al., 2008, 2009a, 2010a; Rubia,
2011; Raschle et al., 2015; Hwang et al., 2016) and derived
from the automated anatomical labeling atlas (aal; Tzourio-
Mazoyer et al., 2002). Mean parameter estimates were extracted
from each ROI using the marsbar toolbox (Brett et al., 2002).
A repeated measures ANOVA with the factors group (CD and
TD), emotion (negative and neutral), and task (blank, congruent,
and incongruent) and follow-up pairwise comparisons applying a
Bonferroni multiple comparisons correction in order to account
for the number of ROIs were then computed within SPSS,
version 24.

For whole-brain analyses, beta images resulting from first-
level model estimation for each regressor and run were submitted
to a group-level random-effects analysis using a 2x2x3 full-
factorial ANOVA with the between-subject factor group (CD and
TD) and within-subject factors emotion (negative and neutral)
and task (blank, congruent, and incongruent).

Quality control was performed throughout the analyses in
order to control for effects of motion. Besides including six
additional motion regressors during single-subject analysis, each
analysis mask was visually inspected for head motion. An
F-test performed on the six motion regressors revealed no
significant differences in quantitative motion between groups
[F(5,72) = 0.34, p = 0.889]. Qualitative motion was evaluated
using Artifact Detection Tools (Whitfield-Gabrieli, 2009), where
excessive motion was defined by the number of scans with a
movement threshold of >2 mm and a rotation threshold of
>0.05 mm. A two-sample t-test was then conducted, resulting
in no significant differences in qualitative motion across groups
[t(74) = 0.49, p = 0.626]. For all analyses, site (Basel, Berlin)
was added as an additional factor of no interest. Brain activation
was assessed for the main effects of group, emotion, and task,
and all possible interactions thereof are reported at a cluster-
extent family-wise error (FWE) rate of p < 0.05 (cluster building
threshold of p < 0.001). Significant clusters of main effects and
interactions were followed up with masked post hoc t-tests.

The F-maps and t-maps of the whole-brain analyses
are available at https://neurovault.org/collections/XEYAPOGU/
(Gorgolewski et al., 2015) and the mean parameter estimates from
each ROI are available in the Supplementary Material.

RESULTS

Questionnaires
Psychometric assessments are reported in Table 1. CD scored
significantly higher than TD in the callous-unemotional
(i.e., affective) and impulsive-irresponsible (i.e., behavioral)

dimensions and the total score of the YPI (all p < 0.01; YPI,
Andershed et al., 2007). Nevertheless, psychopathic traits in
our CD group were overall low [YPI total score: M = 11.16
(maximum score: 20.00), SD = 2.38, CU dimension: M = 11.23
(maximum score: 20.00), SD = 3.08; both within one standard
deviation of a representative school sample (N = 480), see also
Stadlin et al., 2016].

Behavioral Results: In-Scanner
Performance
Analysis of RTs revealed a significant main effect of emotion
[Neu > Neg, F(1,76) = 5.74, p < 0.05], and a main effect of task
[IC > C, F(1,76) = 615.48, p < 0.001]. There was no main effect of
group and no interaction effects for RTs. For accuracy, we found a
significant main effect of emotion [Neu > Neg, F(1,76) = 8.29,
p < 0.01], a main effect of task [C > IC, F(1,76) = 118.42,
p < 0.001], and a main effect of group [CD < TD, F(1,76) = 6.77,
p < 0.05]. There were no significant interaction effects for
accuracy [see section “Supplementary Material – In-Scanner
Performance (Accuracy and Reaction Times) for Adolescents
With Conduct Disorder (N = 39) and Typically Developing
Controls (N = 39)].

Functional MRI Results
ROI Results
ROI analyses in relevant regions of interest (bilateral amygdala,
insula, and vmPFC) revealed significant group × task and
emotion × task interactions, as well as main effects of emotion
and task (Figure 2).

Group × task interaction
A group × task interaction was observed in left amygdala
[F(2,73) = 4.83, p < 0.05], reflecting significantly decreased
activity for incongruent compared to blank trials in TD (IC < B,
p < 0.05), but not CD (all p > 0.227). This effect was independent
of emotion [no significant group × emotion × task interaction;
F(2,73) = 0.73, p = 0.485]. After exclusion of participants
with medication or substance/alcohol abuse or dependence
the group × task interaction in left amygdala (main finding)
remained significant [F(2,57) = 3.54, p < 0.05]. Similarly,
inclusion of the YPI CU dimension as a covariate did not change
the significance levels of the group × task interaction in left
amygdala [F(2,71) = 4.52, p < 0.05].

In order to examine the relationship between psychopathic
traits (YPI total score) and left amygdala activity during IC–
C (group × task interaction), follow-up bivariate correlations
were computed for CD and TD separately. Results revealed no
significant relationships between left amygdala activation and
psychopathic traits for CD or TD.

Emotion × task interaction
A significant emotion × task interaction effect was found in
right amygdala [F(2,73) = 4.77, p < 0.05]. Across all subjects
we observed relatively increased right amygdala activity for
blank trials with a prior negative compared to neutral emotion
(NegB > NeuB, p < 0.05), but relatively decreased activity in
the right amygdala during congruent trials with a prior negative
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versus neutral emotion (NegC < NeuC, p < 0.05). In addition we
observed decreased activity in the right amygdala for congruent
relative to blank trials following negative stimuli (NegC < NegB,
p < 0.01). Within right insula, a significant emotion × task effect
was observed [F(2,73) = 5.40, p < 0.01]. This effect reflected
increased activity during congruent trials following negative
compared to neutral stimuli (NegC > NeuC, p < 0.005) and
increased activity for incongruent compared to congruent trials
after negative stimuli (NegIC > NegC, p = 0.001). Decreased right
insula activity was moreover detected for congruent compared to
blank trials following negative stimuli (NegC < NegB, p < 0.001).

Main effect of emotion
A significant main effect of emotion [F(1,74) = 7.12, p < 0.01] was
detected in left amygdala, driven by increased neuronal activity
for negative compared to neutral trials (Neg > Neu, p < 0.01).

Main effect of task
A significant main effect of task was detected in right
[F(2,73) = 5.40, p < 0.01] and left vmPFC [F(2,73) = 9.36,
p < 0.001], resulting from relatively decreased activation for
incongruent compared to both blank and congruent trials
(IC < B, p < 0.001; IC < C, p < 0.005) for the left hemisphere and
incongruent compared to blank trials for the right hemisphere
(IC < B, p < 0.005).

Whole-Brain Results
Whole-brain analysis of brain activation during affective Stroop
task processing revealed significant main effects of group and task
(Table 2), but no significant main effect of emotion. There were
no significant two-way or three-way interaction effects. Whole-
brain findings did not overlap with the ROI results. All images

FIGURE 2 | Bar graphs displaying mean values of parameter estimates (mean centered) in predefined regions of interest [amygdala, insula, ventromedial prefrontal
cortex (vmPFC)] for the main effect of emotion and group × task interaction (left amygdala; A,B), emotion × task interaction (right amygdala and insula; C,D), and
main effect of task (left and right vmPFC; E,F). B, blank trial; C, congruent trial; IC, incongruent trial; Neg, negative trial; Neu, neutral trial; CD, conduct disorder; TD,
typically developing adolescents, ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001, two-tailed t-test; all other t-tests non-significant at threshold p = 0.05.
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are neurologically displayed using the Multi-image Analysis GUI
as available at http://ric.uthscsa.edu/mango/mango.html.

Main effect of group
A main effect of group (Figure 3) was detected for regions
including bilateral parietal and middle/inferior temporal and
occipital lobes, bilateral precentral and inferior orbitofrontal
areas extending into anterior insula and striatum, frontal
cortices, and anterior/middle cingulate cortex (CD > TD)
and regions including right middle frontal and supramarginal
gyri (extending into posterior insula), left postcentral gyrus,
right middle/superior temporal cortex, and bilateral thalamus
(CD < TD).

Main effect of task
Regions showing a differential BOLD response in response to task
included bilateral parietal and frontal lobes, supramarginal gyri,
occipital, temporal, and cerebellar regions, right middle cingulate
cortex, left precuneus, and left amygdala. Bilateral supramarginal,
superior frontoparietal, and occipital areas exhibited increased
activity for congruent and incongruent relative to blank trials
(IC/C > B). Left amygdala and inferior frontal areas exhibited
increased activity for incongruent compared to blank trials
(IC > B). In contrast, decreased left inferior parietal lobe,
right middle frontal and cingulate cortices, and left precuneus
activity was detected for congruent and incongruent relative
to blank trials (C/IC < B). Decreased activity in left inferior
temporal and right middle/superior temporal regions was related
to incongruent versus blank trials (IC < B, Supplementary
Figure 1).

DISCUSSION

Here, we aimed at investigating the interaction of emotion
processing and response inhibition in CD youths during an
affective Stroop task. Behaviorally, adolescents with CD made
significantly more errors, while RTs did not significantly differ
compared to TD. ROI analyses revealed a significant group × task
interaction effect reflecting a lack of downregulation of left
amygdala activity in response to incongruent task trials for CD
compared to TD. This effect was independent of the emotion
presented prior to Stroop task performance. Additionally, whole-
brain analyses revealed a significant main effect of group
representing increased anterior insula activity for CD relative to
TD regardless of emotion and task demands.

Contrary to our hypothesis and some previous investigations
(Rubia et al., 2009b; Euler et al., 2014; Prateeksha et al., 2014) we
did not detect group differences in RTs. However, research has not
been conclusive to date and the present finding is in accordance
with other studies (Banich et al., 2007; Rubia et al., 2008, 2009a,
2010b). Increased RTs for neutral compared to negative trials
and for incongruent compared to congruent trials were detected
across all participants. While increased RTs robustly reflect the
Stroop effect (Stroop, 1935), shorter RTs for negative compared
to neutral stimuli were not expected. However, participants’
responses were more accurate after presentation of neutral
relative to negative images. Faster responses at the expense of

lower accuracy may be due to heightened stress-related anxiety
(Panayiotou and Vrana, 2004; Kosinski, 2008). Moreover, in line
with Rubia et al. (2009a), CD youths made more errors than TD,
which is contrary to other reports in DBD and TD (Banich et al.,
2007; Rubia et al., 2008, 2010b; Euler et al., 2014; Prateeksha et al.,
2014).

In line with our second hypothesis, ROI analyses revealed
decreased left amygdala activity during Stroop task trials with a
high cognitive load (IC < B) in TD. In contrast, CD youths did
not show any downregulation of emotion-related brain areas with
increasing task difficulty. Unexpectedly, this group difference was
independent of the emotionality. We would have expected to
detect a difference depending on the emotion presented (i.e., a
downregulation after negative images instead of on any image
as observed here). Our data suggests that no task-dependent
downregulation of left amygdala response takes place in CD as
compared to TD, possibly reflecting altered neuronal functioning
of left amygdala which may be linked to altered regulatory
processes.

In agreement with the findings presented here, an aberrant
amygdala activity in DBD has previously been reported during
response inhibition (Hwang et al., 2016), facial emotion
processing (Marsh et al., 2008; Jones et al., 2009; Holz et al.,
2017), emotion processing (Sterzer et al., 2005), stimulus-
reinforcement learning, and reward processing (Finger et al.,
2011). However, past results are inconsistent regarding the
direction of findings. Some studies have detected decreases in
amygdala activity during emotion processing in adolescents with
CD. These findings have partly been attributed to the presence
of CU or psychopathic traits (Marsh et al., 2008; Jones et al.,
2009; Finger et al., 2011; Hwang et al., 2016), while others
have detected amygdala activity reductions in youths with CD
without taking callousness into account (Sterzer et al., 2005; Holz
et al., 2017). In contrast, another body of work has reported
increased amygdala activity during emotion processing tasks in
individuals with CD, especially in those with low CU traits or
increased anxiety (Herpertz et al., 2008; Decety et al., 2009; Viding
et al., 2012; Sebastian et al., 2014). Additionally, it has been
postulated that increased amygdala activity might be related to
reactive aggression, which is commonly reported in adolescents
with CD and low CU traits (Blair, 2010). These individuals
are further often characterized by high anxiety levels linked
to a hypersensitive threat system and increased sensitivity to
negative stimuli. Altogether, increased anxiety and sensitivity
to aversiveness of the adolescents with CD studied here may
represent a potential reason for a lacking downregulation of
amygdala response as observed here.

In addition to functional MRI evidence, past research
has suggested reduced amygdala volumes in adolescents with
conduct problems (Sterzer et al., 2007; Huebner et al., 2008;
Fairchild et al., 2011; Wallace et al., 2014; Rogers and De Brito,
2016). Together with the findings presented here, evidence thus
supports a broader view of the amygdala as a key center of
alterations in CD.

Whole-brain results provided further insights into insula
activity during the affective Stroop task while distinguishing
between insular subdivisions. CD exhibited increased activity in
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TABLE 2 | Montreal Neurologic Institute (MNI) coordinates, cluster size and Z-scores for whole-brain results using a FWE cluster level correction of p < 0.05 (cluster
building threshold of p < 0.001) for the main effect of group and main effect of task during the affective Stroop task.

Brain region Hem k Z0 MNI coordinates [mm]

x y z

Main effect of group

CD < TD

Supramarginal gyrus, middle frontal gyrus, including insula and precentral gyrus R 1035 7.19 40 −10 20

Postcentral gyrus L 392 6.04 −62 −2 26

Middle/superior temporal gyrus, hippocampus R 335 6.66 50 −18 −4

Pallidum, thalamus R/L 309 6.68 16 −16 −2

CD > TD

Inferior/superior parietal lobe, middle temporal/occipital lobe R/L 4310 6.27 −30 −82 26

Precentral gyrus, inferior orbitofrontal lobe, caudate, putamen, including insula R/L 3869 >8 −30 12 22

Rolandic operculum, inferior parietal lobe L 2545 7.71 −32 −44 −26

Inferior/middle/superior frontal lobe, precentral gyrus, insula R 1680 7.44 48 34 28

Lingual gyrus, hippocampus, inferior temporal/occipital lobe, cerebellum R/L 1114 7.04 32 −54 8

Middle/superior frontal gyrus, supplementary motor area, anterior/middle cingulate gyrus R/L 787 6.28 4 26 44

Anterior/middle cingulate gyrus, caudate R/L 391 6.45 4 −2 32

Precentral gyrus, superior frontal gyrus L 343 6.29 −28 −24 30

Inferior parietal lobe, angular gyrus R 339 5.73 54 −34 18

Fusiform gyrus, inferior/middle occipital lobe L 294 6.00 −46 −82 −8

Fusiform gyrus, inferior/middle occipital lobe R 257 5.81 42 −52 −14

Supplementary motor area, superior frontal lobe L 212 5.78 −18 14 62

Main effect of task

IC > C

Calcarine sulcus, lingual gyrus, superior occipital lobe R/L 385 4.23 4 −82 0

IC < C

No suprathreshold voxels

IC > B

Occipital lobe, fusiform gyrus, calcarine sulcus, cerebellum R/L 9665 >8 34 −86 0

Supramarginal gyrus, inferior/superior parietal lobe, middle/superior frontal lobe L 4888 >8 −46 −36 58

Supramarginal gyrus, inferior/superior parietal lobe R 1118 5.57 42 −40 52

Hippocampus, pallidum, putamen, amygdala L 791 5.53 −24 0 -8

Inferior frontal operculum, precentral gyrus L 291 5.82 −54 8 38

Pallidum, caudate, putamen R 261 4.74 26 6 −8

IC < B

Middle/posterior cingulate gyrus, paracentral lobule, including precuneus R/L 1850 5.98 −2 −34 44

Inferior/middle temporal lobe, inferior parietal lobe, middle occipital lobe L 872 6.67 −40 −84 28

Middle frontal lobe, precentral gyrus R 832 4.95 36 −16 44

Middle/superior temporal lobe, angular gyrus R 645 4.65 42 −80 30

Inferior temporal lobe, including fusiform gyrus L 232 4.70 −28 −36 −18

C > B

Supramarginal gyrus, inferior/superior parietal lobe, superior frontal lobe L 3740 >8 −44 −38 60

Cerebellum, occipital lobe, including fusiform gyrus R 3049 6.71 32 −88 0

Cerebellum, occipital lobe, including fusiform gyrus L 2248 6.99 −38 −90 −8

Supramarginal gyrus, inferior/superior parietal lobe R 747 4.95 44 −40 58

Hippocampus, putamen L 232 4.11 −18 0 14

C < B

Middle cingulate gyrus, precuneus, paracentral lobule R/L 941 4.96 6 −38 50

Postcentral gyrus, precentral gyrus R 432 4.17 36 −20 56

Angular gyrus, middle/superior occipital lobe L 455 4.81 −44 −82 22

Middle/superior temporal lobe R 312 4.09 64 −52 6

Fusiform gyrus, lingual gyrus R 228 4.48 28 −44 −12

Insula, putamen, rolandic operculum R 221 4.06 36 −12 6

Family-wise error cluster level correction of p < 0.05 (cluster building threshold of p < 0.001). Hem, hemisphere; k, cluster size; B, blank trial; C, congruent trial; IC,
incongruent trial; CD, conduct disorder; TD, typically developing adolescents.
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FIGURE 3 | Statistical parametric maps depicting the main effect of group (masked post hoc t-tests for group differences in brain activation between conduct
disorder (CD) and typically developing (TD) adolescents, 39CD/39TD; hypoactivations in CD in red-yellow, hyperactivations in CD in green-yellow) (p < 0.05, FWE).

anterior insula implicated in affective and cognitive processing
(Mutschler et al., 2009; Chang et al., 2013). Additionally, CD
showed decreased activity in posterior insula, an area involved
in sensorimotor processing (Mutschler et al., 2009; Chang
et al., 2013). Our observations are in line with a broader
view of the insula in integrating emotion and cognition in
healthy adolescents (Chang et al., 2013; Pavuluri and May,
2015), whereas alterations thereof could be hypothesized to
reflect an increased allocation of neuronal resources for emotion
and cognitive processing, potentially related to a maturational

delay in youths with CD. However, the observed differences
emerged from a main effect of group and therefore need to
be interpreted carefully. Future studies shall determine whether
right amygdala and insula show significant co-activations (Kober
et al., 2008) during task trials following negative stimuli,
reflecting on the role of the insula in transferring sensory
information to the amygdala (Shelley and Trimble, 2004). In this
regard, previous evidence has demonstrated decreased functional
connectivity between amygdala and insula in adolescents with
disruptive behavior both with (Finger et al., 2012) and without

Frontiers in Psychology | www.frontiersin.org 9 October 2018 | Volume 9 | Article 1961

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-01961 October 16, 2018 Time: 14:57 # 10

Fehlbaum et al. Emotion, Cognition, and Conduct Disorder

(Hwang et al., 2016) increased CU traits. Overall, alterations in
connectivity between amygdala and insula have been observed in
a variety of psychiatric disorders linked to emotion processing
and regulation deficits such as attention-deficit hyperactivity
disorder (Hulvershorn et al., 2014), high-functioning autism
spectrum disorder (Ebisch et al., 2011), depression (Bebko et al.,
2015), post-traumatic stress syndrome (Rabinak et al., 2011), or
generalized anxiety disorder (Roy et al., 2013).

Limitations
For the present study design we used child-appropriate negative
and neutral pictures (DAPS; Cordon et al., 2013). However, the
short presentation (150 ms) and moderate image valence might
have resulted in a reduced impact for CD youths. Also, the
use of static images might not represent an ideal ecologically
valid method to investigate adolescents’ response to emotional
situations, despite of their common use in affective neuroscience
studies. Future studies might consider the use of emotional video
clips [e.g., “The Champ,” commonly used for emotion induction
(Gross and Levenson, 1995; Hewig et al., 2005)] to overcome this
limitation. Moreover, we cannot exclude that confounding factors
or comorbidities could have influenced the results. Additionally,
the results presented here characterize a group of CD youths on
the lower spectrum of CU traits. Interpretation should therefore
be drawn with caution. Finally, behavioral and neuronal analyses
revealed no three-way interactions (group × emotion × task).
This is likely due to the intricate nature of the interaction of
emotion processing and response inhibition, which has proven
to be very challenging to capture. This is also reflected in
earlier studies. For example, a previous study with similar aims
neuronally reported a group × emotion × task interaction within
the superior frontal gyrus and caudate, however, no such effect
was detected in the behavioral analyses (Hwang et al., 2016).
Nevertheless, our results are in favor of previous findings of an
altered interaction of emotion processing and response inhibition
in CD.

CONCLUSION

We here provide evidence for the neuronal characteristics of
the interaction of emotion processing and response inhibition
interaction in CD. More specifically, we observed a significant
lack of downregulation of left amygdala activity in response to
incongruent task trials and increased anterior insula activity for
CD relative to TD during affective Stroop task performance.
Behaviorally, CD scored significantly lower than TD youths,

while RTs did not differ. While no three-way interactions
(group × emotion × task) were detected, our results still support
previous findings of an altered interaction of emotion processing
and response inhibition in CD. Overall, the present findings
extend knowledge on the neurocognitive mechanisms in CD
youths and support emotion dysregulation as a core deficit in
CD. Future studies shall focus on investigating the interaction
of emotion processing and response inhibition in CD subgroups
(e.g., variations in CU traits, impulsivity, or anxiety). A deeper
characterization of adolescents with CD is particularly relevant
as a diagnosis of CD in adolescence represents a risk factor
for psychiatric disorders such as antisocial personality disorder
or substance use disorders in later adolescence and adulthood
(Fergusson et al., 2005; Biederman et al., 2008). Early prevention
and targeted interventions may reduce the individual and societal
burden associated with a diagnosis of CD.
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