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Mechanistic hypotheses about psychiatric disorders are increasingly formalized as computational
models. Model parameters, characterizing for example decision-making biases, are hypothesized to
correlate with clinical constructs. This is promising (Moutoussis et al., 2016), but here we comment
that techniques used in the literature to minimize noise in parameter estimation may not be helpful.
In addition, we point out related pitfalls which may lead to questionable research practices (Sijtsma,
2015). We advocate incorporating cross-domain, e.g., psychopathology-cognition relationships
into the parameter inference itself.

Maximum-likelihood techniques often provide noisy parameter estimates, in the sense of total
error over an experimental group. In addition, in large studies brief tasks are often used, providing
little data per participant. However, individual parameter estimation can be improved by using
empirical priors (Efron, 2012). Here, parameter estimates are informed by, or conditioned upon,
the population distribution that a case comes from. For an individual j with parameters 6 coming
from a population distribution ppep:

o C |data) a p(6;, data) = p(data; ’9j )Ppop(65) (1)

This will filter noise to shift parameter estimates nearer to the modes of py,,(6). Under Gaussian
assumptions,

Ppop(0) = N(G)pup’ Tpop) (2)

Where ©,,, is the population mean. However, equation 2 ignores the very hypotheses that we are
out to test. It is ignorant of relationships with psychiatric variables, say “anxiety” y;. Suppose people
with “too high” 6 are over-anxious, and “too low,” under-anxious. Under such a hypothesis, the
above isn’t just less specific, it is wrong. Estimating 6 with it will suppresses the anxiety-related
variability of 0, as from the point of view of the model it is indistinguishable from any other
source of noise. We should allow high-anxious people to have a different mean 6 than low-anxious
(Gelman et al., 2013):

Eml?edd/ng Them Into Empirical wo (W) = myr + ®pup (3)
Priors. Front. Psychol. 9:2504.

doi: 10.3389/fosyg.2018.02504 Ppop(@) = N(myr + Opop, Gpop) (4)

Frontiers in Psychology | www.frontiersin.org 1 December 2018 | Volume 9 | Article 2504


https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2018.02504
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2018.02504&domain=pdf&date_stamp=2018-12-10
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:m.moutoussis@ucl.ac.uk
https://doi.org/10.3389/fpsyg.2018.02504
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.02504/full
http://loop.frontiersin.org/people/103069/overview
http://loop.frontiersin.org/people/616349/overview
http://loop.frontiersin.org/people/7803/overview

Moutoussis et al.

Embedding Hypotheses Into Empirical Priors

The primary objective thus becomes estimating the credible
interval of m relating cognition to anxiety.
Researchers may estimate parameters using:

a) Psychiatrically informed priors (a “full model”), at minimum
as per equation 4.

b) No empirical priors at all, but fixed-effects, such as
maximum-likelihood (ML) estimation.

c) One, psychiatrically uninformed prior. We call this a
“standard fit,” equation 2.

d) Groups of participants, e.g., healthy vs. clinical populations,
then using equation 2 for each group, e.g., estimating @, ,
Oclin> Ohealthy> Chealthy-

Careful researchers often formally compare models (c) and (d),
(e.g., Mkrtchian et al., 2017), but rarely use (a), which we advocate
here. These methods must be used with great care, otherwise
they may induce false positive results (Sijtsma, 2015). The key
pitfall here is estimating parameters on the basis of a particular
hypothesis and then performing “off the shelf” significance tests
on the resulting parameter point estimates. For example, if a
regression is included in the model, as in (a), or two distinct
groups are modeled as in (d), one must be careful not to estimate
statistical significance by fitting a line to the parameter point
estimates in (a), or doing a between-group test in (d). As we
shall see, the pitfall of using (c) alone is obtaining a false negative
result, which is more of a self-defeating questionable practice.
We became aware of the importance of psychometrically
dependent priors while working with empirical datasets.
However, analysis of real data involves much irrelevant detail, so
here we demonstrate the importance of the “full model” using
synthetic data that captures essential features. As in real life, we
take the estimation of 6; from data dj, p(data;|6}) in equation 1, to
be noisy. We set it to be about 2-3 times as noisy over the range

of psychopathology, and we explored heteroskedasticity, but this
is not crucial:

di ~ N6, o () (5)
We generated low and high psychopathology groups, both n
= 25, by sampling v; with mean +2 or —2 and sd = 1,
and set @p,p = 4. m was about 0.3, so that psychopathology
explained a moderate amount of parameter variability. We
sampled generative parameters using equation 4, then generate
data using equation 5 for 1,000 separate repetitions of the
“experiment.” We fitted models (a—d) using stan (Carpenter et al.,
2017). All models fitted the variance in equation 5 by fixed effects.
We estimated m either through its mode and credible interval
for the full model, or by linear regression in the other models.
For the grouped case (d), the mean and difference in @goup
entered a single model and the credible interval of the difference
determined significance.

We found that the standard fit substantially distorted
estimates of m, as expected from the qualitative argument above
(Figure 1A, blue). Worse still, it gave ~7% more false negative
results compared to the full fit (Figure 1B, green vs. blue). ML fits
gave noisier parameter estimates but inferred m in an unbiased
(Figure 1A, pink), and about in as sensitive manner, as the full
fit. Grouped fits (d.) still under-estimated m, e.g., CI = (0.25,0.27)
with generative m = 0.33, but did much better than the standard
fit. (a—d) were also tested for false-positives but no differences of
note were found (m = 0.0, 0.25, or 0.33). In addition, hypotheses
about more than one parameters could be conveniently modeled
by the multivariate version of Equation 1-4.

Therefore, if empirical priors are used to estimate cognitive
and neural parameters, they must take account of the psychiatric

A generative slope m = 0.3 B
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FIGURE 1 | Full fit, including regression of parameter vs. psychometric variable, gives an unbiased estimate of the relationship and an increased number of true
positives compared to the standard fit. (A) Standard fit (blue) strongly underestimates the slope of the relationship compared to the ground truth (red),
maximum-likelihood (pink), and full (green) fits. (B) When the 95% credible interval (full fit, ordinate) and the p-value of the regression (standard fit, abscissa) of the
slope are used as detection criteria, the full fit gives about 7% more true-positives than the standard (green vs. blue). Cross-hairs are at the conventional thresholds for
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hypotheses of the study. Standard, psychometrically uninformed
priors distort the magnitude of relationships with unmodeled
variables and can make them harder to detect. Here, maximum-
likelihood fitting (or in real life a weakly regularized fit) better
preserves umodeled relationships at the expense of noisier
individual parameter estimates. There is, however, little point
in inverting the wrong, psychometrically uninformed model.
In addition, testing multiple hypotheses about relationships
between psychiatric scores and neurocognitive parameters can be
conveniently done within the full model.

Finally, psychometric measures i are themselves best seen
as random variables inferred from measurements ¢. We thus
suggest using the likelihood of the psychometric measurements
estimated by item response theory (IRT), as in Gray-Little et al.
(1997), and treating ¥ as another parameter, just like 6, in
equation 1. The crucial prior expressing the hypothesized relation
of ¥ with 6 then forms a multivariate density, equation 4
becoming:

(65 ¥j) ~ N(1o,y» Zoy) (6)

Using IRT-derived likelihoods, modeling studies can take better
account of the far from negligible uncertainty in psychiatric
measurements. We acknowledge that the use of Bayesian
statistics of the type advocated here (Gelman et al., 2013;
Carpenter et al., 2017) is not as yet routine in psychology and
neuroscience, and researchers wishing to make best use of such
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