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This paper presents a new two-dimensional Multiple-Choice Model accounting for

Omissions (MCMO). Based on Thissen and Steinberg multiple-choice models, the

MCMOdefines omitted responses as the result of the respondent not knowing the correct

answer and deciding to omit rather than to guess given a latent propensity to omit. Firstly,

using a Monte Carlo simulation, the accuracy of the parameters estimated from data

with different sample sizes (500, 1,000, and 2,000 subjects), test lengths (20, 40, and

80 items) and percentages of omissions (5, 10, and 15%) were investigated. Later, the

appropriateness of the MCMO to the Trends in International Mathematics and Science

Study (TIMSS) Advanced 2015 mathematics and physics multiple-choice items was

analyzed and compared with the Holman and Glas’ Between-item Multi-dimensional IRT

model (B-MIRT) and with the three-parameter logistic (3PL) model with omissions treated

as incorrect responses. The results of the simulation study showed a good recovery of

scale and position parameters. Pseudo-guessing parameters (d) were less accurate, but

this inaccuracy did not seem to have an important effect on the estimation of abilities.

The precision of the propensity to omit strongly depended on the ability values (the

higher the ability, the worse the estimate of the propensity to omit). In the empirical study,

the empirical reliability for ability estimates was high in both physics and mathematics.

As in the simulation study, the estimates of the propensity to omit were less reliable

and their precision varied with ability. Regarding the absolute item fit, the MCMO fitted

the data better than the other models. Also, the MCMO offered significant increments

in convergent validity between scores from multiple-choice and constructed-response

items, with an increase of around 0.02 to 0.04 in R2 in comparison with the two other

methods. Finally, the high correlation between the country means of the propensity to

omit in mathematics and physics suggests that (1) the propensity to omit is somehow

affected by the country of residence of the examinees, and (2) the propensity to omit is

independent of the test contents.

Keywords: item response theory, multiple-choice items, polytomous responses, missing data, non-ignorable

missing data, non-responses, omitted responses, guessing

1. INTRODUCTION

Missing responses occur frequently in educational and psychological assessments. Traditional
psychometric models were originally designed to be used with complete data and therefore their
application with missing data may provide biased parameter estimates (de Ayala et al., 2001; Finch,
2008). The size of these biases dependsmostly on the proportion ofmissing data and the ignorability
of the underlying missing data mechanisms.
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Let Y = (yij) denote a matrix of item response variables,
where yij represents the response of the ith subject to item j.
Let Yobs correspond to the observed values of Y, and Ymis the
hypothetical values of the missing elements. Define a matrix
M = (mij) of missing data indicators, where mij = 1 if yij is
missing and mij = 0 otherwise. Three underlying missing
mechanisms can be derived from the dependencies between Y

and M (Little and Rubin, 2002). If P(M|Y) = P(M) for all Y, the
missing data are said to occur completely at random (MCAR).
If P(M|Y) = P(M|Yobs) for all Ymis, the data are missing at
random (MAR). Otherwise, if missing indicators depend on the
unobserved part of the Y, the data are missing not at random
(MNAR).

Under the IRT framework, the response functions for Y are
assumed to be governed by a latent variable (θ) representing
an examinees’ ability, knowledge, attitude, etc. Similarly, M may
depend on an examinee-specific parameter ξ characterizing a
latent variable (e.g., propensity to skip, or speed in timed tests).
Missing data are ignorable (i.e., correct inferences about θ can
be drawn from Yobs) whenever mechanisms are MCAR or MAR
and the traits involved in both processes are distinct - i.e.,
their joint parameter space is the product of the parameter
spaces of each of them alone (Mislevy and Wu, 1996; Little
and Rubin, 2002). On the other hand, if missing data satisfy
MNAR or θ and ξ are not distinct, correct inferences about
θ can only be made by modeling M and its relationship with
Y.

Three major classes of missingness are routinely observed
in psychological and educational assessments: (1) items not
administered, (2) items not reached in a timed testing, and (3)
omitted responses (e.g., Mullis et al., 2016; OECD, 2016). The
first type usually results from applying different test forms and
is ignorable in adaptive testing or when booklets are randomly
assigned (Mislevy and Wu, 1996). Otherwise, if the forms are
assigned based on educational or demographic variables, this
information should be included in the model to allow for
correct Bayesian estimates (Mislevy and Wu, 1996). Not reached
non-responses are ignorable if the examinees did not interact
meaningfully with the items not reached, had no information
about their difficulties, and ξ , i.e., speed, and θ are distinct.
If ξ and θ are not distinct, Bayesian inferences from Yobs

may be compromised unless the joint distribution of θ and
ξ is considered in the estimation (Mislevy and Wu, 1996).
Finally, omissions are consensually understood as the examinees’
intentional non-responses (e.g., Budescu and Bar-Hillel, 1993;
Mislevy and Wu, 1996; Bereby-Meyer et al., 2002; Rose, 2013;
Budescu and Bo, 2015). It is reasonable to assume that the
examinees are willing to optimize their outcomes (e.g., to be
selected for a job, or to pass an exam) by maximizing their
test scores. Therefore, the decision to omit may depend on
their perceived gain or loss for responding to each item. In this
case, skipping may depend on the probability of answering an
item correctly, which configures MNAR, and the dependencies
between Y and M should be addressed (Mislevy and Wu, 1996).
This article focuses on the omitted responses and their possible
effects on the parameter estimates.

Missing data treatments can be organized into three major
types: (1) treated as ignorable, (2) data augmentation, and (3)
modeling missing data. The first consists of ignoring non-
responses, such as traditional IRT and factor analysis models,
which accounts only for Yobs and will provide inaccurate
estimates if the ignorability criteria do not hold. The second
class of treatments consists of assigning artificial realized values
for Ymis, based either on deterministic preconceptions about
the relationship between M and Y (e.g., recoding omissions
as incorrect) or on model-based inferences from Y (e.g., item
or person mean substitution, multiple imputation). Although
extensively applied, deterministic imputation methods often
make assumptions that are hardly acceptable considering the
current missing data theory (Mislevy and Wu, 1996; Rose,
2013). Methods such as treating omissions as incorrect assume
that the expected success probability for a non-response is the
same as for responding incorrectly, which may be unrealistic.
If the imputed dataset is modeled using the 3PL, for example,
it has no theoretical sense to assume that the less proficient
examinees omit with a probability defined by the pseudo-
guessing parameter associated with the plausibility of the options.

Model-based augmentation methods, like multiple
imputation, can be extremely useful for data with MCAR

and MAR (Huisman and Molenaar, 2001; Finch, 2008, 2010).
However, its use in MNAR situations may not be appropriate,
given that non-responses are usually imputed with plausible
values based on models that assume the ignorability of omissions.
Unless the theory underlying the imputation procedure correctly

represents the relationship between Y and M, the parameter
estimates from the imputed dataset may be biased.

A variety of model-based treatments for non-ignorable

missing data have been proposed in recent years (e.g., Holman
and Glas, 2005; Okumura, 2014; Pohl et al., 2014; Debeer
et al., 2017; Rose et al., 2017). As an example, the Symmetric
Pattern Models (O’Muircheartaigh and Moustaki, 1999)
predict the outcomes as a result of two steps: (1) to respond
or skip, and (2) to select a specific answer when a response
is provided. The model is approached by factorizing the

likelihood function P(yobsi ,mi|θi, ξi) =
∏J

j=1 P(y
obs
ij ,mij|θi, ξi)

into
∏J

j=1 P(y
obs
ij |mij, θi)P(mij|ξi), where yobsi denotes the

observed response pattern of the ith examinee. M is included
as pseudo-items, so the model is analogous to a between-item
multi-dimensional model, whereM is governed by ξ and Yobs by
θ .

Several models derive from O’Muircheartaigh and Moustaki’s
definition. Holman and Glas (2005), for example, reformulate

it to freely estimate the covariance between latent variables and
present four equivalent forms with different parametrizations.

The simplest form is the most used, and it is equivalent to a
Between-item Multi-dimensional IRT model (B-MIRT). The B-
MIRTmodel sets two measurement models, one for the observed

responses (Yobs, where non-responses are coded as NA) and
one for the omitted response indicators (M, where mij = 1 if
yij =NA and 0 otherwise). Each measurement model is specified
either as a Rasch or a 2PL model, where the ability governs the
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answering process underlying Yobs and the propensity to skip
governs the responding/not-responding process in M (Holman
and Glas, 2005). The joint model is represented in Equation 1.

P(yobsi ,mi|θi, ξi,βββ ,δδδ) = P(yobsi |mi, θi,βββ)P(mi|ξi,δδδ) (1)

where βββ and δδδ denote the sets of structural parameters under
the 2PL for the a given item and its associated pseudo-item in
M, respectively. The dependency between the two measurement
models is addressed through the correlation between θ and ξ .
Similarly, De Boeck and colleagues approach this formulation
through IRTree models (De Boeck and Partchev, 2012; Jeon and
De Boeck, 2016; Debeer et al., 2017), which are mathematically
equivalent to the B-MIRT (Debeer et al., 2017, p. 341).

Approaches based on the factorization of P(yobsi ,mi|θi, ξi)
are elegant in their simplicity and flexibility, given their
broad assumptions about the relationship between Y and
M. Nevertheless, the psychological processes underlying
missing data mechanisms are not explicitly addressed and
some definitions may not be accurate if considered from a
psychological perspective. First, by using models from the
logistic family for P(yobsij |mij, θ i), the probability of success is

asymptotic to zero as the proficiency decreases. In multiple-
choice items this assumption can be unrealistic given that the
examinees with low ability may attempt to guess their responses.
By not accounting for guessing, a correct guess would be
attributed to having a certain level of knowledge, which may
lead to overestimated abilities of the less proficient examinees.
Secondly, the events of responding/skipping (mj) are considered
to be conditionally independent of choosing an answer once
a response is provided (yobsj ), which is contradictory to the

assumption that the examinees decide to omit depending on
their probability of responding correctly.

Conversely, Lord’s (1983) model for binary scored multiple-
choice items with omissions makes explicit assumptions abouth
the behavioral rationale for the omissions. The response
process including omissions is defined by a combination of
four subprocesses. Firstly, it is considered that an examinee
can either prefer one of the alternatives with probability
R(θi) or be totally undecided. If one alternative is preferred,
a response is made with P∗(θi) of being correct, which is
monotonically increasing with ability. On the contrary, if
the examinees have no preference, they will either omit with
a probability wi or guess at random with a probability to
succeed which is reciprocal to the number of alternatives
(K). Therefore, the overall probability of the ith examinee
responding correctly is P∗(θi)[1− R(θi)]+ R(θi)(1− wi)K

−1,
while the probability of responding incorrectly is
[1− P∗(θi)][1− R(θi)]+ R(θi)(1− wi)(1− K−1), and omitting
is R(θi)wi.

Abad et al. (2009) presented a multi-group uni-dimensional
model to account for omissions under a similar rational behavior
perspective. Their model is based on the Multiple-Choice Model
(MCM; Samejima, 1979; Thissen and Steinberg, 1984) and differs
from Lord’s (1983) formulation in some theoretical aspects.
Firstly, having a preference and choosing an alternative are not

considered as separate events. Instead, the probability function
of the former is set to depend on the parameters defined for
the probability function of the latter step (i.e., discrimination
and difficulty). Secondly, it assumes that the distractors may
be attractive for subjects with different proficiency levels, so
their relationships with ability could be better described by a
polytomous model, rather than a binary model. And thirdly,
instead of estimating a probability w for each subject, the
variability in the propensity to omit is addressed by dividing
subjects into supposedly homogenous groups given the empirical
proportions of omissions vs. errors.

This paper presents a new model to address some common
features to multiple-choice items: (1) responses based on partial
knowledge, (2) guessing behaviors, and (3) omitted responses.
The new two-dimensional multiple-choice model accounting for
omissions (MCMO) derives from the traditionalMultiple-Choice
Model (Samejima, 1979; Thissen and Steinberg, 1984) and the
one proposed by Abad et al. (2009). However, the propensity
to omit is included as a characteristic of the examinee, rather
than a group variable. Firstly, a brief overview of the traditional
Multiple-Choice Model is provided. After which, the model
extensions made in this article are presented. Two studies were
conducted to investigate the psychometric properties of the new
model. A Monte Carlo simulation was carried out to analyze the
accuracy of the MCMO estimates with different sample sizes,
test lengths and the expected percentages of omitted responses.
Finally, an illustration of the application of the new model with
two subsets from TIMSS Advanced 2015 data (Mullis et al., 2016)
is presented.

2. THE MULTIPLE-CHOICE MODEL

TheMCMcombines aspects of the three-parameter logistic (3PL)
model (Lord, 1980) and the nominal response model (NRM;
Bock, 1972). Like in the 3PL model, the MCM accounts for
the guessing responses by allowing a non-zero left asymptote
for the correct response. As in the NRM, it models polytomous
responses and it assumes that the information provided by the
distractors can be valuable for the estimation of ability because
they may attract examinees with different ability levels. In the
MCM, a don’t know (DK) latent response state is included,
representing the examinees who have no idea of the correct
answer. On the contrary, thinking that one of the K item
alternatives is correct is represented as being in a latent know
state. For any given item, the probability of being in the
vth latent state is modeled by the NRM (Equation 2), where
v ∈ {0, 1, · · · ,K} and 0 denotes the DK state.

T(ui = v|θi,λλλ) =
exp(avθi + cv)

∑K
h=0 exp(ahθi + ch)

(2)

whereλλλ is a vector of K+1 pairs of scale and position parameters
associated with each latent state, h ∈ {0, 1, · · · ,K}, and u denotes
the latent states. The order of the scale parameters a is related to
the degree of correctness of the latent states. The highest a value is
expected to occur for the state related to the correct option and its
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latent response function should increase with ability. The order
of the position parameters c reflects the relative predominance of
each latent state at θ = 0.

The probability of the ith examinee selecting an alternative k
in any given item is the sum of the probability of thinking that
option k is correct, and the probability of guessing k (k : 1, · · · ,K)
given he/she is in the don’t know state (Equation 3). The
term dk denotes an item-specific pseudo-guessing parameter
representing the plausibility of an alterative k for the examinees
in DK. Let γγγ = (λλλ, d1, · · · , dK):

P(xi = k|θi,γγγ ) = T(ui = k|θi,λλλ)+ T(ui = 0|θi,λλλ)dk (3)

The MCM, as well as the MCMO, that it will presented next,
can also be implemented with dichotomously scored responses
(with distractors recoded into a single category), which should
offer comparable results if the latent states associated with the
incorrect alternatives have similar discrimination parameters. In
this case, the d parameter for the collapsed incorrect category
would represent the overall probability of failing by guessing in
the DK state.

3. A MULTIPLE-CHOICE MODEL FOR
OMISSIONS

The Multiple-Choice Model for Omissions extends the MCM by
assuming that omissions also reflect being in the don’t know state
(Equation 4). However, the decision about whether to guess, or
to omit, in this latent state depends on the latent propensity to
omit ξ distinct from θ (Equation 5). It should be noted from
Equation 4 that the MCMO specifies a non-ignorable missing
data mechanism even if θ and ξ are uncorrelated, given that the
probability of omitting depends on being in the DK state, which
is governed by the ability.

P(xi = 0|θi, ξi,λλλ) = T(ui = 0|θi,λλλ)wi (4)

where xi = 0 represents the omission outcome for the ith subject.

wi = P(xi = 0|ui = 0, ξi) =
1

1+ exp(−ξi)
(5)

Complementarily, selecting an alternative k may occur either if
an examinee thinks k is correct or if he/she does not know the
answer, decides to guess rather than to omit, and guesses k with
probability dk (Equation 6).

P(xi = k|θi, ξi,γγγ ) = T(ui = k|θi,λλλ)+ T(ui = 0|θi,λλλ)(1− wi)dk
(6)

As shown in Figure 1, the MCMO is not a traditional
compensatory or non-compensatory multi-dimensional model.
In the omission ORF (Figure 1A), as the ability decreases and
the propensity to omit increases, the probability of omitting
approaches its maximum. In turn, the probability of selecting an

incorrect option grows when both the ability and the propensity
to omit decrease. Figure 1A also shows that when the propensity
to omit is low, examinees with average ability levels tend to
select an incorrect option based on partial or wrong information.
Finally, the correct ORF (Figure 1C) increases globally together
with ability. However, for low θ values, the probability of
responding correctly will be asymptotic to dk when ξ is low and
to zero when ξ is high. Also, as can be inferred from Equations 4
to 6, the ORFs relative to the alternatives will asymptotically
approach either the NRM or the MCM as ξ gets higher or lower,
respectively.

It should be noted that the term T(ui = k|θi, λ) in Equation 6
can also be written as T(ui = k|ui 6= 0, θi,λλλ)T(ui 6= 0|θi,λλλ).
From this formulation, it is possible to see that the MCMO and
the Lord’s model (1983) share similar general definitions
when the responses are dichotomously scored, where
T(ui = K|ui 6= 0, θ i,λλλ), with K being the correct alternative,
is analogous to P∗(θi), and T(ui = 0|θi,λλλ) to R(θi). However,
the two models differ in three important aspects: (1) the
guessing probability when in the DK/no-preference state is
freely estimated in the MCMO while fixed to K−1 in Lord’s
model; (2) under the MCMO, there is no possibility of guessing
when in a know state, while the Lord’s model allows guessing
also when a preference is felt, by specifying P∗(θi) under the
3PL model; and finally (3) in Lord’s model, P∗(θi) and R(θi)
are not explicitly linked, while in the MCMO the probability
T(ui = 0|θi,λλλ) depends on the characteristics of the alternatives
(see Equation 2), which is more consistent with the psychological
theory of omissions.

3.1. Identification
For the model to be identified, either the a and c parameter of
one of the latent states must be fixed to an arbitrary value, or
the constraint

∑

ah =
∑

ch = 0 should be imposed. Moreover,
opposite a values could yield equal ORFs by flipping the ability
trait. In order to set θ “right-side-up,” attributing lower initial
values to the a parameters related to the DK state and the
incorrect categories should be sufficient (Thissen and Steinberg,
1984). Also, the ability distribution is set to N(0, 1).

3.2. Parameter Estimation
Item parameters can be estimated using either marginal
maximum likelihood or Bayesian marginal maximum likelihood
by applying Bock and Aitkin’s two-step EM-like procedure
(Bock and Aitkin, 1981). Similarly to the algorithm proposed
by Dempster et al. (1977), it consists of an iterative procedure
with Expectation andMaximization steps until the changes of the
estimates between the iterations are negligible. The parameters
of the distribution of ξ are estimated from the posterior
expectations generated at the E-step and updated with every
iteration, and the covariance between the traits is set to 0. The
script for the estimation of the MCMO using the mirt package
(Chalmers, 2012) in R (R Core Team, 2017) is provided in the
Supplementary Material.

The pseudo-guessing parameters dk can be bound to the
probability metric and constrained to

∑K
h=1 dh = 1 by using

the transformation in Equation 7, where d′ is estimated instead
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FIGURE 1 | Example of the MCMO functions for omitted (A), incorrect (B), and correct (C) responses.

γγγ = (a0 = −1.5, a1 = −0.5, a2 = 0, c0 = −0.2, c1 = −0.9, c2 = 0,d1 = 0.5,d2 = 0.5).

(Thissen and Steinberg, 1984). Given that only a few subjects are
expected at the low extreme of the ability distribution, the data
can be little informative about d′ and using informative priors
may benefit the estimation.

dk =
exp(d′

k
)

∑K
h=1 exp(d

′
h
)

(7)

Person parameters can be estimated with the Expected A
Posteriori (EAP) method by assuming the estimated structural
parameters as true.

4. SIMULATION STUDY

A simulation study was conducted to evaluate the parameter
recovery with different sample sizes, test lengths and proportions
of omitted responses.

4.1. Methods
4.1.1. Data Generation
Twenty-seven conditions were simulated by combining
three sample sizes, N = (500, 1000, 2000), three test lengths,
J = (20, 40, 80), and three expected percentages of omitted
responses, p̄O = (5%, 10%, 15%). The item responses were
generated with three alternatives and one omission category
using the MCMO functions specified in Equations 4 to 6. One
hundred replications were carried out for each condition. The
true values of the ability and the propensity to omit were drawn
from two independent standard normal distributions.

The item parameters related to the correct alternative were
fixed to zero to enable identifiability. The values of the two free
d′ parameters were drawn from N(0, 0.5), so that E[dk] = K−1.
The three free scale parameters (i.e., a0, a1, and a2) were drawn
from amultivariate normal distribution withµa = (−2,−1,−1),
σa = 1 and covariances of 0.65, so the expected values of
the parameters were ordered by correctness. The two free
position parameters of the know states related to the incorrect

alternatives (i.e., c1 and c2) were drawn from N(−0.5, 1), while
c0 N(µc0 , 1). The expected percentage of omitted responses for
each dataset was generated by manipulating the predominance
of the don’t know state probability by shifting the mean of the
DK position parameter true distribution (µc0 ). As presented
in Equation 4, by increasing the expected probability of being
in the DK state, the expected probability of omitting increases
linearly. Given the known true distributions of the model
parameters, the values of µc0 were chosen to satisfy the condition
E[P(x = 0|θ , ξ ,γγγ )] = 100−1p̄O, where E[P(x = 0|θ , ξ ,γγγ )] was
given by:

E[P(x = 0|θ , ξ ,γγγ )] =

∫

· · ·

∫

P(x = 0|θ , ξ ,γγγ )g(θ)g(ξ )g(φφφ)

dθdξdφ1 · · · dφs (8)

where φφφ denotes the set of estimated parameters, i.e.,
a0, ..., a3, c0, ..., c3, d

′
1, d

′
2, and sub-index s represents the number

of estimated item parameters. The values of µc0 that satisfied the
conditions with 5,10, and 15% of omissions were -2.10, -0.99,
and -0.22, respectively.

4.1.2. Parameter Estimation
The item parameters were estimated using Bayesian marginal
maximum likelihood with the EM algorithm (Bock and Aitkin,
1981) implemented by the mirt package (Chalmers, 2012)
in R (R Core Team, 2017). Prior distributions of N(0, 0.5)
were set for the parameters d′ of the incorrect alternatives.
Person parameters were estimated with EAP also using the mirt
package. The MCMO estimation routine is provided in the
Supplementary Material.

4.1.3. Recovery of Model Parameters
The accuracy of the parameter estimates was assessed through
three indicators: (1) the correlation between the true and
estimated parameters (ρ

δδ̂
, where δ denotes the true parameter

being analyzed and δ̂ the estimate of δ), (2) the mean error
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(ME; Equation 9), and (3) the root-mean-square error (RMSE;
Equation 10), where N represents the number of observations in
each replica (N reflects the test length if δ is an item parameter
and the sample size if δ is a person parameter), and R denotes the
number of replications (i.e., R = 100). The correlation coefficient
indicates the linearity between the estimated and the true
parameter values, while the ME summarizes the average estimate
bias. The RMSE is a broader measure of accuracy affected by both
ρ

δδ̂
and ME (Roberts and Laughlin, 1996, p. 243). For ease of

presentation, the ρ
δδ̂
, ME and RMSE of the parameters associated

with the know latent states were averaged within each parameter
type, i.e., scale, position or pseudo-guessing.

ME(δ) =
1

R

R
∑

r=1

∑N
n=1(δ̂nr − δnr)

N
(9)

RMSE(δ) =
1

R

R
∑

r=1

√

∑N
n=1(δ̂nr − δnr)2

N
(10)

The difficulty of estimating the pseudo-guessing parameters with
realistic sample sizes is well-known to occur given the small
number of subjects with extreme ability levels. Given that the
EAP method assumes item parameters estimates as true, and
that response probabilities close to d are expected for the less
proficient subjects, the inaccuracy of d may affect the estimation
of low abilities. A regression model was fitted to investigate such
effect. For each simulated dataset, the average RMSE of d′ was set
as a predictor of the RMSE of the simulees with the 20% lowest θ
values. The proportion of variance explained (R2) is presented.

Furthermore, as the omissions are conditional on being in
the DK, the information about ξ should also depend on θ , and
the overall RMSE, the ME and the correlation coefficient may
not represent the estimation error across all the latent space. To
depict the variation in the estimation errors of ξ across θ , the
three accuracy indicators were also presented separately for the
subjects with the 20% lowest and the 20% highest true ability
values.

4.1.4. Recovery of Expected Response Functions
Given the complexity of the model, the uncertainty of the
individual item parameter estimates does not necessarily imply
any inaccuracy in the expected functions. The root-integrated-
square error (RISE) indicates the expected discrepancy between
the estimated and the true expected option response functions
(ORF) given a known latent trait distribution. The RISE for
the hth category of each item (Equation 11) was approximated
through eleven quadrature points from -3 to 3 for each latent
trait, resulting in 121 quadrature combinations.

RISEh =

√

∫∫

[P(x = h|θ , ξ , γ̂γγ )− P(x = h|θ , ξ ,γγγ )]2g(θ)g(ξ )dθdξ

(11)
The RISE results were then averaged within the types of response
functions, i.e., omission, incorrect, and correct responses, and
replications.

Finally, ANOVAs were conducted to summarize the effect of
the sample size, test length and expected percentage of omitted
responses over each accuracy indicator. Given the high number
of datasets generated, most of the main effects are expected
to be significant (p < 0.05). Therefore, only the high partial
eta-squared effect sizes (η2 ≥ 0.14) will be discussed.

4.2. Results
4.2.1. Data Generation
The average percentage of omissions obtained in the simulated
datasets were 5.1, 9.8, and 14.7% for the three p̄O conditions,
respectively.

4.2.2. Recovery of Item Parameters
The ANOVA main effect sizes are shown in Table 1. The
interaction effects ranged from very small to slightly moderate
and are not shown. Regarding the RMSE and the correlation
coefficient, the recovery of scale and position parameters was
affected primarily by the sample size and the percentage of
omissions.

As shown in Table 2, the linearity between the true and
estimated scale and position parameters was high for all the
conditions. On the other hand, the pseudo-guessing parameters
had the lowest correlation coefficients, with a minimum of 0.33
and a maximum of 0.56, and RMSE ranging from 0.27 to 0.31.
The effect of p̄O acted in different directions for the parameters
associated with the don’t know state and with the know states.
As the p̄O increased, the parameters of the DK state were
better estimated, which occurs because the omitted responses
are especially informative about DK. On the other hand, as
the proportion of omissions increased, the available information
about the know states diminished and their scale and position
parameter estimates were less precise.

With regard to the mean error indicators, the estimates of
scale parameters associated with the DK state became slightly
negatively biased as sample size decreased (η2 = 0.15).
Interestingly, the recovery of d′ parameters improved with the
increase of omitted responses indicating that these parameters
are sensitive to the accuracy of the DK response function. An
R2 < 0.01 was obtained for the regression analysis of the average
accuracy of d′ over the accuracy of the lowest 20% of θ in each
dataset. This result indicates that the precision of d′ had little
effect on the recovery of the low θ values.

4.2.3. Recovery of the Expected Response Functions
In general, the small root-integrated-square errors depicted in
Table 2 indicate a good recovery of the three types of response
functions, i.e., omission, incorrect and correct. The omission
response function showed the highest accuracy and improved
mainly with sample size (Table 3).

4.2.4. Recovery of Person Parameters
The recovery of person parameters was highly affected by both
test length and the percentage of omissions. However, the ability
levels were accurate in all the conditions, with a minimum ρ

θ θ̂

of around 0.91 up to 0.95, as test length increased (see Table 2).
As the p̄O increased the RMSE of θ and the ρ

θ θ̂
decreased
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TABLE 1 | ANOVA main effect sizes for the accuracy measures of the parameter estimates.

Root-mean-square error Pearson correlation Mean error

Parameter η2
N

η2
J

η2
p̄O

η2
N

η2
J

η2
p̄O

η2
N

η2
J

η2
p̄O

a0 0.42 0.05 0.07 0.35 0.03 0.09 0.15 0.02 0.01

āk 0.33 0.01 0.23 0.25 0.01 0.19 0.03 0.00 0.00∗

c0 0.24 0.01 0.14 0.33 0.00 0.27 0.02 0.00∗ 0.05

c̄k 0.17 0.00∗ 0.18 0.22 0.00∗ 0.26 0.07 0.00 0.07

d′ 0.20 0.04 0.29 0.35 0.13 0.46 0.00∗ 0.00∗ 0.00∗

θ 0.10 0.94 0.40 0.04 0.92 0.34 0.01 0.00 0.00

ξ 0.08 0.77 0.75 0.01 0.88 0.88 0.00∗ 0.00∗ 0.00∗

ξlowθ 0.04 0.72 0.59 0.01 0.79 0.70 0.00 0.03 0.01

ξhighθ 0.02 0.35 0.37 0.00 0.54 0.61 0.00 0.01 0.00

N, sample size; J, test length; p̄O, percentage of omissions; ξlowθ , Recovery of ξ for the subjects with 20% lowest ability levels; ξhighθ , Recovery of ξ for the subjects with 20% highest

ability levels; ∗Non-significant effects. Boldfaced, high effect sizes (η2 ≥ 0.14).

slightly, although always staying above acceptable levels. The
average accuracy of the propensity to omit was generally lower
and depended on the test length, the proportion of omissions,
and the level of ability of the simulees. As shown in Table 2, the
accuracy of ξ was higher for the longer tests, for the greater p̄O,
and for the simulees with the lowest θ .

5. EMPIRICAL STUDY

This study investigates the appropriateness of the MCMO to
multiple-choice response data from the Trends in International
Mathematical and Science Study (TIMSS) Advanced 2015
assessment. TIMSS is a large-scale international study
that provides comparative information about educational
achievement across countries. Within this program, TIMSS
Advanced aims to assess the advanced mathematics and physics
achievements of students in their final year of secondary school.

Firstly, the reliability of the trait estimates was investigated.
Secondly, the absolute fit of the MCMO was analyzed and
compared with the fit provided by two alternative models, the
Holman and Glas’ Between-item Multi-dimensional IRT model
(B-MIRT; Holman and Glas, 2005), and the 3PL model with
an incorrect-answer substitution (3PL-IAS), which is used in
the scoring procedure of TIMSS Advanced 2015. Thirdly, the
evidence for the convergent validity of the ability estimates across
multiple-choice and constructed-response formats was obtained.
Finally, some observations on the propensity to omit under the
MCMO were made.

5.1. Methods
5.1.1. Data Description
The achievement data from TIMSS Advanced 2015 was divided
into two datasets: one for mathematics, and one for physics.
These datasets included populations from nine countries: France,
Italy, Lebanon, Norway, Portugal, the Russian Federation,
Slovenia, Sweden, and the United States (LaRoche and Foy,
2016). The testing design consisted of 6 booklets for mathematics

and 6 for physics, with multiple-choice (MC), constructed-
response (CR), and a few compound multiple-choice formats.
MC items were made with either 4 or 5 alternatives, and
the compound multiple-choice items consisted of sets of two-
alternative interdependent items that were scored together given
their count of correct responses. The samples that responded to
the physics and mathematics items were independent (Martin
et al., 2016).

In TIMSS Advanced 2015, there is no penalty for wrong
answers and the examinees are encouraged to respond to
all of the items. In its scoring procedure (Martin et al.,
2016), omissions are treated as incorrect for both item and
person parameter estimation. Multiple-choice item responses
are recoded into correct/incorrect and estimated using the 3PL-
IAS. Constructed-response items are assumed to follow the
Generalized Partial Credit Model (Muraki, 1992) with omissions
imputed as incorrect (GPCM-IAS).

One booklet was analyzed for each test content to avoid
introducing the effects of the missing data derived from the
testing design. Booklet 6 from the mathematics assessment, and
Booklet 7 from the physics assessment were chosen as they
contained the most items. Table 4 describes the datasets relative
to each of the booklets used. The compound multiple-choice
items were excluded from the analysis and not-reached responses
were ignored.

5.1.2. Model Estimation
For this study, the multiple-choice items were modeled under the
MCMO using the polytomous responses, the B-MIRT and the
3PL-IAS. As in the simulation study, the structural parameters of
the MCMO were estimated using Bayesian marginal maximum
likelihood with the EM algorithm (Bock and Aitkin, 1981)
implemented by the mirt package (Chalmers, 2012). The item
parameters associated with the correct know state were fixed to
zero and priors of N(0, .5) were set for the free d′ parameters.

The B-MIRT was specified as in 1 and its parameters were
estimated using Marginal Maximum Likelihood with the EM
algorithm (Bock and Aitkin, 1981) implemented by the mirt
package (Chalmers, 2012).
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TABLE 2 | Accuracy of the parameter estimates given the sample sizes, test lengths and the percentages of omissions.

Sample size Test length Percentage of omissions

Parameter 500 1,000 2,000 20 40 80 5% 10% 15%

ROOT-MEAN-SQUARE ERROR

a0 0.59 0.37 0.25 0.45 0.39 0.36 0.46 0.36 0.38

āk 0.46 0.30 0.20 0.35 0.32 0.30 0.23 0.30 0.43

c0 0.60 0.35 0.23 0.43 0.37 0.37 0.55 0.33 0.30

c̄k 0.58 0.34 0.22 0.39 0.37 0.37 0.22 0.33 0.58

d′ 0.31 0.29 0.27 0.30 0.29 0.28 0.31 0.29 0.27

θ 0.33 0.32 0.32 0.42 0.32 0.24 0.31 0.32 0.34

ξ 0.82 0.80 0.79 0.90 0.81 0.71 0.90 0.80 0.70

ξlowθ 0.65 0.63 0.62 0.76 0.63 0.50 0.74 0.62 0.54

ξhighθ 0.95 0.94 0.93 0.99 0.95 0.88 1.00 0.94 0.88

PEARSON CORRELATION

a0 0.88 0.94 0.97 0.92 0.93 0.94 0.91 0.94 0.94

āk 0.91 0.95 0.98 0.94 0.95 0.95 0.97 0.95 0.92

c0 0.90 0.96 0.98 0.94 0.95 0.95 0.91 0.96 0.97

c̄k 0.91 0.95 0.98 0.95 0.95 0.94 0.98 0.96 0.90

d′ 0.35 0.46 0.54 0.40 0.46 0.50 0.33 0.46 0.56

θ 0.94 0.94 0.94 0.91 0.95 0.97 0.95 0.94 0.94

ξ 0.59 0.60 0.60 0.48 0.60 0.71 0.48 0.61 0.70

ξlowθ 0.77 0.78 0.78 0.68 0.78 0.87 0.70 0.79 0.84

ξhighθ 0.35 0.35 0.36 0.25 0.35 0.46 0.23 0.36 0.47

MEAN ERROR

a0 -0.15 -0.08 -0.04 -0.11 -0.09 -0.07 -0.08 -0.08 -0.11

āk -0.03 -0.01 -0.01 -0.02 -0.02 -0.01 -0.02 -0.02 -0.02

c0 -0.05 -0.01 0.01 -0.01 -0.01 -0.03 -0.06 -0.01 0.02

c̄k -0.08 -0.03 -0.01 -0.05 -0.04 -0.04 -0.01 -0.03 -0.08

d′ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

θ -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ξ -0.03 -0.03 -0.03 -0.03 -0.04 -0.02 -0.04 -0.03 -0.02

ξlowθ 0.09 0.08 0.08 0.12 0.08 0.05 0.06 0.09 0.10

ξhighθ -0.05 -0.05 -0.05 -0.06 -0.06 -0.03 -0.05 -0.05 -0.05

ROOT-INTEGRATED-SQUARE ERROR

Omission 0.022 0.015 0.011 0.017 0.015 0.015 0.013 0.016 0.018

Incorrect 0.028 0.020 0.014 0.022 0.021 0.020 0.020 0.021 0.021

Correct 0.031 0.022 0.016 0.023 0.022 0.023 0.022 0.023 0.024

ξlowθ : Recovery of ξ for the subjects with 20% lowest ability levels; ξhighθ : Recovery of ξ for the subjects with 20% highest ability levels.

The 3PL-IAS consists on the estimation of the 3PL model
after re-scoring omissions as incorrect. The function of correct
responses to an item under the 3PL model is traditionally
formulated as in Equation (12):

P(xi = 1|θi,βββ , c) = c+
1− c

1+ exp[−a(θi − b)]
(12)

where βββ denotes the set of discrimination (a) and difficulty
(b) parameters, and c represents the pseudo-guessing parameter
associated with the correct category.

The parameters of the 3PL-IAS were estimated by the same
method as the MCMO, using priors of N[logit(K−1), 0.5] for the

logit of the pseudo-guessing parameters c. All person parameters
were estimated using EAP.

The responses to the constructed-response items were
modeled with both the GPCM-IAS, as in TIMSS scoring
procedure, and the B-MIRT. The probabilities P(yobsi |mi, θi,βββ)
in the B-MIRT for constructed-response items with partially
correct scores was specified with the Generalized Partial Credit
Model (Muraki, 1992). Their parameters were also estimated
using Marginal Maximum Likelihood with the EM algorithm
(Bock and Aitkin, 1981) implemented by the mirt package
(Chalmers, 2012). To distinguish the B-MIRT results for the
different item formats in the empirical study, B-MIRTMC will
reffer to the one used with multiple-choice items, and B-MIRTCR

with constructed-response items.
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TABLE 3 | ANOVA main effect sizes in the expected root-integrated-square error

for each type of response function.

Root-integrated-square error

ORF type η2
N

η2
J

η2
p̄O

Omission 0.61 0.11 0.29

Incorrect 0.92 0.15 0.09

Correct 0.81 0.03 0.06

N, sample size; J, test length; p̄O, percentage of omissions; Boldfaced, high effect sizes

(η2 ≥ 0.14).

TABLE 4 | Descriptives for the TIMSS Advanced 2015 datasets used in the study.

Mathematics Physics

Booklet ID 6 7

MC items 21 18

CR items 12 12

% MC omitted 5.8 2.8

% MC not reached 1.9 0.2

% CR omitted 18.2 12.8

% CR not reached 0.1 0.8

N 5,966 4,078

5.1.3. Trait Reliabilities Under the MCMO
Two types of reliability are provided. Firstly, the reliabilities
conditional on the θ and ξ values (Equation 13) are represented
graphically.

ρθθ ′ = 1−

(

SE2θ
σ̂ 2

θ

)

(13)

The calculations were made using the asymptotic error variances,
SE2, obtained from the diagonal of the inverse of the Bayesian
Fisher Information matrix at several points in the latent space.
The empirical reliabilities are also presented, calculated using the
variances of the estimated person parameters, which were divided
by the sum of their variances and the average of the squared
standard error estimates (Equation 14).

ρ̄θθ ′ =
var(θ̂)

var(θ̂)+ SE
2
θ

(14)

5.1.4. Goodness-of-Fit
To avoid overfitting, the samples of mathematics and physics
were randomly split into two sub-samples, one for parameter
calibration and the other for cross-validation. The χ2∗ fit
index proposed by Stone and colleagues (Stone, 2000; Stone
and Hansen, 2000; Stone and Zhang, 2003) was analyzed for
each item. Considering that the true trait levels are unknown,
the pseudocounts of each response category and trait value
were obtained by numerically approaching the trait distribution

through 11 gridpoints for each dimension (121 points in
total) from -3 to 3 standard deviations from the means. The
discrepancies between observed and expected pseudocounts at
each grid point and response category were calculated using the
traditional χ2 formula and summed to provide item-level fit
statistics.

The χ2∗ index follows a scaled chi-square distribution. As in
Stone (2000), the scaling factors and χ2∗ distribution parameters
were approximated through a parametric bootstrap with 500
replications. The magnitude of the discrepancies was classified
according to the χ2∗/df ratio as either very small (< 1), small
(≥ 1 and < 2), moderately large and (≥ 2 and < 3), and large
(≥ 3) (e.g., Drasgow et al., 1995; Chernyshenko et al., 2001).

5.1.5. Validity of Ability Estimates
The convergent validities between the ability scores obtained
from the multiple-choice and constructed-response items were
analyzed. The increment on the convergent validity provided
by the MCMO was approached through hierarchical linear
regressions. For each test content, four linear regression models
were fitted, using: (1) the 3PL-IAS scores, (2) both 3PL-IAS
and MCMO scores, (3) the B-MIRTMC scores, and (4) both
B-MIRTMC and MCMO scores, as independent variables. The
dependent variables were the ability scores in the contructed-
response items under either the GPCM-IAS or the B-MIRTCR.
The R2, part correlations and F-test statistics of the change
between models 1 and 2, and 3 and 4 are provided.

To investigate the common variance between the multiple-
choice and constructed-response scores in different points of
the ability trait, an approximation to the R2 at the examinee-
level was calculated (Equation 15). It represents the contribution
of each examinee to the total R2, where

∑

i R
2
i = R2. A

graphical representation of the average R2i in seven ranges of the
constructed-response ability estimates is presented.

R2i =

(

fi − ȳ
)2

∑

i (yi − ȳ)2
(15)

where fi is the fitted value for the ith examinee, yi represents
its observed value in the independent variable, i.e., GPCM-IAS
scores, and ȳ is the mean of the independent variable.

Finally, given that the main contribution of the MCMO
depends on the occurrence of omitted responses, the ability
estimates for each of the three models were compared in five
groups of examinees with proportion of omissions: 0, (0 - 0.1],
(0.1 - 0.2], (0.2 - 0.3], (0.3 - maximum]. Also, to investigate if
the ability estimates under the MCMO were representing the
construct better than the other models in these groups, the
incremental validity was also analyzed for these groups through
the part correlations between the MCMO proficiency scores
and the part of the constructed-response scores that were not
explained by the 3PL-IAS or by the B-MIRTMC.

5.1.6. Consistency of Propensity to Omit Estimates
The preliminary evidence for the consistency of the propensity
to omit estimates in the MCMO was investigated. Given that an
examinee only responded to one multiple-choice test in TIMSS
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Advanced 2015, either physics ormathematics, it was not possible
to analyze directly the consistency of the propensity to when the
test contents are different. Rather, this association was examined
at the country-level, computing the correlation between the
averages ξ̂ in mathematics and physics across countries.

5.2. Results
The estimated distributions of the propensities to omit in
multiple-choice items were approximately N(−2.65, 1.74) in
mathematics and N(−3.22, 1.40) in physics, indicating that the
expected probabilities of omitting in the DK state were 0.07 and
0.04, respectively. On average, the order of the scale parameters
followed the theoretical expectations, with the most negative
values for the don’t know state and the highest for the know state
associated with the correct alternative. The position parameters
of DK were on average slightly higher than the others in both
exams, indicating a small predominance of its probability when
θ = 0.

5.2.1. Trait Reliabilities Under the MCMO
The empirical reliabilities were 0.80 for the mathematics scores,
and 0.71 for the physics scores, and 0.60 and 0.41 for the
propensity to omit in the mathematics and physics items,
respectively. The lower reliability of ξ in the physics items may be
due to the smaller number of omitted responses in this dataset,
resulting in less available information about ξ . Although the
empirical reliabilities of ξ were low in both tests, Figure 2 shows
that there was a great variation in the conditional reliability across
the latent space, with higher reliabilities for subjects with low
abilities and central propensities to omit. This is to be expected
since ξ only influences the responses when the subject is in a
DK state, and this state is more probable at low θ values. For
both exams, the conditional reliabilities of θ were higher for those
examinees with medium θ levels and improved as ξ increased.

5.2.2. Goodness-of-Fit
Table 5 shows the χ2∗/df ratios for the MCMO, the B-MIRTMC

and the 3PL-IAS models. The χ2∗/df ratios for the MCMO
were below three in all items, indicating a good overall item-fit.
By contrast, the 3PL-IAS provided the worst results, with five
items highly misfitted in mathematics and six in physics. The
fitness of the B-MIRTMC was slightly worse than the MCMO.
With regard to the mean of χ2∗/df , the MCMO also seemed to
have a qualitative advantage over the alternative models in both
mathematics and physics.

5.2.3. Validity of Ability Estimates
The reliability of the ability estimates for the constructed-
response items under the GPCM-IAS were 0.78 and 0.71 in
mathematics and physics, respectively. The reliability of the
ability estimates for the constructed-response items under the
B-MIRTCR were 0.76 and 0.69 in mathematics and physics,
respectively. The correlations between the latent ability and
the propensity to omit in the B-MIRTCR were −0.52 in
the mathematics items and −0.59 in the physics items,
which indicates a clear MNAR mechanism. The results of
the hierarchical regression models for the convergent validity

FIGURE 2 | Expected point-reliabilities in TIMSS Advanced 2015 for (A) the

ability in mathematics, (B) the propensity to omit in mathematics items, (C) the

ability in physics, (D) the propensity to omit in physics items.

TABLE 5 | Frequencies, Means, and Standard Deviations (SDs) of the χ2∗/df

ratios for the multiple-choice items in TIMSS Advanced 2015.

Frequency of χ2∗/df

Test content and model < 1 1− < 2 2− < 3 3 Mean SD

Mathematics

MCMO 2 17 2 0 1.49 0.40

3PL-IAS 6 5 5 5 2.10 1.27

B-MIRTMC 0 11 8 2 2.12 0.83

Physics

MCMO 1 14 3 0 1.63 0.45

3PL-IAS 3 6 3 6 2.32 1.32

B-MIRTMC 3 10 4 1 1.79 1.02

MCMO, Multiple-Choice Model for Omissions; 3PL-IAS, 3PL with Incorrect Answer

Substitution; B-MIRTMC, Between-Item Multi-dimensional Model with multiple-choice

items (Holman and Glas, 2005).

between the multiple-choice and constructed-response items are
presented in Table 6.

The regression models including only the B-MIRTMC scores
as independent variable had the lowest R2. The increments in R2

obtained with the inclusion of the MCMO scores in the models
were significant, regardless of themodel used for the constructed-
response items, representing an increase in shared variance from
around 2 to 4% and part correlation coefficients from 0.14 to 0.21
(p < 0.05). Given the similarity of the results using the GPCM-
IAS and the B-MIRTCR displayed in Table 6, further results will
only be shown for the GPCM-IAS, since it is the model used in
the TIMSS scoring procedure.

Figure 3 shows that the average examinee contribution to
R2 varies across ability scores. The values in the vertical axis
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TABLE 6 | Results for the hierarchical regressions between the EAP estimates from the constructed-response items and from the multiple-choice items with three

different IRT models.

DV Test content and predictors B1 B2 R2 R2-change F-change df1 df2

Mathematics

θ̂ G
P
C
M
−
IA
S

θ̂3PL−IAS 0.76∗∗ - 0.58 0.58 8, 392.9∗∗ 1 5,964

θ̂3PL−IAS,θ̂MCMO 0.08∗ 0.69∗∗ 0.60 0.02 305.5∗∗ 2 5,963

θ̂B−MIRTMC
0.75∗∗ - 0.56 0.56 7, 563.8∗∗ 1 5,964

θ̂B−MIRTMC
, θ̂MCMO 0.04 0.74∗∗ 0.60 0.04 686.4∗∗ 2 5,963

Physics

θ̂3PL−IAS 0.60∗∗ - 0.36 0.36 2, 256.5∗∗ 1 4,076

θ̂3PL−IAS, θ̂MCMO 0.07 0.55∗∗ 0.38 0.02 165.1∗∗ 2 4,075

θ̂B−MIRTMC
0.58∗∗ - 0.34 0.34 2, 095.9∗∗ 1 4,076

θ̂B−MIRTMC
, θ̂MCMO −0.01 0.63∗∗ 0.38 0.04 272.8∗∗ 2 4,075

Mathematics

θ̂ B
−
M
IR
T
C
R

θ̂3PL−IAS 0.76∗∗ - 0.58 0.58 8, 263.4∗∗ 1 5,964

θ̂3PL−IAS,θ̂MCMO 0.06 0.70∗∗ 0.60 0.02 324.7∗∗ 2 5,963

θ̂B−MIRTMC
0.75∗∗ - 0.57 0.57 7, 814.5∗∗ 1 5,964

θ̂B−MIRTMC
, θ̂MCMO 0.12∗∗ 0.65∗∗ 0.60 0.04 545.6∗∗ 2 5,963

Physics

θ̂3PL−IAS 0.60∗∗ - 0.35 0.35 2, 217.3∗∗ 1 4,076

θ̂3PL−IAS, θ̂MCMO 0.08∗∗ 0.52∗∗ 0.38 0.03 155.8∗∗ 2 4,075

θ̂B−MIRTMC
0.57∗∗ - 0.34 0.34 2, 062.2∗∗ 1 4,076

θ̂B−MIRTMC
, θ̂MCMO 0.00 0.60∗∗ 0.38 0.04 259.2∗∗ 2 4,075

DV, Dependent variable; *p < 0.05; *p < 0.001.

represent the expected contribution of a single examinee in each
level of θ̂GPCM−IAS. As expected, the greatest advantage of the
MCMO over the 3PL-IAS and the B-MIRTMC occurs for subjects
with a low ability, since they are most likely to be in the DK state.

Figure 4 illustrates the difference of the ability estimates under
the three models as a function of the proportion of omissions.
The difference of the means between 3PL-IAS andMCMO ability
estimates were found to be statistically significant for subjects
with proportions of omitted responses of more than 0.2. The θ

estimates under the B-MIRTMC were significantly different from
those from the othermodels for proportions of omitted responses
higher than 0.1. The part correlations between the MCMO scores
and the GPCM-IAS scores in the constructed-response items
after controlling the variance explained by the B-MIRTMC and
by the 3PL-IAS in each group are presented in the bottom of
Figure 4. The results show a pattern of incremental validity which
is consistent with the difference in the ability estimates averages,
suggesting that the MCMO scores differ from the ones obtained
with the othermodels and that they are less biased than the others
as the proportion of omitted responses increase.

Since the 3PL-IAS includes only the ability trait, the estimation
of its pseudo-guessing parameter cannot address the variation
in the lower ability asymptote caused by the propensity to omit
showed in Figure 1C. The maximum likelihood estimate of the
pseudo-guessing parameter of the 3PL-IAS will take the value
that maximizes themodel likelihood given the observed data, and
therefore it will tend to reflect the probability of guessing where
the density of ξ is maximum. If the mean of the propensity to

omit is low, as found in TIMSS Advanced 2015 data, the estimate
of the pseudo-guessing parameters will be similar to the expected
by the MCMO.

As can be seen in the figure, the probability of responding
correctly for the examinees with low abilities and high propensity
to omit will be asymptotic to zero, given that they are more likely
to omit. Since the ML estimate of the pseudo-guessing parameter
reflects mostly the guessing probability for subjects with low
ξ (where the density of ξ is maximum in the data used) and
predicts lower asymptote higher than zero, the proficiency scores
for examinees with low θ and high ξ will be underestimated.

On the other hand, the B-MIRTMC ability scores were
systematically overestimated for most groups of proportions of
omitted responses. As indicated previously, by not accounting
for guessing in the B-MIRTMC, a correct guess may be attributed
to having a certain level of knowledge, which can lead to
overestimated abilities of the less proficient examinees.

Although the models significantly differ for the ability
estimates of the examinees with a missing proportion of more
than 0.1 or 0.2, no differences in the estimation of the ability
scores between the models were found in the country-level
comparison. This may occur because most of the subjects had no
omitted responses.

5.2.4. Consistency of Propensity to Omit Estimates
Figure 5 depicts the averages of ξ in mathematics and physics
for each country and reflects a clear positive tendency. The
correlation between country averages on the propensity to omit
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FIGURE 3 | The expected contribution to R2 of a single examinee as a function of the ability estimates in the constructed-response items.

FIGURE 4 | Average of the Mathematics ability estimates (Top), and

incremental validity of the MCMO Mathematics scores (Bottom) for groups

with different proportions of omitted responses.

in the different test contents had a magnitude of 0.86 (p < 0.01).
This indicates that the between-country differences in propensity
to omit were consistent across the test contents.

6. DISCUSSION

The main objective of this article was to present a new
two-dimensional model accounting for omissions in multiple-
choice items, analyzing the accuracy of its estimates under
different testing conditions, and comparing it with two common

FIGURE 5 | Country averages of the propensity to omit in TIMSS Advanced

2015 under the MCMO.

approaches: Holman and Glas’ Between-Item Multi-dimensional
IRT model and the 3PL model with incorrect answer substitution
for omissions. The proposed model extends the Multiple-Choice
Model originally proposed by Samejima (1979) and Thissen
and Steinberg (1984) by adding a probability to omit which
is conditional on being in a don’t know latent state, which
is governed by a latent propensity to omit. Its theoretical
formulations are based on behavioral assumptions about the
omission process and has similarities with the rationale proposed
by Lord (1983), with some differences on the specification of the
functions for having a preference and choosing a response, and
enabling the estimation of the pseudo-guessing parameter.

The accuracy of the recovery of the MCMO parameters was
encouraging. In general, the estimation of scale and position
parameters was highly precise in all simulated sample sizes, test
lengths and expected proportions of omissions. Although the
correlations between the true and the estimated d′ parameters
were reasonably low, these innaccuracies appeared to have a
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negligible effect on the estimation of the low ability levels.
Furthermore, the RISE values were good, being similar to the
observations made using other unidimensional dichotomous
models (Chen and Thissen, 1999). The ability levels were also well
recovered in all conditions.

Conversely, the accuracy of the estimation of the propensity
to omit appeared to strongly depend on the ability level of
the examinees, the number of items and the percentage of
omissions in the data. In a separate analysis using simulees
with the 20% lowest θ and 20% highest θ , the ξ estimates
were considerably more accurate for the first group. This
suggests that the propensity to omit may be reliable for the
less proficient examinees, but not for those with moderate or
high ability. Unfortunately, this problem may be inherent to
omitted responses in general, since as proficiency increases, less
subjects will omit given that they may think that they know
the answers. Therefore, the propensity to omit will be imprecise
whenever there are few omitted responses, regardless of the
model used. One possible solution for this problem may be
to use the MCMO with items from different scales, as, for
example, a set of items measuring Reading and another set
measuring Science, and assuming a single propensity to omit
underlying the response process to all the items. In this case,
the examinees that excel in one scale may not be as proficient
in the other scale, so it would be more likely for them to be
in the DK state and decide to omit some items. Assuming a
multivariate normal distribution of the ability traits and given
its density function, as the correlation between abilities gets
lower, the expected proportion of examinees with high levels
of both ability traits is smaller. Furthermore, given that the
precision of ξ depends on an examinee’s proportion of omitted
responses and that the later depends on the probability of
being in the DK state (which is a function of ability), if the
correlation between abilities is low, fewer examinees are likely
to be in DK in the items of both scales. Either way, the
interpretations about the propensity to omit must be made
carefully and it is advisable to inform the standard error of the
estimates.

The analyses with the TIMSS Advanced 2015 data offered
moderate to high reliabilities of the MCMO ability scores in both
mathematics and physics. Differently, as initially suggested by the
results on the parameter recovery, the conditional reliability of
ξ was acceptable mainly at low abilities and central propensities
to omit. The fitness superiority of the MCMO vs. the 3PL-IAS
and the B-MIRTMC was noteworthy, since the χ2∗/df ratios for
the MCMO were below three in all of the items. By contrast,
the 3PL-IAS offered the worst results, with 5 to 6 items heavily
misfitted. The application of the MCMO offered significant
increments in the convergent validity between the scores from
the multiple-choice and constructed-response items, with an
increase of around 0.02 to 0.04 in R2. As shown in Figure 3,
these increments seemed to be higher for those subjects with
low abilities. Finally, the high correlation between the country
means of ξ in the mathematics and the physics items suggest
that (1) the propensity to omit is somehow related to the
country of residence of the examinees, and (2) the propensity
to omit is independent of the test contents. In general, the

MCMO offered good psychometric properties and proved to
be superior to both the 3PL-IAS and the B-MIRTMC with real
data.

One main assumption of the MCMO is that the examinees
deliberately decide whether to omit or not once they consider
they do not know the answer. For this to be true, examinees
must pay attention to the statements and fully process each item.
An important limitation of the second study of this article is
the possible presence of subjects with low motivation toward the
assessment, which may affect the validity of our interpretations
(Finn, 2015). This limitation is common to the studies with low
stakes testing, and there is still no consensus on how to address
it. Recent studies have found that more than 20% of the subjects
may respond with little effort, engaging in rapid guessing, not
giving enough thought to the items or not reaching the end of
the test (Hoyt, 2001). Low-motivation behaviors can lead to an
underestimation of what a student actually knows (Wise et al.,
2006) andmay bias the psychometric properties of the test scores,
such as underestimating convergent validity and overestimating
the internal consistency (Wise et al., 2009). To improve the
construct validity, some studies suggest filtering out unmotivated
examinees based on their responses to self-report motivation
questionnaires or on their response times (Wise and Kong, 2005;
Finn, 2015). At the time, however, no study has investigated
how motivation affects omitted responses. Given that TIMSS
Advanced 2015 does not include any of these measures, we
were not able to investigate how the low motivation may affect
the validity of the results of this article. Future studies may
consider analyzing, for example, the time dedicated in omitting
as an indicator of whether examinees fully process the items they
skip.

This study opens various possibilities for future research.
Further investigations should be carried out to analyze to what
extent these results can be generalized, for example, for items
with more than three alternatives, for more than one ability
trait or for different assumptions about the trait distributions
(e.g., Köhler et al., 2015; Rose et al., 2017). Also, treatments of
the not-reached items were not within the scope of this article
and therefore were not considered. Further modifications of the
MCMO can allow the inclusion these indicators, as, for example,
using of the examinees’ count or proportion of not-reached items
as a predictor of θ and ξ in a latent regression model (e.g., Rose
et al., 2010, 2017; Pohl et al., 2014).
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