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A log-linear cognitive diagnostic model (LCDM) is estimated via a global optimization

approach- differential evolution optimization (DEoptim), which can be used when the

traditional expectation maximization (EM) fails. The application of the DEoptim to LCDM

estimation is introduced, explicated, and evaluated via a Monte Carlo simulation study

in this article. The aim of this study is to fill the gap between the field of psychometric

modeling and modern machine learning estimation techniques and provide an alternative

solution in the model estimation.
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Assessments have been widely used in education as a part of a summative program for many
purposes, such as evaluating whether students have reached the desired proficiency level and
determining whether students should be given a scholarship. However, in the past decades,
stakeholders have shown a strong interest in the information of students’ strengths and weaknesses
of their knowledge and skills. This has led to fruitful exploration in the field of psychometrics of
how to extract diagnostic information to enhance classroom instruction and learning. Cognitive
diagnostic models (CDMs) are a set of psychometric models developed to identify whether a
student masters a set of fine-grained skills, such as addition, subtraction, multiplication, and
division in math ability assessments. For example, question “2+4–1” measures addition and
subtraction, and “4× 2/3”measures multiplication and division. Although it seems straightforward
to conclude that a student may not master addition or subtraction if s\he fails 2+4–1, it is
indeed much more complicated in practice in that students may answer a question correctly by
guessing or fail a question due to carelessness. As a result, formal psychometric models such as
CDMs should be employed for data analysis to make sure the inferences are valid. In addition to
educational testing, CDMs are useful in psychological measurement. For example, the literature
indicates that neuro-vegetative symptoms are a general construct that contains three attributes:
depression (DEP), fatigue (FAT), and sleeplessness (SLE; Rabinowitz et al., 2011). Using CDMs
allows researchers/practitioners to investigate the attributes of a given patient. Among the item
data types, a binary scale is the most common one that has been adopted in many surveys and
measures.

Prior to the data analysis using CDMs, whether a skill is required for answering a question
needs to be determined by content experts and/or cognitive psychologists and specified in a binary
matrix (Q-matrix; Tatsuoka, 1983) as illustrated in Table 1 such that theory-granted structure can
be applied to the measurement of interest. Rows of the Q-matrix represent questions and columns
represent skills. Element 1 indicates that the skill is measured by the question and 0 indicates that
the sill is not measured.
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TABLE 1 | A Q-matrix sample.

Skill 1 Skill 2 Skill 3

Question 1 1 0 0

Question 2 1 0 1

Question 3 0 1 1

Question 4 1 1 0

Recent advances in modeling development have produced
several general CDMs, such as the Log-linear CDM (LCDM;
Henson et al., 2009) and, equivalently, the generalized
Deterministic Input; Noisy “And” gate model (G-DINA; de
la Torre, 2011). The LCDM provides great flexibility such as
(1) subsuming most latent variables, (2) enabling both additive
and non-additive relationships between skills and questions
simultaneously, and (3) syncing with other psychometric
models. Rupp et al. (2010, p. 163) proved that LCDM can be
constrained to core CDMs such as Deterministic Input; Noisy
“And” gate (DINA; Junker and Sijtsma, 2001) model, Noisy
Input; Deterministic “And” gate (NIDA; Junker and Sijtsma,
2001) model, and the Reduced Reparameterized Unified Model
(RRUM; Hartz, 2002), and Deterministic Input; Noisy “Or” gate
(DINO, Templin and Henson, 2006) model.

The LCDM is essentially a restricted latent class model (Day,
1969; Wolfe, 1970; Titterington et al., 1985), and mathematically,
it can be defined as:

P
(

Yp = yp
)

=

C
∑
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(
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I
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π
ypi
ci (1− π ci)
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)

, (1)

where yp = (yp1, yp2, . . . , ypI) is the binary response vector of
person p on a test comprised of I items, and element ypi is the
response on item i. vc is the probability of membership in latent
class c, and πci is the probability of correct response to item i by
person p from latent class c. The log-likelihood of observing item
responses of N persons can be expressed as
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Further, Equation 2 can also be converted to:
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(3)
where log(

∏I
i=1 π

ypi
ci (1− π ci)

1−ypi ) can be replaced by
∑I

i=1 log(π
ypi
ci (1− π ci)

1−ypi ) due to the mathematical property
of log operation.

Assume the number of attributes is A, the mastery
profile of the attributes for a random person is denoted by
α= (α1, α2, . . . , αA), where element αa is either 1 or 0. In total,
there are 2A possible attribute profiles and correspondingly 2A

latent classes. For example, when A=4, a person with attribute
profile α= (1, 1, 1, 0) has mastered the first three attributes
except the last one. As illustrated in Table 1, a Q-matrix of
size I∗A is necessary for a LCDM, where the (i, a) element qia
is 1 when item i measures attribute a and 0 otherwise. The
conditional probability of person p with attribute profile αc

answering item i correctly can be written by

πci = P
(

ypi = 1
∣

∣αc) =
exp

(

λi,0 + λT
i h
(

αc,qi
))

1+ exp
(
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i h
(
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)) , (4)

where qi is the set of Q-matrix entries for item i, λi,0 is the
intercept parameter, where λi represents a vector of length 2A−1
that contains main effect and interaction effect parameters of
item i, and h

(

αc,qi
)

is a vector of the same length with linear

combinations of the αc and qi. Particularly, λT
i h
(

αc,qi
)

can be
expanded to:
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(5)
where λi,1,(a) and λi,2,(a,a′) are the main effect for attribute αa

and the two-way interaction effect for αa and αa′ . Since elements
of αc and qi are binary, h

(

αc,qi
)

contains binary elements,
which indicate effects that are estimates of interest. For an
item measuring n attributes, n-way interaction effects should be
specified in h

(

αc,qi
)

. Table 2 provides a sample of a measure
with three attributes: the first item that measures one attribute
only (i.e., α1) has two estimates, where the third item which is
associated with all given attributes contains eight estimates.

LCDM ESTIMATION

Traditionally, estimating LCDMs refers to the expectation
maximization (EM) algorithm (Bock and Aitkin, 1981) that
maximizes the marginal likelihood; this is the most commonly-
seen algorithm in the CDM literature. In addition to the EM
algorithm, Markov chain Monte Carlo (MCMC) techniques can
be, theoretically, used to estimate the LCDM, but to date its
application remains upon simpler CDMs such as the DINA
model (da Silva et al., 2017; Jiang and Carter, 2018a). This
study focuses on the EM algorithm due to its practicality
and popularity. The EM algorithm is an intertwined updating
mechanism consisting of E- and M-steps. With the provisional
item parameter and probability of membership estimates from
iteration t-1 (i.e., λs and vs), the posterior class probability for
person p can be obtained in the E-step by

H
(

C = c
∣

∣

∣
Yp=y

p

)

=
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i=1 π
ypi
pi

(

1− πpi
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∏I
i=1 π

ypi
pi

(

1− πpi

)1−ypi
(6)

Based on Equation (6), the expected number of persons in latent
class c and the expected number of persons in latent class c who
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TABLE 2 | A 3-item sample of expressions of a log-linear cognitive diagnostic model.

Item α1 α2 α3 Expanded λi,0+λT
i
h
(

αc,qi
)

expression Shortened expression

1 1 0 0 λ1,0 + λ1,1 (1) + λ1,2 (0) + λ1,3 (0) + λ1,12 (1×0) +

λ1,13 (1×0) + λ1,23 (0×0) + λ1,123 (1×0×0)

λ1,0 + λ1,1 (1)

2 0 1 1 λ2,0 + λ2,1 (0) + λ2,2 (1) + λ2,3 (1) + λ2,12 (0×1) +

λ2,13 (0×1) + λ2,23 (1×1) + λ2,123 (0×1×1)

λ2,0 + λ2,2 (1) + λ2,3 (1) + λ2,23 (1)

3 1 1 1 λ3,0 + λ3,1 (1) + λ3,2 (1) + λ3,3 (1) + λ3,12 (1×1) +

λ3,13 (1×1) + λ3,23 (1×1) + λ3,123 (1×1×1)

λ3,0 + λ3,1 (1) + λ3,2 (1) + λ3,3 (1) +

λ3,12 (1) + λ3,13 (1) + λ3,23 (1) + λ3,123 (1)

answer item i correctly can be obtained by:
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respectively. In the M-step, the following function is maximized
with respect to item parameters λ:

ℓ =

I
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,

and the probability of membership is updated by
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)

N
.

Maximizing objective function ℓ usually requires Newton
or Fisher scoring methods, where first- and second-order

derivatives i.e., ∂L
∂λ

· ( ∂2L
∂λ2

)
−1

where the first component is a vector
and the second component is a matrix) of the objective function

are needed. If ∂2L
∂λ2

becomes 0, the iteration process will stop and
therefore fail to converge.

As a restricted latent class models, LCDM estimation faces
the risk of local maxima (Jin et al., 2016). Theoretically, to
obtain valid and accurate estimates, the model estimation should
converge at a global maximum of the likelihood function,
however, the mixture component of a mixture model is likely
to trap the aforementioned EM updates to local maxima.
In addition, label switching can occur and therefore lead to
a misinterpretation of an estimation. For instance, a person
mastering all attributes of interest can be mistakenly labeled as
one with zero-mastery. Basing on the traditional EM approach,
Rupp et al. (2010) add constraints to the parameter estimates
(e.g., ensuring main effects are non-negative); this constraint
approach substantially reduces the risks of local maxima and
label switching (Lao and Templin, 2016). Using Mplus (Muthén
and Muthén, 2013), a commercial software designed for latent
variable modeling that by default deploys the traditional EM
approach, Templin and Hoffman (2013) outline the procedures
to specify syntax with parameter constraints for the LCDM
estimation. Note that in the LCDM estimation, the EM approach

in Mplus is turned into an accelerated version, meaning its
updating steps are replaced with Quasi-Newton and Fisher
scoring, this, however, still falls under the family of the traditional
EM algorithm. Although Templin and Hoffman’sMplus practice
has been implemented in many published works and is proved
to be efficient (see Bradshaw and Templin, 2014; Li et al.,
2016; Ravand, 2016 for example), it is still not avoiding the
convergence failure issue: Templin and Bradshaw (2014) conduct
a simulation study with vast conditions each of which was
replicated 500 times, where the result shows the numbers of
converged replications range from 330 to 447. To avoid the
convergence issue while maintaining the properties of the EM
approach, we introduce a machine-learning technique named
Differential Evolution to estimate LCDMs.

DIFFERENTIAL EVOLUTION

Global optimization under machine-learning umbrella has
gained tremendous attention from researchers, mathematicians
as well as professionals in the field of engineering, finance,
and scientific areas (Mohamed et al., 2012). Many applications
of this kind impose complex optimization problems such
traditional estimation techniques based upon derivatives become
cumbersome or even impossible. To avoid the mathematical
deriving procedures yet provide reliable solutions to complex
models, Differential Evolution (DE) is invented (Storn and Price,
1997), developed, and applied to practice in different fields
(e.g., Paterlini and Krink, 2006; Das et al., 2008; Rocca et al.,
2011). Inspired by Darwinian evolution that entails the idea of
mutation, crossover, and selection, DE is an enhanced version of
derivative-free evolutionary algorithms and has been recognized
as a simple yet efficient optimization approach in solving a variety
of benchmark problems. The complete DE algorithm cycle can be
found in Figure 1; in particular, the algorithm starts by sampling
D candidate solutions to the problem of interest, where each
candidate solution can be either a scalar or a vector (if there
are more than one estimate). The mutation procedure takes
place by performing simple arithmetic operations (i.e., addition,
subtraction, and multiplication) among the existing solutions
(namely parent solutions). The resultant mutation outcomes
are then crossed over with the parent solutions to produce
new candidate (offspring) solutions. Finally, in a one-to-one
selection process of each pair of offspring and parent vectors,
candidate solutions that fit the model better are passes into the
next evolutionary cycle. This cycle iterates until the estimation
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FIGURE 1 | The iterative cycle of differential evolution algorithm.

converge. Mathematical and algorithmic details can be found in
the following paragraph.

Let R be the number of estimates, λLO and λHI be the lower
and the upper limits (vectors) of the parameters of the estimates,
and G(·) be the objective function. Initial candidate solutions
λd = (λd1, λd2, . . . , λdR) for d = 1, 2,. . . , D can be generated by
(1) randomly drawing samples from certain distribution(s) or (2)
specifying values with educated guesses, where D is the number
of candidate solutions. Mutation procedure can be achieved via
different strategies: (1) DE /rand/ 1, (2) DE/current-to-rest/1, and
(3) DE/best/1. In particular, for a given set of candidate solutions
λd for d= 1, 2,. . . ,D, themutation outcomesmd can be calculated
as:

DE/rand/1 md = λδo+Fd
∗(λδ1−λδ2 )

DE/current − to− rest/1 md = λδo+Fd
∗(λbest−λδ2 )

+Fd
∗(λδ1−λδ2 )

DE/best/1 md = λbest+Fd
∗(λδ1−λδ2 )

Where δo, δ1, and δ2 are distinct integers uniformly sampled from
1 to D, λδ1−λδ2 is the difference vector that would be used to
mutate two selected parent candidates (e.g., DE/rand/1), λbest is
the best candidate solution at the current iteration, and finally
Fd is the mutation scaling factor that is randomly drawn from
a uniform distribution on the interval (0, 1). Some md may
be produced beyond the constraints set by λlo and λhi; some
effective solutions to the violation include (1) re-generating a
candidate solution until it is valid and (2) setting penalty to
the objective function. If an element r in a candidate solution
encounter the boundary issue, a quick fix by setting the violating
elements to be the middle between boundaries and the that of
its parent solution. That is, mdr=

λLOr+λdr
2 for mdr < λLOr and

mdr=
λHIr+λdr

2 for mdr > λHIr . After obtaining md from the
mutation procedure, a “binomial” crossover operation forms the
offspring candidate solutions: let CR be a crossover probability
that controls the fraction of the elements that are copied from
the parent candidate solution and udr be a candidate solution,
if a random number zr sampled from a uniform distribution
(0, 1) is smaller than CR, the element r of the offspring of

udr is mdr , and λdr otherwise. The default CR is usually set to
0.5 for a balanced stochastic move. Finally, if G(ud) is better
than G(λd), ud would replace λd to serve as a parent solution
for the next iteration. The DE algorithm can be tailored to a
parallel computing platform; technically each candidate solution
can be calculated in an independent computational unit such that
queuing time can be shortened. That said, instead of sequentially
updating the candidate solutions, a parallel DE algorithm can
perform simultaneous updates.

To illustrate how the DE algorithm functions, an example of
a simple regression estimation is provided here. Let independent
variable x= [22, 14, 15, 12, 10, 26, 11, 28] and dependent variable

y = [44, 29, 30, 27, 24, 51, 25, 56] resulting in β̂ = [4.98,
1.78] with the ordinary least squares (OLS) estimator. Using the
DE algorithm in this case sets the objective function G(λ) to

−1∗
∑
(

y − ŷ
)2
, which ideally should be maximized to −7.19

according to the OLS result. To keep the demonstration simple,
let the number of candidate solutions D= 3 and initial values for
λ1, λ2, and λ3 were arbitrarily set to [2, 1], [−3, 5], and [1, 2].
At the initial iteration, the best solution was [1, 2] asG(λ3)=−24
whereG(λ1) andG(λ2) were−2400 and−21672. Therefore, λbest

at this stage became λ3. With certain random draws for a given
mutation calculation (e.g., DE/best/1),m1,m2, andm3 happened
to be [3.5, 0.8], [−1, 3.5], and [2, 1.8]. Let CR = 0.5, if a random
generation produced z1 =0.7 and z2 =0.4 for example, the first
offspring u1became [3.5, 1] by taking elements from λ1 and m1.

This resulted in G(u1)= −2022, which is larger than G(λ1), and
therefore the new λ1 would be replaced by u1.On the other hand,
if u3 became [1, 1.8] which produced G(u1)= −116.8, then the
λ3 remained still. This process continues until G(λ) converges to
−7.19.

In this paper, we integrated the DE into the EM algorithm
to estimate LCDMs1 To make the proposed approach easy
to follow, we name it EM-DEoptim algorithm from here.
Especially, the method for updating item parameters within
the M-step is replaced by the DE algorithm, while the rest
of the EM procedures remain identical. To be concrete, the
objective function that the EM-DEoptim maximizes is Equation
3, given vc for each latent class is known. As the DE is a

1The snippet code can be found https://alabama.box.com/s/
cbuxetk19b1pk1invi1gnbqxd8hw5fij.
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stochastic and global optimization technique, the EM-DEoptim
is expected to encounter fewer occurrences of the local maxima
problem than the traditional EM algorithm (Celeux et al.,
1996). In addition, as addressed above, the EM-DEoptim is
based upon derivative-free framework such that it can be easily
fitted to arbitrarily customized LCDMs without re-deriving the
gradient functions nor re-approximating information matrix.
For example, if constraining the main effects of Item i and
Item i’ to be equal while still allowing others to be estimated
freely is needed, the EM-DEoptim algorithm can handle the
situation by simply assigning the same labels to the constrained
parts in the likelihood function expression, where the traditional
EM algorithm needs altering the derivatives. This advantage
can effectively prevent the aforementioned un-differentiable
situations. Last but not least, the computational speed of the
EM-DEoptim algorithm, although not outperform the traditional
EM algorithm in a singular operation environment, can be
substantially improved via parallel computing facilities that are
naturally suited to modern machine-learning-based techniques.

SIMULATION STUDY

We conducted a simulation study to demonstrate the utility
of the EM-DEoptim algorithm. Specifically, the study involved
two investigations: the number of times that the traditional EM
algorithm fails and the comparison between the EM-DEoptim
algorithm and the traditional EM algorithm in terms of the
parameter recovery. In the simulation study, the numbers of
attributes A were set to 3, 4, 5. The Q-matrix was randomly
generated: when there were 3 attributes (A = 3), a balanced Q-
matrix in which each item measures either one or two attributes
was utilized; similarly, at the condition of 4 and 5 attributes, each
item measures two to three attributes. The number of items I
was set to 30 and the number of persons N was set to 300. The
attributes were generated via two steps: continuous values were
initially generated from a multinormal distribution MV (0, 6)
of which the diagonal elements of 6 were constrained to 1 and
the off-diagonal values (i.e., correlations between attributes) were
randomly drew from a uniform distribution ranging from 0.7 to
0.9, and these continuous values were further converted onto the
binary scale by comparing the values with zero (i.e., 1 if the value
is larger than zero and 0 otherwise). Finally, the item parameters
were specified to two level: high-quality group that sets main
effects = 2, intercepts = −1.5, and interaction effects = 0.5, and
low-quality group that makes main effects = 0.2, intercepts =
−0.5, and interaction effects= 0.1.

The traditional EM algorithm was realized via the package
CDM (George et al., 2016; alternatively, one can choose the
package GDINA by Ma and de la Torre, 2018), where the EM-
DEoptim algorithm was executed in R (R Core Team, 2018). The
stop criterion in CDM was set to 1,000 iterations or the change
of likelihood value <0.001, where the EM-DEoptim algorithm
was forced to stop if the iteration number reaches to 1,000
or the likelihood value remains identical for 10 iterations. In
this study, the DE configurations were set to default (Ardia
et al., 2011): DE/current-to-rest/1 with Fd = 0.8, CR = 0.5, and

500 candidate solutions, where ± 20 is used to constrain the
parameter estimates. The machine used was Dell Precision 3520
with 16GB RAM and a 2.90 GHz i7-7820 4-core Intel processor.
The study was replicated for 200 times.

The dependent variables in this part of the study are (1) the
number of convergence failure of the EM algorithm, (2) relative
bias (RBIAS) and root mean squared error (RMSE), and (3)
the attribute classification accuracy measured by each attribute
and each profile. Overall, there was only two failed convergence
failures when the item quality was high, where the low-quality
item parameters led to seven failures: two cases in the situation
of A = 4 and five cases when A = 5. On the other hand, EM-
DEoptim had no unexpected terminations during the iterations.
Table 3 shows the attribute classification accuracy rates. Both
algorithms produced very similar results, where some patterns
can be discovered: (1) the more attributes the estimation face,
the less accurate the attribute estimates are yielded, (2) the higher
the item parameter quality is, the more accurate the attribute
estimates are produced, and (3) the profile accuracy is more
sensitive to the item parameter quality.

Similar to the attribute estimates, the item parameter recovery
presented similar pattern for both algorithms as listed in Table 4.
The biases and MSEs were higher when (1) the number of
attributes was larger and (2) the item parameter quality is
higher. In addition, main effect estimates were more accurate and
efficient than both interaction and intercept effects. This finding
is not uncommon in complex psychometric models (Jiang et al.,
2016). When the item parameter quality is low, and/or the
number of attribute is large (e.g., 5), the EM-DEoptim performed
better than the traditional EM algorithm. An important reason
is that the boundary constraints imposed by the EM-DEoptim
algorithm can limit the estimates into a certain range. Although
not a main focus of the studies, the computing speed showed a
substantial difference: the average time (in seconds) for 3-, 4-,
and 5 attributes were 4.45, 22.55, and 78.64 for the traditional
EM algorithm, while the EM-DEoptim took 61.22, 354.18, and
1228.76.

REAL DATA APPLICATION

The dataset used in this session is an assessment of a health
profession administered to 3491 test takers (Jiang and Raymond,
2018). The number of items is 200 each of which measures

TABLE 3 | attribute accuracy rate of the simulation study.

EM DE-EMoptim

A Quality Attribute Profile Attribute Profile

3 High 0.848 0.634 0.847 0.642

4 High 0.816 0.505 0.821 0.489

5 High 0.768 0.336 0.755 0.342

3 Low 0.516 0.104 0.517 0.104

4 Low 0.509 0.039 0.513 0.044

5 Low 0.504 0.017 0.468 0.013
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TABLE 4 | Item parameter estimates of the simulation study.

RBIAS EM EM-DEoptim

A Quality Main Intercept Interaction Main Intercept Interaction

3 High −0.433 −0.270 −1.896 −0.463 −0.280 −1.196

4 High −1.744 −0.948 −5.036 −1.740 −0.938 −4.106

5 High −1.906 −0.957 −4.975 −1.906 −0.957 −2.675

3 Low −5.389 −8.906 −2.160 −2.389 −4.406 −1.960

4 Low −9.526 −9.950 −3.696 −8.626 −7.950 −4.026

5 Low −11.99 −6.419 −10.027 −9.495 −5.419 −7.027

RMSE EM EM-Deoptim

3 High 6.346 2.124 8.349 6.890 1.924 4.336

4 High 14.576 5.035 15.679 15.079 6.422 13.853

5 High 21.643 6.230 26.327 18.223 7.360 18.707

3 Low 15.423 11.630 18.478 12.863 12.112 18.481

4 Low 22.512 15.165 26.064 19.299 16.865 17.446

5 Low 25.410 15.109 15.319 16.506 14.409 14.319

FIGURE 2 | Three sample items of the health profession test.

one attribute. Therefore, there are five attributes in total: the
knowledge of radiation biology (Items #1-45), the knowledge of
equipment operation (Items #46-67), the image acquisition and
evaluation capacity (Items #68-112), the knowledge of imaging
procedures (Items #113-162), and ethics (Items #163-200). Three
samples of the items can be found in Figure 2.

Two common model fit indices are reported as: (1): mean
of absolute deviations in observed and expected correlations
(MADcor; DiBello et al., 2007) is 0.041 and standardized mean
square root of squared residuals (SRMSR; Maydeu-Olivares,
2013; Maydeu-Olivares and Joe, 2014) is 0.05. Overall, the model
has an adequate fit. Note that more model fit indices such as
χ2-like statistics (Orlando and Thissen, 2000) are recommended.
This paper focuses on the estimation. More model fit details can
be found in Hu et al. (2016) and Sorrel et al. (2017).

Rounding the number of digits to three after the decimal
point, one can see that 16 classes are nearly empty and therefore
are labeled as “others” in Figure 3 (see Jiang and Carter, 2018b
for more visual aids). Nearly 40% of the test takers master all
five attributes. According to Templin and Bradshaw (2014), many
empty classes indicate potential hierarchies of attribute structure,
however, the parameter estimates can be relatively robust
even the non-hierarchical modeling is adopted here. Figure 4
shows the distributions of the parameter estimates grouped by
parameter types and attribute identifications. Attribute #3 had
the highest means of both intercepts and main effects: 2.65 and
1.79. The means of intercepts and main effects of Attribute #5
were−1.05 and 0.20.

To compare the estimates with other estimation approaches,
we also implemented a Bayesian technique-Hamiltonian Monte
Carlo-to the analysis by adopting uninformative priors for both
item parameters and the class membership probability: the mean
and standard deviation for item parameters were 0 and 20, while
the Dirichelet prior parameters were all set to 1 (see Jiang and
Carter, 2018a for details). The correlations of item parameter
estimates were relatively high: 0.77, 0.84, and 0.69 for intercept,
main effect, and interaction effects. On the other hand, the
attribute agreement was lower than that of the item parameter
estimates: the average ratio for all attributes was 0.67, where the
value dropped to 0.39 when it comes to the match of the class
membership classification. This makes sense as the Dirichelet

Frontiers in Psychology | www.frontiersin.org 6 November 2018 | Volume 9 | Article 2142

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Jiang and Ma EM-DEoptim Algorithm in LCDM Estimation

FIGURE 3 | Estimated class probabilities via LCDM.

FIGURE 4 | Item parameter estimates of the health profession test.
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prior had forced the assignment on each latent class and therefore
the result tended to be more different from those that were fully
determined by the EM algorithm.

DISCUSSION AND CONCLUSION

The purpose of this paper is to propose a machine-learning
based algorithm for the estimation of LCDMs. In particular,
the proposed estimator is a combination of the EM framework
and the DEoptim algorithm, which has been popular in neural
networks and business analytics fields. The performance of the
proposed algorithm is evaluated through a simulation study
of which the results indicate that it is an appropriate option
to handle LCDM estimation task. This paper, however, does
not suggest that the proposed algorithm should replace the
EM algorithm in practice; at the situations where the EM
algorithm fails to produce estimates due to the unsuccessful
derivative updates, the EM-DEoptim algorithm can be an
alternative.

The proposed EM-DEoptim algorithm and the traditional EM
algorithm implemented in Mplus produced virtually identical
parameter estimates, and the former seems less frequently to
fail. The average computational time for Mplus estimation
with the multiple-core option is 15min. The difference is
caused by the features of the algorithms: the EM algorithm
based upon Quasi-Newton and Fisher scoring updates estimates
with directional steps (i.e., the iteration always leads to better
solutions), while the DEoptim part is truly stochastic such
that the updating procedures may be wasted. Even though

the DEoptim mechanism is fundamentally less directional than
Quasi-Newton and Fisher scoring, The EM-DEoptim algorithm
perform cannot very similar to the EM algorithm. Theoretically,
the EM-DEoptim algorithm can be many times faster than what
it is now if the entire function is constructed in C++ or Fortran;
currently only the DEoptim is implemented in C++ through
the package RcppDE, where the entire algorithm is written in
base R software scripting language. Research has shown that
using compiler package with R often takes less than half of time
executing the same function than that of without packages (e.g.,
Aruoba and Fernández-Villaverde, 2015). In addition, given the
DEoptim algorithm is composed of basic calculation, performing
the proposed algorithm in a vectorization approach and therefore
with graphics processing units (GPUs) is expected to accelerate
the estimations.
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