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Item response models often cannot calculate true individual response probabilities

because of the existence of response disturbances (such as guessing and cheating).

Many studies on aberrant responses under item response theory (IRT) framework had

been conducted. Some of them focused on how to reduce the effect of aberrant

responses, and others focused on how to detect aberrant examinees, such as person

fit analysis. The purpose of this research was to derive a generalized formula of bias

with/without aberrant responses, that showed the effect of both non-aberrant and

aberrant response data on the bias of capability estimation mathematically. A new

evaluation criterion, named aberrant absolute bias (|ABIAS|), was proposed to detect

aberrant examinees. Simulation studies and application to a real dataset were conducted

to demonstrate the efficiency and the utility of |ABIAS|.

Keywords: maximum likelihood estimation, ABIAS, |ABIAS| method, aberrant response, bias

INTRODUCTION

Item response theory (IRT) is a statistical method based on an examinee’s response to explain
his/her ability. Thus, the classical estimate of ability in IRT is highly sensitive to response
disturbance (Magis, 2014). It can return a strongly biased estimation of true underlying ability when
the responses are aberrant. The aberrant responses are often strange and different than expected. In
fact, a response inconsistent with expectation is said to be aberrant (Clark, 2010). There are various
sources of aberrant responses. Meijer (1996) proposed seven examinee behaviors that could cause
aberrant responses: sleeping, guessing, cheating, plodding, alignment errors, extreme creativity,
and deficiency of sub-abilities. For example, if an examinee chose the right answer by randomly
guessing on a multiple-choice item, the test score might be inflated, leading to a higher than the
actual impression of the respondent.

Aberrant responses occur when the observed response patterns are incongruous with the
expected ones (Meijer, 1996; Meijer et al., 1996; Meijer and Sijtsma, 2001), which may jeopardize
measurement accuracy among respondents and invalidate the use of IRT. Aberrant responses had
been explored in IRT literature. Under the IRT framework, aberrant responses were addressed
through (i) methods based on response times (RTs), such as classical and Bayesian checks in
computerized adaptive testing (CAT; van der Linden et al., 1999; van der Linden and van
Krimpen-Stoop, 2003; van der Linden, 2008); (ii) methods without response times, such as person
fit analysis to identify aberrant examinees (Meijer and Sijtsma, 2001; Meijer, 2003; Emons, 2009),
and weight robust estimation to reduce the influence of aberrant responses on ability estimation
(Wainer and Wright, 1980; Schuster and Yuan, 2011; Magis, 2014).

Under IRT framework, RTs can be used as collateral information to analyze response data
with/without abnormality. For example, time pressure can sometimes cause the high ability
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examinee be assigned to more difficult items (Wainer and Wang,
2007). However, the application of RTs is restricted in computer
environment.

Person-fit statistics which can be used in both computer
and non-computer environments are designed to identify
examinees with aberrant item response patterns (Karabatsos,
2003). Karabatsos (2003) compared 36 person-fit indicators
under different testing conditions, and found that HT (Sijtsma,
1986) statistic, which was a non-parametric statistic, was the best
indicator to detect aberrant examinees. However, the most widely
used parametric person fit indicators are lz (Drasgow et al., 1985)
and CUSUM-based (cumulative sum based) indicators (Meijer,
2002).

The lz is used to quantify persons’ adherence to the
corresponding IRTmodel, and large negative value of lz indicates
aberrant responses (Meijer and Sijtsma, 2001; Meijer, 2003). The
CUSUM-based technique (Bradlow et al., 1998; van Krimpen-
Stoop and Meijer, 2000, 2001, 2002; Bradlow and Weiss, 2001;
Meijer, 2002) provides information about what occurred to each
item during the answering process to detect a local misfit. Meijer
(2002) found that CUSUM could provide more information
about local misfit than the lz index. However, if one or more
of the parameters are unknown, the power of CUSUM may
be unsatisfactory (Csorgo and Horvath, 1997; Chen and Gupta,
2012).

On the other hand, instead of detecting aberrant behavior,
weight robust estimation can be used to reduce the bias in
estimating by weighting. Wainer and Wright (1980) were first to
propose a robust approach in estimating ability in IRT. Mislevy
and Bock (1982), Schuster and Yuan (2011) improved Wainer
and Wright’s approach by introducing different smoother weight
functions. The estimation effect of the new method is more
accurate.

When an examinee has aberrant responses, the ability estimate
based on the whole responses is not the “true” ability estimate,
that is because the ability estimate, θ̂ will be affected by
aberrant responses (Magis, 2014). Generally speaking, if one’s
responses are non-aberrant, the responses will point to the
“true” ability estimate. In contrast, if the responses contain
some aberrant responses, the aberrant ones will point to the
aberrant ability estimate. Hence, the bias of the ability estimations
may variate with the ratio of aberrant responses to the whole
responses. This provides a new direction to detect aberrant
examinees.

In a simple way, for one examinee, suppose the first response
is aberrant, and others are non-aberrant. θ̂ (0) is the estimation
of ability in an exam as shown Figure 1, although it differs from
the “true” estimation. The superscript “∗” denotes the aberrant
response.

Then we can resample the responses using the bootstrap
method. If we select the first item (i.e., the aberrant response),
and place it into the whole responses as shown in Figure 2,
n+1 responses can be obtained. The estimation of ability, θ̂ (1) is
obtained using MLE. As the ratio of aberrant responses to the
whole responses becomes larger, intuitively, θ̂ (1) may be farther
from “true” ability estimation than θ̂ (0), and the absolute bias of
θ̂ (1) is larger than the absolute bias of θ̂ (0).

However, if we resample the second item (i.e., a non-aberrant
response) as shown in Figure 3, there are also n+1 responses,
containing only one aberrant response (i.e., item 1∗). The
estimation, θ̂ (2), is obtained by MLE. As the ratio of the aberrant
responses to the whole responses is reduced, the absolute bias of
θ̂ (2) may become smaller than θ̂ (0).

In order to determine the above ideas, the bias formula under
aberrant responses needs to be determined. Lord (1981) derived
the formula of bias that had been widely used to judge the
accuracy of estimation under IRT framework. However, Lord’s
formula based on the ideal state did not consider aberrant
responses.

Following Lord’s idea, this paper aims (1) to present the
generalized formula of statistical bias in the maximum likelihood
estimation with or without aberrant responses, (2) to present,
test and illustrate the utility of the proposed evaluation criterion
which depends on the statistical bias.

STATISTICAL BIAS OF ABERRANT
RESPONSES

In conventional IRT models, the probability of a correct
item response depends on the characteristics of items and
respondents. For instance, in the popular two-parameter logistic
(2PL) model (Birnbaum, 1968), the probability of a correct
response is in the form of

Pr(ui = 1
∣

∣θ , ai, bi ) =
exp(ai(θ − bi))

1+ exp(ai(θ − bi))

=
1

1+ exp(−ai(θ − bi))
(1)

where θ is the ability of the individual, ai is the item
discrimination parameter, and bi is the item difficulty parameter
with i = 1,. . . , n, indexing items. The items are scored
dichotomously, ui= 1 for a correct response and ui= 0 for an
incorrect response. The examinee subscript is omitted to simplify
notation throughout the paper.

The probability of a correct non-aberrant response can be
expressed as

Pi = Pi(θ) = Pr(ui = 1
∣

∣θ , ai, bi ) (2)

Define Qi(θ) = 1 − Pi(θ), Qi = 1 − Pi as the probability of an
incorrect response to item i. The likelihood function is given by

L(θ) =

n
∏

i=1

Pi
uiQi

1−ui (3)

Then the log likelihood function is

l(θ) = log L(θ) =

n
∑

i=1

(ui log Pi(θ)+ (1− ui) logQi(θ)) (4)
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FIGURE 1 | Estimation of ability by MLE, θ̂ (0) in aberrant responses.

FIGURE 2 | Estimation of ability θ̂ (1) by MLE in aberrant responses.

FIGURE 3 | Estimation of ability θ̂ (2) by MLE in aberrant responses.

The maximum likelihood estimator (MLE) of ability, θ̂ , is
obtained by solving the non-linear equation as follows:

dl(θ)

dθ
=

n
∑

i

dli(θ)

dθ
=

n
∑

i=1

(ui − P̂i)ai = 0 (5)

where P̂i = Pi(θ̂), and li(θ) = ui log Pi(θ)+ (1− ui) logQi(θ).
Rewrite (5) as

L̂1 ≡

n
∑

i

Ŵ̂1i = 0 (6)

where by definition

Ŵsi =
ds

dθ s
log Pi

uiQi
1−ui (7)

Thus, L̂1 considered as a function of θ̂ can be expanded formally
in powers of x ≡ θ̂ − θ , as follows:

L̂1 ≡

n
∑

i

Ŵ1i + (θ̂ − θ)

n
∑

i

Ŵ2i +
1

2
(θ̂ − θ)

2
n

∑

i

Ŵ3i + · · · · · ·(8)

Let Ŵs =
n
∑

i
Ŵsi. Rather than proving the convergence of the

power series, let us use a closed form that is always valid:

L̂1 = Ŵ1 + xŴ2 +
1

2
x2Ŵ3 +

1

6
x3Ŵ4 +

1

24
x4Ŵ5 (9)

By defining

γsi ≡ EŴsi, (10)

εsi ≡ Ŵsi − EŴsi (11)

γs ≡
1

n

n
∑

i

γsi, (12)

εs ≡
1

n

n
∑

i

εsi. (13)

We can obtain

nŴs = εs − γs. (14)

When the examinee has an aberrant response on item i, denote
the aberrant response as ui

∗ and the probability of a correct
response as P∗i . Because Eui = Pi,Eui

∗ = Pi
∗, when the response

is aberrant, we find that

Ŵ1i = ai(u
∗
i − Pi), (15)

Ŵ2i = −ai
2PiQi, (16)

Ŵ3i = −ai
3PiQi(1− 2Pi), (17)

γ1i = ai(Pi
∗ − Pi), (18)
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TABLE 1 | Item discrimination ai and difficulty parameters bi in Magis (2014).

Item ai bi Item ai bi Item ai bi

1 0.799 −1.961 21 1.317 4.271 41 1.049 −0.665

2 1.192 0.561 22 0.182 −2.557 42 0.848 −3.889

3 1.100 3.106 23 1.115 3.125 43 0.901 −1.711

4 0.910 −2.243 24 1.081 3.775 44 1.129 3.732

5 1.032 −0.113 25 0.842 −0.199 45 0.992 1.162

6 0.950 0.187 26 0.915 −4.726 46 1.416 4.171

7 0.915 1.226 27 0.994 0.892 47 1.046 −0.522

8 0.942 −0.524 28 0.924 −1.219 48 1.160 0.008

9 1.214 3.972 29 1.046 1.546 49 0.951 −0.408

10 0.920 −0.362 30 1.059 0.615 50 0.869 −2.428

11 0.968 0.747 31 1.215 1.627 51 0.853 −1.772

12 1.126 1.993 32 1.175 0.796 52 1.192 4.104

13 0.953 −0.798 33 1.009 2.038 53 0.984 −1.079

14 0.938 −2.036 34 0.876 −0.696 54 1.254 2.677

15 1.178 3.555 35 0.826 −1.694 55 0.947 −2.040

16 0.749 −7.403 36 0.857 −1.308 56 0.861 −3.884

17 1.203 1.878 37 0.990 −3.263 57 1.068 −0.529

18 1.066 0.144 38 0.919 −1.802 58 1.195 1.978

19 1.195 2.123 39 0.888 −1.196 59 1.123 2.286

20 0.933 0.730 40 0.932 −0.549 60 1.102 3.266

γ2i = −ai
2PiQi, (19)

γ3i = −ai
3PiQi(1− 2Pi), (20)

ε1i = ai(ui
∗ − P∗i ), (21)

ε2i = ε3i = 0. (22)

Then, the Fisher information is

I ≡ −E
dL1

dθ
= −nγ2. (23)

Set (9) equal to zero, then it can be rewritten in terms of

− (ε1 + γ1) = x(γ2 + ε2)+
1

2
x2(γ3 + ε3)

+
1

6
x3(γ4 + ε4)+

1

24
x4(γ5 + ε5). (24)

Take the expectation of (24) to obtain a closed form

Bias(θ̂) = Ex = −
1

γ2
(Eε1 + Eγ1 + Exε2 +

1

2
γ3Ex

2), (25)

where Exr (r = 1, 2, · · · ) is of order n−r/2 Thus, Ex is of order
n−1/2. Exrεti is of order n

−(r+t)/2,where r, t= 1, 2, . . . (Lord, 1981)
Using (21) and (22)

E1εr = 0. r = 1, 2, · · · (26) T
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Square (24) and take expectation, because of local independence,
we can obtain

E1x
2 = 1

γ 2
2
(E1ε

2
1 + E1γ

2
1 + 2γ1E1ε1)

= n2

I2
( 1
n2
E1

n
∑

i=1
(ai(u

∗
i − P∗i ))

2 + 1
n2
E1

n
∑

i=1
(ai(P

∗
i − Pi))

2)

= 1
I2
(
n
∑

i=1
(a2i (P

∗
i + P2i − 2P∗i Pi)))

(27)

Take (26, 27) and (18) into (25) to obtain the formula of aberrant
response bias

Bias(θ̂) =
1

I
G(n) −

1

2I3
H(n) =

2I2G(n) −H(n)

2I3
, (28)

where

G(n) =

n
∑

i=1

ai(P
∗
i − Pi), (29)

H(n) =

n
∑

i=1

aiPi
′′

n
∑

i=1

a2i (P
∗
i + P2i − 2P∗i Pi). (30)

When the response is non-aberrant (i.e., P∗i = Pi), and G(n) =0,
the aberrant bias degenerates to the normal bias (Warm, 1989),
that is

Bias(θ̂) = −

∑

i
a3i PiQi(1− 2Pi)

2I2
= −

J

2I2
, (31)

where

J =
∑

i

P′iP
′′
i

PiQi
.

For an n-item test, when s aberrant and n-s non-aberrant
responses are present, the absolute bias is

∣

∣

∣
Bias(θ̂)

∣

∣

∣
=

∣

∣

∣

∣

−H(s) + 2I2G(n−s) −H(n−s)

2I3

∣

∣

∣

∣

. (32)

Formula (32) shows how non-aberrant and aberrant responses
affect estimation ability. Based on the above formula, in the
following section, a new detecting method is proposed.

ABERRANT ABSOLUTE BIAS

Obviously, when the aberrant response occurs, the estimation
of ability will drift off the “true” ability estimate and the true
ability. Accordingly, when to resample a response from the
dataset and re-estimate the ability, if the selected response
is normal, the difference between the ability estimations can
be negligible, however, selecting an aberrant response will

increase the difference between the ability estimations. Hence,
we can say that if the difference between two ability estimates
locates in a pre-defined range, the examinee may have aberrant
responses with a high probability. According to the idea
above, the accuracy of the estimation for aberrant responses
is affected by the ratio of aberrant responses to the whole
responses.

Example
Assuming P1

∗ = 0.25 is the probability of correct aberrant
response on the first item, and Pi = 0.2 for i = 1, 2, 3. . . , n are
the probabilities of correct non-aberrant responses. If we select
the nth item (i.e., a normal response) and put it into the whole
responses, we can obtain n+1 responses. Denote Pn+1 = 0.2,
which means the response of the first item is aberrant, and others
(2 to n+1) are not. According to Equation (28), we can obtain
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Bias(θ̂)
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where
∣

∣

∣
Bias(θ̂)

∣

∣

∣

(n)
is the absolute bias of the original n items, and

∣

∣

∣
Bias(θ̂)

∣

∣

∣

(n+1)
is the absolute bias after resample the non-aberrant

response.

Formulation of the New Evaluation
Criterion
Based on the above ideas, resampling aberrant responses or
non-aberrant responses will result in different ability estimates.
Therefore, we propose a new evaluation criterion named the
aberrant absolute bias (|ABIAS|), which can be summarized as
follows,

|ABIAS| ≡
1

n

n
∑

i=1

∣

∣

∣
(θ̂ (i) − θ̂ (0))

∣

∣

∣
(33)

where θ̂ (0) is the estimation of ability with response pattern u(0)=
(u1, u2, u3,. . . , un) using MLE method, and θ̂ (i), i = 1, 2, 3 · · · n,
is the estimation of ability with response u(i)= (u1, u2, u3,. . . ,
un, ui) using MLE method. To alleviate any propagation of
errors from item parameter calibration, |ABIAS| have to be used
with restriction on item parameters, which are constrained to be
known or pre-calibrated accurately. Throughout this paper, we
assume the item parameters are known.

|ABIAS| describes the deviation of expanding one response
(ui, i = 1, 2, 3. . .n) each time from the original responses.
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TABLE 3 | Summary of MP and CP in random aberrant process in scenario 1.

Aberrant

response

θ θ̂ |ABIAS|MP Correct detection frequency

MAX MIN MEAN LT-

68%

LT-

m-68%

LT-

95%

LT-

m-95%

1 3 2.658 0.182 0.060 0.107 393 411 94 185

2 1.791 0.183 0.060 0.105 326 269 124 160

1 0.874 0.154 0.067 0.100 312 352 97 135

0 −0.010 0.157 0.066 0.096 296 315 72 67

−1 −0.972 0.131 0.064 0.092 276 266 69 42

−2 −1.918 0.142 0.058 0.090 287 216 72 42

−3 −2.758 0.133 0.058 0.089 310 175 82 29

3 3 1.637 0.185 0.060 0.128 453 464 328 360

2 1.195 0.190 0.067 0.120 439 466 252 298

1 0.571 0.180 0.070 0.111 429 477 205 257

0 −0.209 0.155 0.070 0.107 407 414 183 176

−1 −0.953 0.157 0.064 0.102 415 406 195 151

−2 −1.638 0.139 0.063 0.100 412 360 196 120

−3 −2.256 0.154 0.058 0.101 413 361 195 141

5 3 1.087 0.202 0.079 0.137 484 494 447 416

2 0.723 0.191 0.076 0.127 473 481 417 369

1 0.276 0.182 0.070 0.120 448 461 365 315

0 −0.251 0.179 0.070 0.114 447 455 321 283

−1 −0.852 0.162 0.071 0.111 449 442 297 265

−2 −1.476 0.166 0.067 0.109 437 439 268 241

−3 −1.963 0.161 0.069 0.112 463 432 311 262

Selecting the first response data u1 from whole responses u(0) to
u(0), then u(0) turns to u(1)= (u1, u2, u3,. . . , un, u1). So an ability
estimation θ̂ (1) can be obtained from the responses u(1) by MLE
method. Then we resample ui (i= 2,..., n) from u(0) in sequence,
and repeat n-1 times. Then we can obtain θ̂ (2), θ̂ (3), · · · · · · θ̂ (n)

from u(i)= (u1, u2, u3,. . . , un, ui) (i = 2, . . . , n). Note that each
estimation process only base on n+1 data.

|ABIAS| provides a new method based on bootstrap to detect
aberrant examinee roughly by migration of the “true” ability
estimation. The calculation of |ABIAS| is based on MLE method.
It will carry out n+1 MLE operations for a n-item test. As we
known, the MLE is very fast. So |ABIAS| can be used for a quick
pre-screening. For example, it could help determine whether
aberrant responses exist in a computer-based test before using
RTs methods.

Judgment Process
The judgment process by |ABIAS| can be summarized in three
steps.

Sign-Process
For a given test, as the item parameters are (assumed to be)
known, drawing some abilities from U(-3, 3) and simulating
the corresponding response data, then |ABIAS| of abilities from
−3 to 3 can be calculated. We call this process sign-process
(SP). Denote the |ABIAS| calculated in this step as |ABIAS|SP.
The |ABIAS|SP are based on the assumption of non-aberrant

response, which are the benchmarks for our judgment for
aberrant examinees.

Measure-Process
Estimating the abilities and calculating the |ABIAS| for each
examinee. We call this step measure-process (MP), and denote
the |ABIAS| calculated here as |ABIAS|MP. For each examinee,
|ABIAS|MP has only one value.

Compare-Process
Comparing |ABIAS|MP to |ABIAS|SP. This process is called
compare-process (CP). If |ABIAS|MP falls into the range of
|ABIAS|SP, the responses are determined to be non-aberrant.
Otherwise, responses are aberrant.

The method based on |ABIAS| to determine whether aberrant
responses exist is called the |ABIAS| method.

SIMULATION STUDIES

A large number of studies had focused on aberrant responses.
Mislevy and Bock (1982) recommended Tukey’s bisquare weight
function (Mosteller and Tukey, 1977) to handle aberrant
responses, whereas Schuster and Yuan (2011) suggested Huber-
type weight function to enhance estimation effect. All these
studies used the same method to generate item parameters
(Donoghue and Allen, 1993; Zwick et al., 1993; Penfield,
2003; Magis, 2014). Hence, to maintain consistency with their
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TABLE 4 | Summary of MP and CP in random aberrant process in scenario 2.

Aberrant

response

θ θ̂ |ABIAS|MP Correct detection frequency

MAX MIN MEAN LT-

68%

LT-

m-68%

LT-

95%

LT-

m-95%

2 3 2.345 0.088 0.043 0.061 380 463 124 305

2 1.583 0.089 0.039 0.058 362 452 141 259

1 0.796 0.076 0.040 0.055 342 428 138 190

0 −0.117 0.068 0.038 0.053 331 360 116 98

−1 −0.930 0.071 0.035 0.051 316 316 81 60

−2 −1.784 0.066 0.034 0.049 358 246 120 44

−3 −2.581 0.066 0.033 0.049 363 208 112 36

6 3 1.394 0.098 0.048 0.073 494 499 432 473

2 0.916 0.096 0.048 0.069 481 495 416 442

1 0.444 0.089 0.043 0.064 480 490 393 393

0 −0.174 0.081 0.039 0.061 462 473 324 303

−1 −0.784 0.079 0.043 0.059 444 444 250 219

−2 −1.433 0.083 0.040 0.059 484 441 278 231

−3 −1.967 0.079 0.038 0.060 486 469 392 228

10 3 1.307 0.101 0.052 0.074 500 500 482 498

2 0.889 0.097 0.048 0.070 499 500 463 476

1 0.410 0.089 0.047 0.066 496 497 449 449

0 −0.189 0.085 0.044 0.062 489 493 426 409

−1 −0.803 0.081 0.044 0.060 484 484 385 365

−2 −1.381 0.081 0.043 0.060 499 484 395 347

−3 −1.895 0.083 0.033 0.061 498 491 453 375

researches, all item parameters in simulation studies were same
as those in Magis (2014), as shown in Table 1.

To evaluate the performance of |ABIAS| for 2PL models, two
simulation studies were conducted. The manipulated factors,
which were same in both studies, included 3 levels of test length
(20, 40, and 60) which represented short, moderate, and long
tests, and 7 levels of ability (from −3 to 3 with step 1). As the
detection procedure for each examinee was independent, in this
section, we focused solely on one examinee. More precisely, tests
of 20 (40) items were generated by using the first 20 (40) item
parameters of Table 1.

Simulation study 1 was based on the random aberrant
process in three scenarios to evaluate the performance of the
proposed |ABIAS| method. For the random aberrant process, if
the response ui was 1, then it will be changed to 0, otherwise,
it will be changed to 1. The random aberrant process do
not focus on the source of aberrant responses. An additional
simulation check to compare with lz was provided in Appendix
(Supplementary Material).

Simulation study 2 was based on the aberrant guessing process
used by Schuster and Yuan (2011) and Magis (2014). The
aberrant guessing process assumed that one will answer the ith
item aberrantly if the probability of the correct response is less
than P#, where P# was a pre-defined cut-off value. In other
words, the examinee will guess randomly when the probability
of answering the item correctly was less than P#. Thus, any
item response with correct response probability less than P# was
replaced by an aberrant response with probability P∗. P∗ was

the pre-defined probability of the correct aberrant response in
aberrant guessing process.

Step SP
In Table 2, we generated 13 intervals of abilities θ from −3 to
3 with step 0.5. Response data were generated from the 2PL
model with item parameters in Table 1 under the non-aberrant
assumption. MLE method was used to estimate abilities. Because
of the biased property of the MLE method, considering the range
of ability was more reasonable than considering the ability point.
Five hundred replications were done.

Table 2 shows the |ABIAS|SP in 3 levels of test length. MAX is
themaximum value of 500 times,MIN is theminimum value, and
MEAN is the mean value of 500 times. 68%-P is the value of the
position of 68% in ascending order, and so are 95%-P and 99%-P.
They correspond to the three standard errors of standard normal
distribution. The value of |ABIAS|SP in 60-item test was smaller
than that in 20- and 40-item tests. That is because the greater
the item length, the higher the accuracy of ability estimation. In
Table 2, the empirical standard deviations of MIN, MEAN and
68%-P were all smaller than those of MAX, 95%-P and 99%-P,
that is, the stabilities of MIN, MEAN and 68%-P are better than
other indices.

Empirically, |ABIAS|SP in an interval was monotonous, so we
only calculated the two endpoints of each ability interval and take
the smaller value as the criterion. Because the probability that
the estimated value locates in the endpoints was close to 0, the
intervals were set to be closed.
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TABLE 5 | Summary of MP and CP in random aberrant process in scenario 3.

Aberrant

response

θ θ̂ |ABIAS|MP Correct detection frequency

MAX MIN MEAN LT-

68%

LT-

m-68%

LT-

95%

LT-

m-95%

3 3 2.486 0.055 0.031 0.039 464 495 270 421

2 1.653 0.048 0.030 0.038 419 471 186 341

1 0.794 0.047 0.029 0.036 420 448 202 257

0 −0.178 0.049 0.031 0.038 390 390 167 167

−1 −0.796 0.044 0.027 0.035 316 316 155 115

−2 −1.671 0.046 0.028 0.035 368 251 143 68

−3 −2.468 0.048 0.028 0.036 391 206 206 38

9 3 1.836 0.059 0.031 0.045 499 500 466 497

2 1.261 0.058 0.031 0.043 494 498 463 486

1 0.617 0.053 0.031 0.041 489 493 425 455

0 −0.093 0.048 0.028 0.039 494 494 404 404

−1 −0.836 0.053 0.027 0.038 472 472 381 344

−2 −1.594 0.050 0.024 0.037 494 467 418 330

−3 −2.243 0.047 0.026 0.037 498 465 465 338

15 3 1.321 0.067 0.033 0.050 500 500 498 500

2 0.918 0.060 0.034 0.047 500 500 498 496

1 0.448 0.057 0.035 0.045 500 500 482 491

0 −0.183 0.054 0.029 0.043 499 499 480 480

−1 −0.762 0.052 0.034 0.043 499 499 482 465

−2 −1.228 0.055 0.034 0.044 499 497 481 462

−3 −1.692 0.052 0.038 0.045 499 498 491 466

There are two plans in CP. If we want a more accuracy
judgment, we can choose the |ABIAS|SP value (such as 68%-P,
68%-m-P, 95%-P, 95%-m-P) in the ability ranges. If we want a
more quickly judgment, we can choose the mean value of indices
(such as mean of 68%-P). For example, if one’s |ABIAS|MP is
smaller than the 68%-P of |ABIAS|SP, it can be marked as non-
aberrant. What’s more, Table 2 gives us different choices. If we
want to have higher accuracy in detecting aberrant responses, we
can use 95%-P and 95%-m-P. If we want to retain all the possible
non-aberrant examinees, we can use 68%-P or 68%-m-P. This is a
trade-off between detection of aberrant examinees and retention
of normal examinees.

About 0.013 second of CPU time for each replication was
required on a 1.60 GHz desktop using MATLAB 2016a.

Simulation Study 1
This simulation study was conducted to measure the |ABIAS|
method in the random aberrant process. Under each condition, 3
levels of aberrant proportion (5, 15, and 25%) were considered,
and the aberrant responses were selected randomly with the
aberrant proportion. Across all the conditions, 500 replications
were conducted. The results from the MP step were summarized
in Tables 3–5.

In Tables 3–5, θ̂ was the mean value of ability estimations
in 500 replications. LT-68% was the number of |ABIAS|MP

larger than 68% P-values in SP. LT-m-68% was the number of
|ABIAS|MP larger than mean of 68% P-values in SP. LT-95% was

the number of |ABIAS|MP larger than 95% P-values in SP. LT-
m-95% was the number of |ABIAS|MP larger than mean of 95%
P-values in SP.

Tables 3–5 indicate that the more aberrant responses, the
more effective of the |ABIAS| method. Using LT-68% or LT-
m-68% are better than using LT-95% or LT-m-95%. And
there is few differences between LT-68% and LT-m-68%.
Specifically speaking, it appears that it is better to use LT-
m-68% when the estimation of ability is positive, and it
is better to use LT-68% when the estimation of ability is
negative. The worst case is in scenario 1, when there is only
1 random aberrant response in 20 items, the accuracy is about
40%, in other cases, the accuracy is more than 80% when
we use LT-68% and LT-m-68% as the criteria in practical
applications.

The MAX, MIN, and MEAN values in Tables 3–5 are all
larger than those in Table 2. These observations indicate that
the more aberrant responses in a test, that is, the larger the
aberrant proportion, the better the performance of the |ABIAS|
method in detecting aberrant responses. When the aberrant
proportion is 25%, the |ABIAS| method can almost detect the
existence of all aberrant examinees correctly for all replications.
The accuracy of judgment increase as the absolute ability of
the examinee decreases. This is because when the ability of
the examinee is close to 0, correct response probability and
incorrect response probability is close in many items. Hence, it
will be very difficult to determine whether an aberrant response
exists.
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TABLE 6 | Summary of MP and CP in aberrant guessing process in scenario 1.

P*
θ θ̂ |ABIAS|MP Correct detection frequency

MAX MIN MEAN LT-

68%

LT-

m-68%

LT-

95%

LT-

m-95%

0.25 3 3.707 0.183 0.060 0.099 224 253 96 114

2 2.302 0.186 0.060 0.101 247 290 106 133

1 1.161 0.176 0.067 0.099 233 292 77 110

0 0.131 0.147 0.064 0.096 257 298 86 86

−1 −0.756 0.148 0.064 0.098 330 319 143 108

−2 −1.635 0.166 0.062 0.100 411 351 196 143

−3 −2.188 0.169 0.058 0.110 437 411 291 247

0.2 3 3.630 0.180 0.060 0.097 215 238 95 110

2 2.269 0.182 0.060 0.099 240 285 93 121

1 1.146 0.174 0.067 0.095 223 274 80 98

0 0.108 0.151 0.066 0.094 250 286 78 78

−1 −0.781 0.145 0.064 0.096 303 292 116 98

−2 −1.706 0.171 0.058 0.097 349 312 154 120

−3 −2.380 0.172 0.058 0.105 409 378 240 188

Simulation Study 2
This simulation study was designed to measure the |ABIAS|
method in aberrant guessing process. The aberrant guessing
process was used by Schuster and Yuan (2011) and David Magis
(2014). In each scenario, test with four-choice and five-choice
items were considered. That meant, the probability of correct
aberrant response, P∗, was 0.25 or 0.2 for a four-choice item or
a five-choice item. In this simulation study, the probability of
pre-defined cut-off value, P#, was set to 0.1. Hence, the correct
response probability on one item, which was less than P# (i.e.,
0.1), will be replaced by P∗ (i.e., 0.25 for four-choice item or 0.2
for five-choice item), and denoted the “updated” response on this
item as the aberrant response.

Tables 6–8 show that the values of LT-68%, LT-m-68% LT-
95%, LT-m-95% are larger in negative ability than these in
positive ability. Because higher ability would lead to more success
probabilities which is larger than P#. In fact, lower ability would
likely result in aberrant responses (Schuster and Yuan, 2011;
Magis, 2014). The accuracy of simulation study 2 is lower than
that of study 1, because even when Pi is smaller than P# and
replaced by P∗, the difference between them was still small (0.25–
0.1 = 0.15, and 0.2–0.1 = 0.1). Thus, response ui may not
change. Nevertheless, these findings still indicate that the |ABIAS|
method is effective in the aberrant guessing process. Although
success is not guaranteed every time, it can also guarantee at
least 50% accuracy by using LT-68% when P∗ is only 0.1 higher
than P#. If the ability is smaller than −2, accuracy will almost
be larger than 80%, making it feasible as a rough screening
method.

The simulation studies reflect the effectiveness of the |ABIAS|
method in random guessing and aberrant guessing processes.
In the same aberrant proportion (aberrant responses to the
whole responses) or the same probability of the correct aberrant
response, the longer the test, the better the screening effect. In
the same test length, the larger the aberrant proportion, the

batter the screening effect. In the two aberrant processes, ability
levels are all an important factor to affect the performance. We
recommend LT-m-68% and LT-m-95% as the criteria for positive
ability estimations, and LT-68% and LT-95% for negative ability
estimations.

APPLICATION TO REAL DATA

This example was based on a pilot study on a sample of 1,624
examinees under 170 items. The organization also flagged 41
examinees as possible cheaters from a variety of statistical analysis
and an investigative process that brought in other information.
The data sets were analyzed in several papers (Sinharay, 2016;
Cizek and Wollack, 2017; Eckerly, 2017).

As the |ABISA| method was under the assumption that
item parameters are known or pre-calibrated accurately. The
item parameters were calibrated firstly by 1,583 non-aberrant
examinees, and this process was called the Sign Step in
simulation. And then the item parameters were used to analyze
the 41 examinees who may have aberrant responses, and this is
the Measure Step.

The lz index is used as a baseline. The formulation of lz is as
follows,

lz = (l(θ)− E(l(θ)))/
√

v(l(θ)), (34)

v(l(θ)) =

n
∑

i=1

(Pi(θ)Qi(θ))

(

ln

(

Pi(θ)

Qi(θ)

))2

(35)

Although lz is not perfect (Molenaar and Hoijtink, 1990, 1996),
but lz is still the most popular parametric person-fit statistics.
The summary of |ABIAS|SP by 2PL models was as provided in
Table 9.

Table 9 indicated the |ABIAS|SP of the 2PL model.
The SD of MIN and MEAN was small. The estimations
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TABLE 7 | Summary of MP and CP in aberrant guessing process in scenario 2.

P*
θ θ̂ |ABIAS|MP Correct detection frequency

MAX MIN MEAN LT-

68%

LT-

m-68%

LT-

95%

LT-

m-95%

0.25 3 3.174 0.083 0.038 0.053 224 346 61 162

2 2.128 0.085 0.037 0.053 248 388 50 161

1 1.160 0.077 0.037 0.052 293 402 93 183

0 0.179 0.077 0.038 0.052 314 345 134 134

−1 −0.754 0.073 0.035 0.053 382 382 185 162

−2 −1.445 0.083 0.030 0.056 481 442 299 241

−3 −1.994 0.100 0.037 0.062 492 473 433 360

0.2 3 3.105 0.084 0.038 0.051 201 327 51 145

2 2.150 0.079 0.038 0.053 228 367 46 171

1 1.121 0.081 0.037 0.052 239 376 76 137

0 0.118 0.069 0.034 0.051 324 346 122 122

−1 0.068 0.073 0.034 0.051 306 311 110 110

−2 −1.556 0.075 0.033 0.053 435 369 280 174

−3 −2.214 0.083 0.037 0.058 470 444 379 286

TABLE 8 | Summary of MP and CP in aberrant guessing process in scenario 3.

P*
θ θ̂ |ABIAS|MP Correct detection frequency

MAX MIN MEAN LT-

68%

LT-

m-68%

LT-

95%

LT-

m-95%

0.25 3 3.072 0.053 0.026 0.035 247 372 58 211

2 2.101 0.047 0.026 0.035 266 408 95 208

1 1.128 0.049 0.027 0.035 328 424 145 240

0 0.167 0.050 0.025 0.035 406 404 179 230

−1 −0.689 0.051 0.025 0.036 423 423 299 260

−2 −1.365 0.056 0.026 0.039 496 478 442 493

−3 −2.007 0.060 0.030 0.043 500 498 498 455

0.2 3 3.097 0.052 0.026 0.034 256 385 43 195

2 2.070 0.048 0.026 0.035 259 402 78 204

1 1.106 0.046 0.025 0.035 306 405 209 207

0 0.149 0.044 0.026 0.034 358 358 116 164

−1 −0.751 0.049 0.023 0.034 379 379 241 203

−2 −1.479 0.049 0.026 0.037 485 449 386 331

−3 −2.220 0.055 0.027 0.039 495 473 473 384

and |ABIAS|MP of the 41 examinees were provided in
Table 10.

Table 10 showed that using the |ABIAS| method, 15 aberrant
examinees can be determined by 68%-P, 14 aberrant examinees
by 68%-m-P, 6 aberrant examinees by 95%-P, and 12 aberrant
examinees by 95%-m-P. Using the lz index, 3 aberrant examinees
can be identified by 2PL model. All the results by the |ABIAS|
method covered the results by lz . It appears that the |ABIAS|
method outperforms lz.

DISCUSSION AND CONCLUSION

Aberrant responses often occurred in educational measurement.
Most examinees can improve their scores by guessing when

they did not know the answer, which may make it harder to
obtain the “true” ability estimations. Hence, developing a simple
and feasible screening method was necessary. At the very least,
determining whether an examinee had aberrant responses in
the test should be done. This was the main purpose of this
article.

This paper followed the idea of Lord (1981) and provided
a generalized formula of statistical bias in the maximum
likelihood estimation with or without aberrant responses, which
presented the relationship between bias and the probability of
aberrant response. It was the first attempt to formulate the bias
with aberrant responses, and the new bias was equivalent to
the normal bias (Warm, 1989) when there were no aberrant
responses in the test. The formula showed the estimation bias
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TABLE 9 | Summary of |ABIAS|SP by 2PL model.

Ability range |ABIAS|SP

MAX MIN MEAN 68%-P 95%-P 99%-P

[2.5,3] 0.029 0.018 0.022 0.022 0.024 0.026

[2,2.5] 0.029 0.018 0.021 0.021 0.023 0.024

[1.5,2] 0.024 0.017 0.020 0.020 0.022 0.022

[1,1.5] 0.022 0.016 0.019 0.019 0.021 0.021

[0.5,1] 0.021 0.016 0.018 0.018 0.019 0.020

[0,0.5] 0.019 0.015 0.017 0.017 0.018 0.019

[−0.5,0] 0.018 0.015 0.016 0.017 0.017 0.018

[−1,−0.5] 0.017 0.014 0.016 0.016 0.017 0.017

[−1.5,−1] 0.017 0.014 0.015 0.016 0.016 0.017

[−2,−1.5] 0.017 0.014 0.015 0.016 0.016 0.016

[−2.5,−2] 0.017 0.014 0.015 0.016 0.016 0.016

[−3,−2.5] 0.017 0.014 0.015 0.016 0.016 0.017

Mean 0.020 0.015 0.017 0.017 0.018 0.019

SD 0.004 0.001 0.002 0.002 0.002 0.003

TABLE 10 | Summary of estimation abilities and |ABIAS|MP by 2PL model.

#Examinee θ̂ |ABIAS|MP #examinee θ̂ |ABIAS|MP

1 −3.474 0.018 22 0.962 0.018

2 −2.894 0.017 23 0.702 0.018

3 −3.126 0.017 24 1.393 0.019

4 −1.626 0.015 25 0.375 0.019

5 −1.563 0.015 26 0.698 0.017

6 −1.299 0.016 27 0.666 0.019

7 −1.241 0.016 28 1.212 0.019

8 −0.937 0.016 29 0.596 0.019

9 −0.873 0.016 30 1.101 0.019

10 −0.897 0.017 31 −0.062 0.016

11 −0.891 0.016 32 −0.057 0.017

12 −0.601 0.016 33 0.244 0.017

13 −0.440 0.017 34 0.470 0.018

14 −0.171 0.017 35 0.002 0.018

15 0.163 0.018 36 0.675 0.018

16 0.096 0.017 37 0.910 0.019

17 0.282 0.017 38 0.494 0.019

18 −0.149 0.017 39 0.677 0.018

19 0.250 0.017 40 1.635 0.021

20 1.219 0.019 41 1.891 0.022

21 0.201 0.018

of aberrant responses consisted of two parts. One part came
from non-aberrant responses, and the other came from aberrant
responses. It was the basic of the |ABIAS| method.

In this paper, the |ABIAS| was proposed as a new indicator
to identify aberrant responses according to the formula, which
was fast and effective. Simulation studies showed that to a certain
extent, the |ABIAS| method could judge whether an examinee

had aberrant responses in a test in two different aberrant
processes. The results indicated that in the random aberrant
process the larger absolute ability, the better the detecting effect.
In the aberrant guessing process, the smaller the ability, the better
the detecting effect. Moreover, the larger the aberrant proportion,
the higher the accuracy of detecting. The more items in the test,
the better the detecting effect.

The new method does not rely on response times, which
means that it can be used more widely. The paper-and-
pencil tests can be screened by the new method and then the
weight method can be used to obtain the robust estimation
of examinee’s ability with aberrant responses. Meanwhile,
in computer-based tests, the new method can be used for
screening firstly, and then the RTs can be used for the
accurate search. This feature can save significant manpower and
time.

In this article, the proposed detecting method is limited
to unidimensional IRT models. However, as identified by
Ackerman et al. (2003), many educational and psychological
tests are inherently multidimensional. In multidimensional IRT
(MIRT) models, the correlations between domains will affect the
statistical biases of latent traits (Wang, 2015). In other words, the
aberrant behavior on one item may affect the statistical biases of
all the domains, rather than that of the corresponding domain.
Therefore, future research should look into the application of
the |ABIAS| method to detect aberrant responses under MIRT
framework.

What’s more, the newmethod could not identify which item is
aberrant. In future research, we wish to construct a method based
on |ABIAS| to determine which item the aberrant response occur
on. This direction is a very interesting one and will have wider
applications in computer-based testings.
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