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This article introduces confirmatory composite analysis (CCA) as a structural equation

modeling technique that aims at testing composite models. It facilitates the

operationalization and assessment of design concepts, so-called artifacts. CCA entails

the same steps as confirmatory factor analysis: model specification, model identification,

model estimation, and model assessment. Composite models are specified such

that they consist of a set of interrelated composites, all of which emerge as linear

combinations of observable variables. Researchers must ensure theoretical identification

of their specified model. For the estimation of the model, several estimators are available;

in particular Kettenring’s extensions of canonical correlation analysis provide consistent

estimates. Model assessment mainly relies on the Bollen-Stine bootstrap to assess the

discrepancy between the empirical and the estimatedmodel-implied indicator covariance

matrix. A Monte Carlo simulation examines the efficacy of CCA, and demonstrates that

CCA is able to detect various forms of model misspecification.

Keywords: artifacts, composite modeling, design research, Monte Carlo simulation study, structural equation

modeling, theory testing

1. INTRODUCTION

Structural equation modeling with latent variables (SEM) comprises confirmatory factor analysis
(CFA) and path analysis, thus combining methodological developments from different disciplines
such as psychology, sociology, and economics, while covering a broad variety of traditional
multivariate statistical procedures (Bollen, 1989; Muthén, 2002). It is capable of expressing
theoretical concepts by means of multiple observable indicators to connect them via the structural
model as well as to account for measurement error. Since SEM allows for statistical testing of
the estimated parameters and even entire models, it is an outstanding tool for confirmatory
purposes such as for assessing construct validity (Markus and Borsboom, 2013) or for establishing
measurement invariance (Van de Schoot et al., 2012). Apart from the original maximum likelihood
estimator, robust versions and a number of alternative estimators were also introduced to encounter
violations of the original assumptions in empirical work, such as the asymptotic distribution free
(Browne, 1984) or the two-stage least squares (2SLS) estimator (Bollen, 2001). Over time, the initial
model has been continuously improved upon to account for more complex theories. Consequently,
SEM is able to deal with categorical (Muthén, 1984) as well as longitudinal data (Little, 2013) and
can be used to model non-linear relationships between the constructs (Klein and Moosbrugger,
2000).1

1For more details and a comprehensive overview, we referred to the following text books: Hayduk (1988), Bollen (1989),

Marcoulides and Schumacker (2001), Raykov and Marcoulides (2006), Kline (2015), and Brown (2015).
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Researchers across many streams of science appreciate SEM’s
versatility as well as its ability to test common factor models. In
particular, in the behavioral and social sciences, SEM enjoys wide
popularity, e.g., in marketing (Bagozzi and Yi, 1988; Steenkamp
and Baumgartner, 2000), psychology (MacCallum and Austin,
2000), communication science (Holbert and Stephenson, 2002),
operations management (Shah and Goldstein, 2006), and
information systems (Gefen et al., 2011),—to name a few.
Additionally, beyond the realm of behavioral and social sciences,
researchers have acknowledged the capabilities of SEM, such as
in construction research (Xiong et al., 2015) or neurosciences
(McIntosh and Gonzalez-Lima, 1994).

Over the last decades, the operationalization of the theoretical
concept and the common factor has become more and more
conflated such that hardly any distinction is made between the
terms (Rigdon, 2012). Although the common factor model has
demonstrated its usefulness for concepts of behavioral research
such as traits and attitudes, the limitation of SEM to the factor
model is unfortunate because many disciplines besides and even
within social and behavioral sciences do not exclusively deal
with behavioral concepts, but also with design concepts (so-
called artifacts) and their interplay with behavioral concepts. For
example Psychiatry: on the one hand it examines clinical relevant
behavior to understand mental disorder, but on the other hand
it also aims at developing mental disorder treatments (Kirmayer
and Crafa, 2014). Table 1 displays further examples of disciplines
investigating behavioral concepts and artifacts.

Typically, the common factor model is used to operationalize
behavioral concepts, because it is well matched with the general
understanding of measurement (Sobel, 1997). It assumes that
each observable indicator is a manifestation of the underlying
concept that is regarded as their common cause (Reichenbach,
1956), and therefore fully explains the covariation among its
indicators. However, for artifacts the idea of measurement is
unrewarding as they are rather constructed to fulfill a certain
purpose. To account for the constructivist character of the
artifact, the composite has been recently suggested for its
operationalization in SEM (Henseler, 2017). A composite is
a weighted linear combination of observable indicators, and
therefore in contrast to the common factor model, the indicators
do not necessarily share a common cause.

At present, the validity of composite models cannot be
systematically assessed. Current approaches are limited to
assessing the indicators’ collinearity (Diamantopoulos and
Winklhofer, 2001) and their relations to other variables in the
model (Bagozzi, 1994). A rigorous test of composite models in
analogy to CFA does not exist so far. Not only does this situation
limit the progress of composite models, it also represents an
unnecessary weakness of SEM as its application is mainly
limited to behavioral concepts. For this reason, we introduce
confirmatory composite analysis (CCA) wherein the concept, i.e.,
the artifact, under investigation is modeled as a composite. In this
way, we make SEM become accessible to a broader audience. We
show that the composite model relaxes some of the restrictions
imposed by the common factor model. However, it still provides
testable constraints, which makes CCA a full-fledged method for
confirmatory purposes. In general, it involves the same steps as

TABLE 1 | Examples of behavioral concepts and artifacts across several

disciplines.

Discipline Behavioral Concept Design Concept (Artifact)

Criminology Criminal activity Prevention strategy

Lussier et al., 2005 Crowley, 2013

Ecology Sediment contamination Abiotic stress

Malaeb et al., 2000 Grace et al., 2010

Education Student’s anxiety Teacher development program

Fong et al., 2016 Lee, 2005

Epidemiology Nutritional Risk Public health intervention

Keller, 2006 Wight et al., 2015

Information

Systems

Perceived ease of use User-interface design

Venkatesh et al., 2003 Vance et al., 2015

Marketing Brand attitude Marketing mix

Spears and Singh, 2004 Borden, 1964

CFA or SEM, without assuming that the underlying concept is
necessarily modeled as a common factor.

While there is no exact instruction on how to apply SEM, a
general consensus exists that SEM and CFA comprise at least the
following four steps: model specification, model identification,
model estimation, and model assessment (e.g., Schumacker and
Lomax, 2009, Chap. 4). To be in line with this proceeding,
the remainder of the paper is structured as follows: Section
2 introduces the composite model providing the theoretical
foundation for the CCA and how the same can be specified;
Section 3 considers the issue of identification in CCA and states
the assumptions as being necessary to guarantee the unique
solvability of the composite model; Section 4 presents one
approach that can be used to estimate the model parameters
in the framework of CCA; Section 5 provides a test for the
overall model fit to assess how well the estimated model fits the
observed data; Section 6 assesses the performance of this test
in terms of a Monte Carlo simulation and presents the results;
and finally, the last section discusses the results and gives an
outlook for future research. A brief example on how to estimate
and assess a composite model within the statistical programming
environment R is provided in the Supplementary Material.

2. SPECIFYING COMPOSITE MODELS

Composites have a long tradition in multivariate data analysis
(Pearson, 1901). Originally, they are the outcome of dimension
reduction techniques, i.e., the mapping of the data to a lower
dimensional space. In this respect, they are designed to capture
the most important characteristics of the data as efficiently as
possible. Apart from dimension reduction, composites can serve
as proxies for concepts (MacCallum and Browne, 1993). In
marketing research, Fornell and Bookstein (1982) recognized
that certain concepts like marketing mix or population change
are not appropriately modeled by common factors and instead
employed a composite to operationalize these concepts. In the
recent past, more and more researchers recognized composites
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as a legitimate approach to operationalize concepts, e.g., in
marketing science (Diamantopoulos and Winklhofer, 2001;
Rossiter, 2002), business research (Diamantopoulos, 2008),
environmental science (Grace and Bollen, 2008), and in design
research (Henseler, 2017).

In social and behavioral sciences, concepts are often
understood as ontological entities such as abilities or attitudes,
which rests on the assumption that the concept of interest exists
in nature, regardless of whether it is the subject of scientific
examination. Researchers follow a positivist research paradigm
assuming that existing concepts can be measured.

In contrast, design concepts can be conceived as artifacts,
i.e., objects designed to serve explicit goal(s) (Simon, 1969).
Hence, they are inextricably linked to purposefulness, i.e.,
teleology (Horvath, 2004; Baskerville and Pries-Heje, 2010;
Møller et al., 2012). This way of thinking has its origin
in constructivist epistemology. The epistemological distinction
between the ontological and constructivist nature of concepts has
important implications when modeling the causal relationships
among the concepts and their relationships to the observable
indicators.

To operationalize behavioral concepts, the common factor
model is typically used. It seeks to explore whether a certain
concept exists by testing if collected measures of a concept
are consistent with the assumed nature of that concept. It is
based on the principle of common cause (Reichenbach, 1956),
and therefore assumes that all covariation within a block of
indicators can be fully explained by the underlying concept.
On the contrary, the composite model can be used to model
artifacts as a linear combination of observable indicators. In
doing so, it is more pragmatic in the sense that it examines
whether a built artifact is useful at all. Figure 1 summarizes the
differences between behavioral concepts and artifacts and their
operationalization in SEM.

In the following part, we present the theoretical foundation
of the composite model. Although the formal development of
the composite model and the composite factor model (Henseler
et al., 2014), were already laid out by Dijkstra (2013, 2015), it has
not been put into a holistic framework yet. In the following, it
is assumed that each artifact is modeled as a composite cj with
j = 1, . . . , J.2 By definition, a composite is completely determined
by a unique block of Kj indicators, x

′
j =

(

xj1 . . . xjKj

)

, cj = w
′
jxj.

The weights of block j are included in the column vector wj

of length Kj. Usually, each weight vector is scaled to ensure that
the composites have unit variance (see also Section 3). Here, we
assume that each indicator is connected to only one composite.
The theoretical covariance matrix 6 of the indicators can be
expressed as a partitioned matrix as follows:

6 =











611 612 . . . 61J

622 . . . 62J

. . .
...

6JJ











. (1)

2In general, models containing common factors and composites are also

conceivable but have not been considered here.

The intra-block covariance matrix 6jj of dimension Kj × Kj

is unconstrained and captures the covariation between the
indicators of block j; thus, this effectively allows the indicators
of one block to freely covary. Moreover, it can be shown that
the indicator covariance matrix is positive-definite if and only if
the following two conditions hold: (i) all intra-block covariance
matrices are positive-definite, and (ii) the covariance matrix of
the composite is positive-definite (Dijkstra, 2015, 2017). The
covariances between the indicators of block j and l are captured
in the inter-block covariance matrix 6jl, with j 6= l of dimension
Kj × Kl. However, in contrast to the intra-block covariance
matrix, the inter-block covariance matrix is constrained, since
by assumption, the composites carry all information between the
blocks:

6jl = ρjl6jjwjw
′
l6ll = ρjlλjλ

′
l , (2)

where ρjl = w
′
j6jlwl equals the correlation between the

composites cj and cl. The vector λj = 6jjwj of length Kj contains
the composite loadings, which are defined as the covariances
between the composite cj and the associated indicators xj.
Equation 2 is highly reminiscent of the corresponding equation
where all concepts are modeled as common factors instead of
composites. In a common factor model, the vector λj captures the
covariances between the indicators and its connected common
factor, and ρjl represents the correlation between common factor
j and l. Hence, both models show the rank-one structure for the
covariance matrices between two indicator blocks.

Although the intra-block covariancematrices of the indicators
6jj are not restricted, we emphasize that the composite model
is still a model from the point of view of SEM. It assumes that
all information between the indicators of two different blocks is
conveyed by the composite(s), and therefore, it imposes rank-
one restrictions on the inter-block covariance matrices of the
indicators (see Equation 2). These restrictions can be exploited
for testing the overall model fit (see Section 5). It is emphasized
that the weights wj producing these matrices are the same across
all inter-block covariance matrices 6jl with l = 1, ..., J and l 6= j.
Figure 2 illustrates an example of a composite model.

The artifact under investigation is modeled as the composite
c, illustrated by a hexagon, and the observable indicators
are represented by squares. The unconstrained covariance σ12
between the indicators of block x

′ =
(

x1 x2
)

forming the
composite is highlighted by a double-headed arrow.

The observable variables y and z do not form the composite.
They are allowed to freely covary among each other as well as with
the composite. For example, they can be regarded as antecedents
or consequences of the modeled artifact.

To emphasize the difference between the composite model
and the common factor model typically used in CFA, we depict
the composite model as composite factor model (Dijkstra, 2013;
Henseler et al., 2014). The composite factor model has the same
model-implied indicator covariance matrix as the composite
model, but the deduction of the model-implied covariances and
the comparison to the common factor is more straightforward.
Figure 3 shows the same model as Figure 2 but in terms of a
composite factor representation.
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FIGURE 1 | Two types of concepts: behavioral concepts vs. artifacts.

The composite loading λi, i = 1, 2 captures the covariance
between the indicator xi and the composite c. In general, the
error terms are included in the vector ǫ, explaining the variance
of the indicators and the covariances between the indicators of
one block, which are not explained by the composite factor. As
the composite model does not restrict the covariances between
the indicators of one block, the error terms are allowed to
freely covary. The covariations among the error terms as well
as their variances are captured in matrix 2. The model-implied
covariance matrix of the example composite model can be
displayed as follows:

6 =











y x1 x2 z

σyy

λ1σyc σ11

λ2σyc λ1λ2 + θ12 σ22

σyz λ1σcz λ2σcz σzz











. (3)

In comparison to the same model using a common factor instead
of a composite, the composite model is less restrictive as it allows
all error terms of one block to be correlated, which leads to a
more general model (Henseler et al., 2014). In fact, the common
factor model is always nested in the composite model since it uses
the same restriction as the composite model; but additionally, it
assumes that (some) covariances between the error terms of one
block are restricted (usually to zero). Under certain conditions,
it is possible to rescale the intra- and inter-block covariances of
a composite model to match those of a common factor model
(Dijkstra, 2013; Dijkstra and Henseler, 2015).

FIGURE 2 | Example of a composite model.

3. IDENTIFYING COMPOSITE MODELS

Like in SEM and CFA, model identification is an important
issue in CCA. Since analysts can freely specify their models, it
needs to be ensured that the model parameters have a unique
solution (Bollen, 1989, Chap. 8). Therefore, model identification
is necessary to obtain consistent parameter estimates and to
reliably interpret them (Marcoulides and Chin, 2013).

In general, the following three states of model identification
can be distinguished: under-identified, just-identified, and
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FIGURE 3 | Example of a composite model displayed as composite factor

model.

over-identified.3 An under-identified model, also known as
not-identified model, offers several sets of parameters that are
consistent with the model constraints, and thus, no unique
solution for the model parameters exists. Therefore, only
questionable conclusions can be drawn. In contrast, a just-
identified model provides a unique solution for the model
parameters and has the same number of free parameters as non-
redundant elements of the indicator covariance matrix (degrees
of freedom (df) are 0). In empirical analysis, such models
cannot be used to evaluate the overall model fit since they
perfectly fit the data. An over-identified model also has a unique
solution; however, it provides more non-redundant elements of
the indicator covariance matrix than model parameters (df > 0).
This can be exploited in empirical studies for assessing the overall
model fit, as these constraints should hold for a sample within the
limits of sampling error if the model is valid.

A necessary condition for ensuring identification is to
normalize each weight vector. In doing so, we assume that
all composites are scaled to have a unit variance, w′

j6jjwj =

1.4 Besides the scaling of the composite, each composite must
be connected to at least one composite or one variable not
forming a composite. As a result, at least one inter-block
covariance matrix 6jl, l = 1, ..., J with l 6= j satisfies the
rank-one condition. Along with the normalization of the weight
vectors, all model parameters can be uniquely retrieved from

3The existing literature sometimes mentions empirical (under-)identification in the

context of model identification (Kenny, 1979). Since this expression refers to an

issue of estimation rather than to the issue of model identification, this topic is not

discussed in the following.
4Another way of normalization is to fix one weight of each block to a certain

value. Furthermore, we ignore trivial regularity assumptions such as weight

vectors consisting of zeros only; and similarly, we ignore cases where intra-block

covariance matrices are singular.

the indicator covariance matrix since there is a non-zero inter-
block covariance matrix for every loading vector. Otherwise, if
a composite ci is isolated in the nomological network, all inter-
block covariances 6jl, l = 1, ..., J with l 6= j, belonging to
this composite are of rank zero, and thus, the weights forming
this composite cannot be uniquely retrieved. Although the non-
isolation condition is required for identification, it also matches
the idea of an artifact that is designed to fulfill a certain
purpose. Without considering the artifact’s antecedents and/or
consequences, the artifact’s purposefulness cannot be judged.

In the following part, we give a description on how the
number of degrees of freedom is counted in case of the composite
model.5 It is given by the difference between the number of
non-redundant elements of the indicator population covariance
matrix 6 and the number of free parameters in the model. The
number of free model parameters is given by the number of
covariances among the composites, the number of covariances
between composites and indicators not forming a composite,
the number of covariances among indicators not forming a
composite, the number of non-redundant off-diagonal elements
of each intra-block covariance matrix, and the number of
weights. Since we fix composite variances to one, one weight of
each block can be expressed by the remaining ones of this block.
Hence, we regain as many degrees of freedom as fixed composite
variances, i.e., as blocks in the model. Equation 4 summarizes
the way of determining the number of degrees of freedom of a
composite model.

df = number of non-redundant off-diagonal elements of the

indicator covariance matrix

− number of free correlations among the composites

− number of free covariances between the composites and

indicators not forming a composite

− number of covariances among the indicators not forming

a composite (4)

− number of free non-redundant off-diagonal elements of

each intra-block covariance matrix

− number of weights

+ number of blocks

To illustrate our approach to calculating the number
of degrees of freedom, we consider the composite model
presented in Figure 2. As described above, the model consists
of four (standardized) observable variables; thus, the indicator
correlation matrix has six non-redundant off-diagonal elements.
The number of free model parameters is counted as follows: no
correlations among the composites as the models consists of only
one composite, two correlations between the composite and the
observable variables not forming a composite (σyc and σcz), one
correlation between the variables not forming a composite (σyz),

5The number of degrees of freedom can be helpful at determining whether a model

is identified since an identified model has a non-negative number of degrees of

freedom.
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one non-redundant off-diagonal of the intra-block correlation
matrix (σ12), and two weights (w1 and w2) minus one, the
number of blocks. As a result, we obtain the number of degrees
of freedom as follows: df = 6− 0− 2− 1− 1− 2+ 1 = 1. Once
identification of the composite model is ensured, in a next step
the model can be estimated.

4. ESTIMATING COMPOSITE MODELS

The existing literature provides various ways of constructing
composites from blocks of indicators. The most common
among them are principal component analysis (PCA, Pearson,
1901), linear discriminant analysis (LDA, Fisher, 1936),
and (generalized) canonical correlation analysis ((G)CCA,
Hotelling, 1936; Kettenring, 1971). All these approaches seek
composites that “best” explain the data and can be regarded as
prescriptions for dimension reduction (Dijkstra and Henseler,
2011). Further approaches are partial least squares path
modeling (PLS-PM, Wold, 1975), regularized general canonical
correlation analysis (RGCCA, Tenenhaus and Tenenhaus,
2011), and generalized structural component analysis (GSCA,
Hwang and Takane, 2004). The use of predefined weights is
also possible.

We follow Dijkstra (2010) and apply GCCA in a first step
to estimate the correlation between the composites.6 In the
following part, we give a brief description of GCCA. The vector
of indicators x of length K is split up into J subvectors xj, so
called blocks, each of dimension (Kj × 1) with j = 1, . . . , J. We
assume that the indicators are standardized to have means of
zero and unit variances. Moreover, each indicator is connected
to one composite only. Hence, the correlation matrix of the
indicators can be calculated as 6 = E(xx′) and the intra-block
correlation matrix as 6jj = E(xjx

′
j). Moreover, the correlation

matrix of the composites cj = x
′
jwj is calculated as follows:

6c = E(cc′). In general, GCCA chooses the weights to maximize
the correlation between the composites. In doing so, GCCA
offers the following options: sumcor, maxvar, ssqcor, minvar,
and genvar.7

In the following part, we use maxvar under the constraint
that each composite has a unit variance, w′

j6jjwj = 1, to

estimate the weights, the composites, and the resulting composite
correlations.8 In doing so, the weights are chosen tomaximize the
largest eigenvalue of the composite correlation matrix. Thus, the
total variation of the composites is explained as well as possible by
one underlying “principal component,” and the weights to form
the composite cj are calculated as follows (Kettenring, 1971):

wj = 6
− 1

2
jj ãj/

√

ã
′
jãj. (5)

The subvector ãj, of length J, corresponds to the largest

eigenvalue of the matrix 6
− 1

2
D 66

− 1
2

D , where the matrix 6D, of

6GCCA builds composites in a way that they are maximally correlated.
7For an overview we refer to Kettenring (1971).
8In general, GCCA offers several composites (canonical variates); but in our study,

we have focused only on the canonical variates of the first stage.

dimension J × J, is a block-diagonal matrix containing the intra-
block correlation matrices 6jj, j = 1, ..., J on its diagonal. To
obtain the estimates of the weights, the composites, and their
correlations, the population matrix 6 is replaced by its empirical
counterpart S.

5. ASSESSING COMPOSITE MODELS

5.1. Tests of Overall Model Fit
In CFA and factor-based SEM, a test for overall model fit has
been naturally supplied by the maximum-likelihood estimation
in the form of the chi-square test (Jöreskog, 1967), while maxvar
lacks in terms of such a test. In the light of this, we propose
a combination of a bootstrap procedure with several distance
measures to statistically test how well the assumed composite
model fits to the collected data.

The existing literature provides several measures with which
to assess the discrepancy between the perfect fit and the model
fit. In fact, every distance measure known from CFA can be used
to assess the overall fit of a composite model. They all capture
the discrepancy between the sample covariance matrix S and the

estimated model-implied covariance matrix 6̂ = 6(θ̂) of the
indicators. In our study, we consider the following three distance
measures: squared Euclidean distance (dL), geodesic distance
(dG), and standardized root mean square residual (SRMR).

The squared Euclidean distance between the sample and
the estimated model-implied covariance matrix is calculated as
follows:

dL =
1

2

K
∑

i=1

K
∑

j=1

(sij − σ̂ij)
2, (6)

where K is the total number of indicators, and sij and σ̂ij are
the elements of the sample and the estimated model-implied
covariance matrix, respectively. It is obvious that the squared

Euclidean distance is zero for a perfectly fitting model, 6̂ = S.
Moreover, the geodesic distance stemming from a class of

distance functions proposed by Swain (1975) can be used to
measure the discrepancy between the sample and estimated
model-implied covariance matrix. It is given by the following:

dG =
1

2

K
∑

i=1

(log(ϕi))
2, (7)

where ϕi is the i-th eigenvalue of the matrix S
−1

6̂ and K is the
number of indicators. The geodesic distance is zero when and
only when all eigenvalues equal one, i.e., when and only when
the fit is perfect.

Finally, the SRMR (Hu and Bentler, 1999) can be used to assess
the overall model fit. The SRMR is calculated as follows:

SRMR =

√

√

√

√

√



2

K
∑

i=1

i
∑

j=1

((sij − σ̂ij)/(siisjj))2



 /(K(K + 1)), (8)
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where K is the number of indicators. It reflects the average
discrepancy between the empirical and the estimated model-
implied correlationmatrix. Thus, for a perfectly fittingmodel, the
SRMR is zero, as σ̂ij equals sij.

Since all distance measures considered are functions of the
sample covariance matrix, a procedure proposed by Beran and
Srivastava (1985) can be used to test the overall model fit:
H0 : 6 = 6(θ).9 The reference distribution of the distance
measures as well as the critical values are obtained from the
transformed sample data as follows:

XS
− 1

2 6̂

1
2 , (9)

where the data matrix x of dimension (N × K) contains the
N observations of all K indicators. This transformation ensures
that the new dataset satisfies the null hypothesis; i.e., the sample
covariancematrix of the transformed dataset equals the estimated
model-implied covariance matrix. The reference distribution of
the distance measures is obtained by bootstrapping from the
transformed dataset. In doing so, the estimated distance based on
the original dataset can be compared to the critical value from
the reference distribution (typically the empirical 95% or 99%
quantile) to decide whether the null hypothesis,H0 : 6 = 6(θ) is
rejected (Bollen and Stine, 1992).

5.2. Fit Indices for Composite Models
In addition to the test of overall model fit, we provide some fit
indices as measures of the overall model fit. In general, fit indices
can indicate whether a model is misspecified by providing an
absolute value of the misfit; however, we advise using them with
caution as they are based on heuristic rules-of-thumb rather than
statistical theory. Moreover, it is recommended to calculate the
fit indices based on the indicator correlation matrix instead of
the covariance matrix.

The standardized root mean square residual (SRMR)
was already introduced as a measure of overall model fit
(Henseler et al., 2014). As described above, it represents the
average discrepancy between the sample and the model-
implied indicator correlation matrix. Values below 0.10 and,
following a more conservative view, below 0.08 indicate
a good model fit (Hu and Bentler, 1998). However, these
threshold values were proposed for common factor models
and their usefulness for composite models needs to be
investigated.

Furthermore, the normed fit index (NFI) is suggested as a
measure of goodness of fit (Bentler and Bonett, 1980). It measures
the relative discrepancy between the fit of the baseline model
and the fit of the estimated model. In this context, a model
where all indicators are assumed to be uncorrelated (the model-
implied correlation matrix equals the unit matrix) can serve
as a baseline model (Lohmöller, 1989, Chap. 2.4.4). To assess
the fit of the baseline model and the estimated model, several
measures can be used, e.g., the log likelihood function used in

9This procedure is known as the Bollen-Stine bootstrap (Bollen and Stine, 1992) in

the factor-based SEM literature. The model must be over-identified for this test.

CFA or the geodesic distance. Values of the NFI close to one
imply a good model fit. However, cut-off values still need to be
determined.

Finally, we suggest considering the root mean square residual
covariance of the outer residuals (RMStheta) as a further fit
index (Lohmöller, 1989). It is defined as the square root of the
average residual correlations. Since the indicators of one block are
allowed to be freely correlated, the residual correlations within
a block should be excluded and only the residual correlations
across the blocks should be taken into account during its
calculation. Small values close to zero for the RMStheta indicate
a good model fit. However, threshold values still need to be
determined.

6. A MONTE CARLO SIMULATION

In order to assess our proposed procedure of statistically testing
the overall model fit of composite models and to examine
the behavior of the earlier presented discrepancy measures, we
conduct a Monte Carlo simulation. In particular, we investigate
the type I error rate (false positive rate) and the power, which
are the most important characteristics of a statistical test. In
designing the simulation, we choose a number of concepts used
several times in the literature to examine the performance of fit
indices and tests of overall model fit in CFA: a model containing
two composites and a model containing three composites (Hu
and Bentler, 1999; Heene et al., 2012). To investigate the power of
the test procedure, we consider various misspecifications of these
models. Figures 4 and 5 summarize the conditions investigated
in our simulation study.

6.1. Model Containing Two Composites
All models containing two composites are estimated using the
specification illustrated in the last column of Figure 4. The
indicators x11 to x13 are specified to build composite c1, while
the remaining three indicators build composite c2. Moreover, the
composites are allowed to freely correlate. The parameters of
interest are the correlation between the two composites, and the
weights, w11 to w23. As column “Population model” of Figure 4
shows, we consider three types of population models with two
composites.

6.1.1. Condition 1: No Misspecification

First, in order to examine whether the rejection rates of the
test procedure are close to the predefined significance level in
cases in which the null hypothesis is true, a population model is
considered that has the same structure as the specifiedmodel. The
correlation between the two composites is set to ρ = 0.3 and the
composites are formed by its connected standardized indicators
as follows: ci = x

′
iwi with i = 1, 2, where w′

1 =
(

0.6 0.2 0.4
)

and
w
′
2 =

(

0.4 0.2 0.6
)

. All correlations between the indicators of
one block are set to 0.5, which leads to the population correlation
matrix given in Figure 4.

6.1.2. Condition 2: Confounded Indicators

The second condition is used to investigate whether the test
procedure is capable of detecting misspecified models. It presents
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FIGURE 4 | Simulation design for the model containing two composites.

FIGURE 5 | Simulation design for the model containing three composites.

a situation where the researcher falsely assigns two indicators to
wrong constructs. The correlation between the two composites
and the weights are the same as in population model 1: ρ =

0.3, w′
1 =

(

0.6 0.2 0.4
)

, and w
′
2 =

(

0.4 0.2 0.6
)

. However, in
contrast to population model 1, the indicators x13 and x21 are
interchanged. Moreover, the correlations among all indicators
of one block are 0.5. The population correlation matrix of the
second model is presented in Figure 4.

6.1.3. Condition 3: Unexplained Correlation

The third condition is chosen to further investigate the
capabilities of the test procedure to detect misspecified models.

It shows a situation where the correlation between the two
indicators x13 and x21 is not fully explained by the two
composites.10 As in the two previously presented population
models, the two composites have a correlation of ρ = 0.3.
The correlations among the indicators of one block are set to
0.5, and the weights for the construction of the composites
are set to w

′
1 =

(

0.6 0.2 0.4
)

, and w
′
2 =

(

0.4 0.2 0.6
)

. The
population correlation matrix of the indicators is presented in
Figure 4.

10The model-implied correlation between the two indicators is calculated as

follows, 0.8 · 0.3 · 0.8 6= 0.5.
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6.2. Model Containing Three Composites
Furthermore, we investigate a more complex model consisting
of three composites. Again, each composite is formed by three
indicators, and the composites are allowed to freely covary.
The column “Estimated model” of Figure 5 illustrates the
specification to be estimated in case of three composites. We
assume that the composites are built as follows: c1 = x

′
1w1,

c2 = x
′
2w2, and c3 = x

′
3w3. Again, we examine two different

population models.

6.2.1. Condition 4: No Misspecification

The fourth condition is used to further investigate whether the
rejection rates of the test procedure are close to the predefined
significance level in cases in which the null hypothesis is true.
Hence, the structure of the fourth population model matches

the specified model. All composites are assumed to be freely
correlated. In the population, the composite correlations are set
to ρ12 = 0.3, ρ13 = 0.5, and ρ23 = 0.4. Each composite is built
by three indicators using the following population weights: w′

1 =
(

0.6 0.4 0.2
)

, w′
2 =

(

0.3 0.5 0.6
)

, and w
′
3 =

(

0.4 0.5 0.5
)

. The
indicator correlations of each block can be read from Figure 5.
The indicator correlation matrix of population model 4 is given
in Figure 5.

6.2.2. Condition 5: Unexplained Correlation

In the fifth condition, we investigate a situation where the
correlation between two indicators is not fully explained by the
underlying composites, similar to what is observed in Condition
3. Consequently, population model 5 does not match the model
to be estimated and is used to investigate the power of the

FIGURE 6 | Rejection rates for population model 1.
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FIGURE 7 | Rejection rates for population model 2 and 3.

overall model test. It equals population model 4 with the
exception that the correlation between the indicators x13 and x21
is only partly explained by the composites. Since the original
correlation between these indicators is 0.084, a correlation of
0.25 presents only a weak violation. The remaining model
stays untouched. The population correlation matrix is illustrated
in Figure 5.

6.3. Further Simulation Conditions and
Expectations
To assess the quality of the proposed test of the overall
model fit, we generate 10,000 standardized samples from
the multivariate normal distribution having zero means and
a covariance matrix according to the respective population
model. Moreover, we vary the sample size from 50 to 1,450

observations (with increments of 100) and the significance level
α from 1% to 10%. To obtain the reference distribution of
the discrepancy measures considered, 200 bootstrap samples are
drawn from the transformed and standardized dataset. Each
dataset is used in the maxvar procedure to estimate the model
parameters.

All simulations are conducted in the statistical programming
environment R (R Core Team, 2016). The samples are drawn
from the multivariate normal distribution using the mvrnorm
function of the MASS packages (Venables and Ripley, 2002).
The results for the test of overall model fit are obtained by
user-written functions11 and the matrixpls package (Rönkkö,
2016).

11These functions are provided by the contact author upon request.
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FIGURE 8 | Rejection rates for population model 4 and 5.

Since population models 1 and 4 fit the respective
specification, we expect rejection rates close to the predefined
levels of significance α. Additionally, we expect that for an
increasing sample size, the predefined significance level is kept
with more precision. For population model 2, 3, and 5, much
larger rejection rates are expected as these population models
do not match the respective specification. Moreover, we expect
that the power of the test to detect misspecifications would
increase along with a larger sample size. Regarding the different
discrepancy measures, we have no expectations, only that the
squared Euclidean distance and the SRMR should lead to
identical results. For standardized datasets, the only difference is
a constant factor that does not affect the order of the observations
in the reference distribution and, therefore, does not affect the
decision about the null hypothesis.

6.4. Results
Figure 6 illustrates the rejection rates for population model
1 i.e., no misspecification. Besides the rejection rates, the
figure also depicts the 95% confidence intervals (shaded area)
constructed around the rejection rates to clarify whether a
rejection rate is significantly different from the predefined
significance level.12

First, as expected, the squared Euclidean distance (dL) as well
as the SRMR lead to identical results. The test using the squared
Euclidean distance and the SRMR rejects the model somewhat
too rarely in case of α = 10% and α = 5% respectively; however,

12The limits of the 95% confidence interval are calculated as, p̂ ±

8−1(0.975)
√

p̂(1− p̂)/10000, where p̂ represents the rejection rate and 8−1() is

the quantile function of the standard normal distribution.
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for an increasing sample size, the rejection rates converge to
the predefined significance level without reaching it. For the
1% significance level, a similar picture is observed; however,
for larger sample sizes, the significance level is retained more
often compared to the larger significance levels. In contrast,
the test using the geodesic distance mostly rejects the model
too often for the 5% and 10% significance level. However, the
obtained rejection rates are less often significantly different from
the predefined significance level compared to the same situation
where the SRMR or the Euclidean distance is used. In case
of α = 1% and sample sizes larger than n = 100, the
test using the geodesic distance rejects the model significantly
too often.

Figure 7 displays the rejection rates for population models
2 and 3. The horizontal line at 80% depicts the commonly
recommended power for a statistical test (Cohen, 1988). For
the two cases where the specification does not match the
underlying data generating process, the test using the squared
Euclidean distance as well as the SRMR has more power than
the test using the geodesic distance, i.e., the test using former
discrepancy measures rejects the wrong model more often.
For model 2 (confounded indicators) the test produces higher
or equal rejection rates compared to model 3 (unexplained
correlation). Furthermore, as expected, the power decreases for
an increasing level of significance and increases with increasing
sample sizes.

Figure 8 depicts the rejection rates for population model 4
and 5. Again, the 95% confidence intervals are illustrated for
population model 4 (shaded area) matching the specification
estimated. Considering population model 4 which matches
the estimated model, the test leads to similar results for all
three discrepancy measures. However, the rejection rate of
the test using the geodesic distance converges faster to the
predefined significance level, i.e., for smaller sample sizes n ≥

100. Again, among the three discrepancy measures considered,
the geodesic distance performs best in terms of keeping the
significance level.

As the extent of misspecification in population model 5 is
minor, the test struggles to detect the model misspecification up
to sample sizes n = 350, regardless of the discrepancy measure
used. However, for sample sizes larger than 350 observations,
the test detects the model misspecification satisfactorily. For
sample sizes larger than 1,050 observations, the misspecification
was identified in almost all cases regardless of the significance
level and the discrepancy measure used. Again, this confirms
the anticipated relationship between sample size and statistical
power.

7. DISCUSSION

We introduced the confirmatory composite analysis (CCA)
as a full-fledged technique for confirmatory purposes that
employs composites to model artifacts, i.e., design concepts. It
overcomes current limitations in CFA and SEM and carries the
spirit of CFA and SEM to research domains studying artifacts.

Its application is appropriate in situations where the research
goal is to examine whether an artifact is useful rather than
to establish whether a certain concept exists. It follows the
same steps usually applied in SEM and enables researchers
to analyze a variety of situations, in particular, beyond the
realm of social and behavioral sciences. Hence, CCA allows for
dealing with research questions that could not be appropriately
dealt with yet in the framework of CFA or more generally
in SEM.

The results of the Monte Carlo simulation confirmed that
CCA can be used for confirmatory purposes. They revealed
that the bootstrap-based test, in combination with different
discrepancy measures, can be used to statistically assess the
overall model fit of the composite model. For specifications
matching the population model, the rejection rates were in
the acceptable range, i.e., close to the predefined significance
level. Moreover, the results of the power analysis showed that
the boostrap-based test can reliably detect misspecified models.
However, caution is needed in case of small sample sizes where
the rejection rates were low, which means that misspecified
models were not reliably detected.

In future research, the usefulness of the composite model
in empirical studies needs to be examined, accompanied and
enhanced by simulation studies. In particular, the extensions
outlined by Dijkstra (2017); to wit, interdependent systems of
equations for the composites estimated by classical econometric
methods (like 2SLS and three-stage least squares) warrant further
analysis and scrutiny. Robustness with respect to non-normality
and misspecification also appear to be relevant research topics.
Additionally, devising ways to efficiently predict indicators and
composites might be of particular interest (see for example the
work by Shmueli et al., 2016).

Moreover, to contribute to the confirmatory character of CCA,
we recommend further study of the performance and limitations
of the proposed test procedure: consider more misspecifications
and the ability of the test to reliably detect them, find further
discrepancy measures and examine their performance, and
investigate the behavior of the test under the violation of the
normality assumption, similar as Nevitt and Hancock (2001) did
for CFA. Finally, cut-off values for the fit indices need to be
determined for CCA.
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