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Asymmetric IRT models have been shown useful for capturing heterogeneity in the

number of latent subprocesses underlying educational test items (Lee and Bolt, 2018a).

One potentially useful practical application of such models is toward the scoring of

discrete-option multiple-choice (DOMC) items. Under the DOMC format, response

options are independently and randomly administered up to the (last) keyed response,

and thus the scheduled number of distractor response options to which an examinee

may be exposed (and consequently the overall difficulty of the item) can vary. In this

paper we demonstrate the applicability of Samejima’s logistic positive exponent (LPE)

model to response data from an information technology certification test administered

using the DOMC format, and discuss its advantages relative to a two-parameter logistic

(2PL) model in addressing such effects. Application of the LPE in the context of DOMC

items is shown to (1) provide reduced complexity and a superior comparative fit relative

to the 2PL, and (2) yield a latent metric with reduced shrinkage at high proficiency levels.

The results support the potential use of the LPE as a basis for scoring DOMC items so

as to account for effects related to key location.

Keywords: item response theory (IRT), computerized testing, multiple-choice, latent ability estimates, Samejima’s

logistic positive exponent (LPE) model

APPLICATION OF ASYMMETRIC IRT MODELING TO
DISCRETE-OPTION MULTIPLE-CHOICE TEST ITEMS

Most item response theory (IRT) models used in educational and psychological measurement
contexts assume item characteristic curves (ICCs) that are symmetric in form, implying the change
below the inflection point is a mirror image of change above the inflection point (Embretson and
Reise, 2000; De Ayala, 2009). Popular examples include the Rasch model, as well as, two-parameter
and three-parameter logistic and normal ogive models. While such models are commonly used and
have statistical appeal, they arguably provide a poor reflection of psychological response process
(van der Maas et al., 2011). Models that attend only to item difficulty and discrimination may miss
other important aspects of item heterogeneity, in particular item complexity, a feature that tends to
emerge in the form of ICC asymmetry (Samejima, 2000; Lee and Bolt, 2018a). Where heterogeneity
related to item complexity is present, more general models may be needed to provide the level of fit
required in support of the latent metrics used in reporting scores (Bolt et al., 2014). Asymmetric IRT
models have often been found to provide a superior fit to educational test items, including items of
both multiple-choice and constructed response formats and of varying content areas (Bazán et al.,
2006; Bolfarine and Bazán, 2010; Molenaar, 2015; Lee and Bolt, 2018a,b); thus, greater attention to
these models appears warranted.
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One context in which asymmetric models may find particular
value is in the scoring of discrete option multiple-choice
(DOMC) items (Foster and Miller, 2009). The DOMC item
format was developed as a variation on the traditional multiple-
choice format as a way of minimizing the effects of testwiseness
on item performance, while also helping to protect item security
through administration of fewer overall response options to
examinees (Kingston et al., 2012). The format is becoming
increasingly popular with the growing use of computer-based
assessments (Willing et al., 2014; Papenburg et al., 2017).
Under DOMC, the display of an item stem is followed by
a sequence of randomly administered response options. The
examinee responds to each option independently (as “correct” or
“incorrect”) according to whether or not the response matches
the item stem. In typical DOMC administrations, the options are
administered until either (a) the examinee endorses a distractor
option or fails to endorse a keyed response or (b) all of the
keyed responses have been correctly endorsed. If (a) occurs,
the item is scored incorrect, while if (b) occurs, the item is
scored as correct (Commonly, an additional response option
will be administered with some non-zero probability after the
final keyed response is shown so that the examinee is not made
aware of having seen a keyed response). As the administration
of response options is random, not only the number of options
but also the order and specific options (in the case of distractor
options) administered will vary across examinees. While many
DOMC items may contain only one keyed response, others
may contain multiple keyed responses. A test of U.S. History,
for example, might include an item “Is the following freedom
protected by the First Amendment of the Constitution?” followed
by the sequential presentation of options “Freedom of the Press,”
“Freedom from Unreasonable Searches and Seizures,” “Freedom
to Keep and Bear Arms,” “Freedom of Speech,” in which case two
of the options (“Freedom of the Press” and “Freedom of Speech”)
are keyed responses. In all cases, respondents are scheduled to
be administered response options up through the last of the
keyed responses; the overall item is scored as correct only if all
keyed options are endorsed (and any and all distractor options
administered along the way are correctly rejected). Further, in
current practice, examinees only receive an overall correct or
incorrect score on each item, regardless of the number of options
administered to arrive at that outcome.

It has been previously demonstrated that administering the
same items in a DOMC format as opposed to a traditional MC
format often increases item difficulty (Eckerly et al., 2017). More
critical to this paper is the effect of the randomized location
of the keyed responses, as this randomization implies that the
same item will be administered with more scheduled distractor
options (and thus require a correct rejection of more distractors)
for some examinees than others. Eckerly et al. (2017) observed
that as the number of overall scheduled response options for the
item increases, both the difficulty and discrimination of the item
tends to increase. From an equity perspective, the increase in
difficulty makes it disadvantageous to be administered an item
with a later key location (implying a larger number of scheduled
response options). Although we can expect the random selection
of key locations across items to balance these effects to some

extent, this assurance comes only for a sufficiently long test. It
is common to see rather large differences emerge for certain
individual examinees who by chance received a disproportionate
number of items with either a low or high number of scheduled
response options (Eckerly et al., 2017).

One way of rectifying this problem is to score DOMC item
responses in a way that accounts for the psychometric effects of
key location. A natural approach would be to use a suitable IRT
model as a basis for such scoring. One contribution of this paper
is to show how an asymmetric IRT model, namely Samejima’s
(2000) logistic positive exponent (LPE) model, can be applied
to address such effects. Part of the appeal of the LPE in this
context is its potential to simultaneously account for changes in
both difficulty and discrimination using fewer parameters than
would be required if using the 2PL to account for such effects. For
reasons we explain later in the paper, we also argue that the LPE
has greater psychological plausibility in such contexts given the
conjunctive interaction that occurs between the individual option
responses in determining an overall correct response to the item
(i.e., an item is scored correct only if all presented distractors are
rejected and all keyed options are endorsed).

A second contribution of the paper relates less to DOMC,
and more to the opportunity the DOMC application provides in
demonstrating the meaningfulness in studying ICC asymmetry
from an item validation perspective. Lee and Bolt (2018a),
for example, illustrated through simulation how estimates of
asymmetry parameters can inform about the complexity of a test
item, there defined in terms of the “number” of conjunctively
interacting response subprocesses (i.e., “steps”) underlying a
correct item score (Samejima, 2000). Specifically, items involving
a larger number of conjunctively interacting subprocesses were
found to have more positive asymmetry in their ICCs. The
DOMC format can be viewed as a natural experiment in
which the number of conjunctively interacting subprocesses
(i.e., viewing the response to each presented option as another
subprocess) is systematically manipulated. The potential to
extend the results of Lee and Bolt (2018a) to real test data
would be an important additional step in supporting the use of
asymmetric IRT models for validation purposes, and provide a
real-world illustration of how the asymmetry parameter connects
to known item complexity.

The remainder of this paper is organized as follows. First, we
review the LPE model of Samejima (2000) that would appear
applicable to items administered under the DOMC format.
We next present a real dataset to which the models can be
applied, and demonstrate the observation of ICC asymmetry in
comparing the LPE model to other IRT models that similarly
attend to the effects of the scheduled number of response options.
Finally we demonstrate the implications of the asymmetry on the
metric properties of the IRT analysis and offer thoughts for future
research.

ASYMMETRIC IRT MODELS

Although there exist alternative IRT models that introduce
asymmetry (Bazán et al., 2006; Molenaar, 2015), in the current
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analysis we focus on Samejima’s (2000) LPE model. The LPE
extends the two-parameter logistic model by introducing an item
exponent/acceleration parameter; the presence of this exponent
parameter results in asymmetric ICCs. Under an LPE model, an
item is thus parameterized not only by the a and b (and possibly
c) parameters of traditional IRT models, but also an exponent
parameter ξ (>0). We then view the probability of successful
execution of a single component subprocess (e.g., a response to
a single option presented for a DOMC item) on an item i by
examinee j as corresponding to a 2PL model, i.e.,

9i

(

θj
)

=
exp

[

ai
(

θj − bi
)]

1+ exp
[

ai
(

θj − bi
)] , (1)

where the slope ai reflects the discrimination of item i and the bi
reflects its difficulty. Then the resulting probability of a correct
response to the item under an LPE is written as

P
(

Uij = 1|θj
)

=
[

9i

(

θj
)]ξi . (2)

In more general measurement contexts, a subprocess, 9i

(

θj
)

,
might be viewed as a single step taken in solving an item, such
that an item is answered correctly only if all steps are successfully
executed. An example might be a long division problem, in
which the repeated sequential steps of division, multiplication,
subtraction and bringing down the next digit are each thought
of as a separate subprocess. As an exponent parameter, ξ could
be viewed as defining the “number” of conjunctively interacting
subprocesses that underlie an item, and is referred to as an
item complexity parameter. Thus, the asymmetry of the ICC
depends on how many conjunctive or disjunctive subprocesses
are involved in solving the item.

Figure 1 provides an illustration of ICCs for LPE items in
which the ξ parameter is varied at levels of 0.3, 1, and 3
while the subprocess parameters, a and b, are held constant
at values of 1 and 0, respectively. When ξ = 1, the ICCs are
symmetric as in the traditional two parameter IRTmodels. When
0 < ξ < 1 (corresponding to multiple disjunctively interacting
subprocesses), the ICC accelerates at a faster rate to the right
of the inflection point (i.e., the latent trait location at which
the slope of the ICC begins decreasing) than it decelerates to
the left of the inflection point (Samejima, 2000). In the case
of ξ > 1 (corresponding to multiple conjunctively interacting
subprocesses), the asymmetric ICC decelerates at a slower rate
to the right of the inflection point than it accelerates to the left
of the inflection point. As is apparent from Figure 1, ξ also has
an influence on the psychometric difficulty and discrimination of
the item. Specifically, increases in ξ correspond to increases in
both difficulty and discrimination.

As noted earlier, the emphasis in the LPE on conjunctively
interacting item subprocesses seemingly provides a close fit to
DOMC items, and in particular, the effect related to varying the
number of scheduled response options. In particular, the LPE
exponent parameter provides a convenient way of accounting for
the simultaneous increase in both difficulty and discrimination
associated with an increase in the number of response options.
Such a phenomenon can be easily captured by the LPE model in

FIGURE 1 | Item characteristic curves (ICCs) for three hypothetical LPE items

(a = 1, b = 0 for all items) that vary with respect to ξ .

(1) and (2) by allowing the ξ parameter to vary in relation to the
number of scheduled response options. In particular, for a fixed
item we expect ξ to become larger as the number of scheduled
response options increases.

INFORMATION TECHNOLOGY (IT)
CERTIFICATION DATA

The item response data in the current study come from
an information technology (IT) certification test used for
employment decisions. The test is administered internationally
and primarily to respondents with a college education; the
current sample consisted primarily of respondents in Asian
countries. We consider data from two forms of the test
administered in 2016–2017, each containing 59 items, but with
an overlap of 35 items across forms, implying a total of 83
distinct items in the dataset. This data structure permits a
concurrent calibration of both forms against a common latent
metric. Most (54) of the items had a single keyed response
option; however, 24 had two keyed responses, and 5 had three
keyed responses. The items with three keyed responses had a
maximum of five response options, while all other items had a
maximum of four response options. A total of 648 examinees
provided item response data. All DOMC items were adapted
from items originally administered using a traditional multiple-
choice format. As examinees must respond to each computer-
administered response option to proceed to the next option/item,
there were no missing data.

As is typically the case with DOMC items, each administered
item is scored correct/incorrect on this IT test regardless of
the number of response options administered. Although this
form of item scoring is straightforward, it might be viewed as
suboptimal to the extent that an item will naturally be more
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difficult when scheduled with more response options than with
fewer. Table 1 shows for each item category how the p-values
and item-total correlations change by the scheduled number of
response options across all DOMC items in the IT data. Based on
these observations, it would seem appropriate to reward correct
responses following a larger number of scheduled response
options. Such a form of scoring can be accommodated using IRT
models provided a suitable accounting for the effect of number of
scheduled response options. We consider several such models in
the next section.

MODELS FOR DOMC ITEM RESPONSE

Various IRT models could be considered to account for the
psychometric effects of the scheduled number of response
options on item functioning. One possibility is to fit a 2PL model
in which the a and b parameters of themodel vary as a function of
the scheduled number of response options. Assuming k denotes
the scheduled number of response options, the model can be
written as:

P
(

Ui(k),j = 1|θj

)

=
exp

[

ai(k)
(

θj − bi(k)
)]

1+ exp
[

ai(k)
(

θj − bi(k)
)] , (3)

where i(k) refers to item i under a condition in which k response
options are scheduled. In the model shown in (3), we effectively
treat each item having a different number of scheduled response
options as an independent item, thus having its own separately
estimated discrimination and difficulty parameters. As the effects
of the number of response options are most pronounced with
respect to difficulty, we also consider a special case in which
only the difficulty (b) parameter varies with respect to response
options, effectively constraining ai(k) = ai for all k. As an even
more restrictive model, we also consider a special case in which
both ai(k) = ai and bi(k) = bi, effectively assuming no effect of k
on the 2PL item parameters. In our comparison of models to the
DOMC data, we consider this most restrictive model as Model 1,
the most general model in (3) as Model 2, and the model with
ai(k) = ai as Model 3.

Our expectation is that the LPE will emerge as statistically
superior to each of Models 1–3. Specifically, the repeated
administration of response options seemingly maps closely to the
notion of distinct item steps that motivate the model. Moreover,
due to the random administration of response options, we can

attach a psychometric equivalence to each of the steps, as each
option as has equal likelihood of emerging at each step. We
consider two versions of the LPE. The first, based on Equations
(1) and (2), assumes for each item a unique ai and bi that remain
constant across the scheduled number of response options k, but
an exponent parameter ξik that varies as a function of item i
and k. We denote this model as Model 4. However, it might be
anticipated that to the extent that each added response option
may have a consistent effect on the change in the ξ parameter
within an item, we could also consider a constrained model in
which the ξ parameter changes as a linear function of the number
of scheduled response options, i.e., ξik = ci

∗ k, and thus only
a single ci parameter is estimated in relation to the exponent of
each item. We consider this constrained version of Model 4 as
Model 5.

MODEL ESTIMATION AND COMPARISON

Various approaches to the estimation of the LPE have been
presented, although the most promising appear to be those based
onMarkov chainMonte Carlo (MCMC; see Bolfarine and Bazán,
2010). As such an approach can be easily adapted in estimating
the comparison 2PL models, we also apply it in this paper using
WINBUGS 1.4 (Spiegelhalter et al., 2003). Adopting the same
priors as in Bolfarine and Bazán (2010), for Model 4 we specify
item parameters for each item as

ξik∼Gamma (0.25, 0.25),

bi∼Normal (0, 1.0),

ai∼Lognormal (0, 0.5)

while for person parameters,

θj∼Normal (0, 1.0).

For the special case of Model 5, we specified

ξi∼Gamma (0.25, 0.25)

while the constant within-item slope that reflects the parameter
change in relation to scheduled number of response options (i.e.,
ξik = ci

∗ k) is given by

ci∼Gamma (1, 2).

TABLE 1 | Mean classical item difficulties (p-values) and discriminations (item-total correlations) as a function of the number of scheduled response options, single keyed,

double keyed, and triple keyed items.

Single keyed items (N = 54) Double keyed items (N = 24) Triple keyed items (N = 5)

# Scheduled

Resp options

p-value Item-total corr p-value Item-total corr p-value Item-total corr

1 0.64 0.22

2 0.49 0.31 0.47 0.21

3 0.37 0.38 0.32 0.31 0.34 0.35

4 0.31 0.40 0.22 0.34 0.26 0.38

5 0.19 0.35
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Each of the 2PL models considered (Models 1, 2, and 3 above)
were specified using the same corresponding prior distributions
so as to facilitate comparison of the models.

Markov chains were simulated up to 10,000 iterations,
and parameter estimates were based on the posterior means.
Convergence of the chains was evaluated using the Gelman-
Rubin criterion following a simultaneous simulation of four
additional chains for each model.

Table 2 displays the results in terms of model comparison
with respect to the Deviance Information Criterion (DIC;
Spiegelhalter et al., 2002). Following the DIC criterion, the
preferred model is that with lowest DIC. In this regard, we
find Model 4, which hold a and b constant within an item
but allows the ξ parameter to vary with respect to k, to
be the preferred model. In particular, Model 4 provides a
superior fit to Model 2, which varies the a and b parameters
as a function of k. This finding suggests that manipulation
of the ξ parameter provides (as anticipated) a useful way of
accommodating effects of key location, and is more economical
than allowing both the a and b parameters to vary. However,
the assumption of a linear change in the exponent in relation
to k is not supported, as Model 4 appears superior to Model
5.

Table 3 displays the distribution of ξ estimates in relation
to the scheduled number of response options for single-keyed,
double-keyed, and triple-keyed items. Despite the inferior fit of
Model 5 above, the change in ξ across the number of scheduled
response options appears to occur on average in approximately
equal intervals.

It is conceivable that despite these nearly equal intervals, the
effect of the number of scheduled response options could have
a non-linear effect within individual items. Factors that could
explain such results could be effects related to the differential
attractiveness of keyed vs. distractor options, or alternatively,
examinee expectations in terms of the number of keyed responses
per item.

ILLUSTRATION OF EXAMPLE ITEMS

Figure 2 illustrates ICCs of several of the DOMC items and their
variability as a function of the scheduled number of response
options. Items 18, 30, and 27 represent examples of single-
keyed, double-keyed, and triple-keyed items. From the earlier
description, for such item types there are 1–4, 2–4, and 3–5
possible response options, respectively, implying 4, 3, and 3 ξ

parameters for each item for each respective type. Although

independently estimated, we naturally expect the ξ estimates to
increase within each item as the number of scheduled response
options increase. This is true for the three items shown here,
and in fact was true for all 84 items included in the analysis.
The corresponding curves illustrate the model-based functioning
of the items across the different numbers of scheduled options.
As implied earlier, we consistently see the curves move to the
right (implying increased difficulty) and become steeper at the
inflection point (implying increased discrimination) as the last
key location (or equivalently, the scheduled number of response
options) increases. At the same time, the effect of the scheduled
number of response options on item functioning also varies quite
considerably. For example, in item 18 the curves are quite far
apart, while for Item 27 they are much closer together. Such
effects may well reflect variability in the overall attractiveness
of distractor options. Effective distractors will naturally tend to
make the curves spread out more, while ineffective distractors
will keep them close together.

IMPLICATIONS FOR IRT METRIC

As noted earlier, one practical consequence of the use of
asymmetric IRT models concerns its effect on the latent
IRT metric. Bolt et al. (2014) illustrated by simulation how
the presence of asymmetry (as caused by variability in item
complexity) may induce a shrinkage in the latent metric
especially at the higher end of the proficiency scale when
traditional symmetric IRT models are fit instead. Specifically, in
the presence of positive asymmetry (as would caused by items
that have ξ > 1), it is by pulling the units of the latent metric at
the upper end of the scale closer to the mean that a symmetric
model such as the 2PL can be made to fit. To the extent that
the latent metrics in IRT are often viewed (and treated) as
having interval level properties, the shrinkage is consequential

TABLE 3 | Mean (Standard Deviation) of ξ estimates in relation to the number of

scheduled response options.

# RespOpt Single keyed

items

Double keyed

items

Triple keyed

items

1 0.619 (0.417)

2 1.000 (0.485) 1.013 (0.460)

3 1.487 (0.603) 1.629 (0.610) 1.468 (0.379)

4 1.819 (0.703) 2.246 (0.717) 1.832 (0.285)

5 2.534 (0.801)

TABLE 2 | Empirical comparison of IRT models applied to IT certification data (N = 648).

Model D-Bar D-Hat pD DIC

1 2PL × Item 43874.8 43142.7 732.2 44,607

2 2PL × Item × #RespOpt (a and b) 40681.8 39573.7 1108.1 41,790

3 2PL × Item × #RespOpt (b only) 40938.9 39985.2 953.6 41,893

4 LPE × Item × #RespOpt (ξi only) 40798.8 40119.8 678.9 41,478

5 LPE × Item (ξ as a linear function of #RespOpt) 40868.0 40185.9 682.1 41,550
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FIGURE 2 | Estimated item characteristic curves (ICCs) for three DOMC items,

IT Certification Test (N = 648). (A) Single-Keyed Item (1–4 Possible Response

Options); Item 18 (a = 0.953, b = 1.007, ξ1 = 0.441, ξ2 = 0.742, ξ3 = 1.107,

ξ4 = 2.303). (B) Double-Keyed Item (2–4 Possible Response Options); Item

30 (a = 1.461, b = 0.307, ξ1 = 0.526, ξ2 = 0.850, ξ3 = 1.198). (C)

Triple-Keyed Item (3–5 Possible Response Options); Item 27 (a = 0.913,

b = 0.123, ξ1 = 1.176, ξ2 = 1.450; ξ3 = 1.833).

in practice. Failure to appropriately attend to the asymmetry
of the curves (as supported by the model comparison criteria)
can among other things make it more difficult for high ability

examinees to demonstrate gains from one administration of a test
to the next.

We can illustrate this occurrence in relation to the DOMC
data by contrasting the latent metric that emerges under Model
4 vs. that seen under Model 2. Figure 3 provides a histogram of
the proficiency (θ) estimates for the 648 examinees as estimated
under each model. Despite both calibrations scaling the θ metric
to have a mean of 0 and standard deviation of 1, under Model 4
we see greater spread in the actual estimates, especially at higher
proficiency levels.

The cause of the shrinkage in this context can be recognized
by appealing to Figure 1. When multiple items of the type with
ξ > 1 are fit using symmetric IRT models, the tendency for
more difficult items to be positively asymmetric results in the
latent proficiency units being pulled closer to 0 so as to render a
symmetric curve. Further details are provided by Bolt et al. (2014)
and illustrated using simulation. The results here further confirm
the effect now using real test data.

CONCLUSION AND DISCUSSION

Our results support the potential benefit of an LPE model in
the scoring of test performances using DOMC. For DOMC
applications, the LPE has appeal for both psychological and
statistical reasons. As a psychological model, the LPE provides
a natural mechanism by which multiple conjunctively interacting
subprocesses (in this case, the independent responses to different
response options) are captured through an exponent parameter.
Our findings aligned with expectations in that the increased
difficulty and discrimination seen as the last key is located later
also corresponded to systematic increases in the ξ parameter
estimates. This approach also provides statistical advantages in
the sense that we are able to simultaneously account for the
difficulty and discrimination effects of key location through one
(as opposed to two) added parameter for each potential key
location. Further, by accounting for the asymmetry of ICCs, we
are able to remove shrinkage in the higher end of the latent
proficiency scale, yielding a metric that will be more sensitive
to student differences (and thus more suitable for demonstrating
growth) at higher proficiency levels.

In a broader sense, our results also extend Lee and Bolt (2018a)
in showing that asymmetric IRT models have the potential to
function as useful validation tools in educational measurement.
The DOMC items provided a useful context in which to explore
this theory due to the administration of DOMC items in a
random fashion that varies the number of response options
examinees must respond to in answering the item correctly.
Under the DOMC format, each additionally presented response
option naturally implies an additional “step” in solving the item.
As noted, we view the DOMC format as a natural experiment
for demonstrating how aspects of response process can emerge
through LPE parameter estimates, in this case the exponent
parameter ξ .

We believe that additional psychometric study of asymmetry
in IRT models is warranted. Such research can focus not only
on the models themselves, but also the consequences of ignoring
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FIGURE 3 | Histograms of proficiency estimates under Model 2 (symmetric 2PL model) and Model 4 (asymmetric LPE model).

asymmetry when present. As assessments seek deliberately to
incorporate items of greater complexity, and as computer-based
assessments open the door to unique item types such as DOMC
that have the potential for greater complexity, models that attend
more closely to response process likely will become increasingly
important. There of course also remainmany potential additional
directions of research with DOMC items, including the potential
for closer comparisons against traditional multiple-choice.
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