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This study explored calibrating a large item bank for use in multidimensional health

measurement with computerized adaptive testing, using both item responses and

response time (RT) information. The Activity Measure for Post-Acute Care is a

patient-reported outcomes measure comprised of three correlated scales (Applied

Cognition, Daily Activities, and Mobility). All items from each scale are Likert type, so

that a respondent chooses a response from an ordered set of four response options.

The most appropriate item response theory model for analyzing and scoring these items

is the multidimensional graded response model (MGRM). During the field testing of the

items, an interviewer read each item to a patient and recorded, on a tablet computer, the

patient’s responses and the software recorded RTs. Due to the large item bank with over

300 items, data collection was conducted in four batches with a common set of anchor

items to link the scale. van der Linden’s (2007) hierarchical modeling framework was

adopted. Several models, with or without interviewer as a covariate and with or without

interaction between interviewer and items, were compared for each batch of data. It

was found that the model with the interaction between interviewer and item, when the

interaction effect was constrained to be proportional, fit the data best. Therefore, the final

hierarchical model with a lognormal model for RT and the MGRM for response data was

fitted to all batches of data via a concurrent calibration. Evaluation of parameter estimates

revealed that (1) adding response time information did not affect the item parameter

estimates and their standard errors significantly; (2) adding response time information

helped reduce the standard error of patients’ multidimensional latent trait estimates, but

adding interviewer as a covariate did not result in further improvement. Implications of

the findings for follow up adaptive test delivery design are discussed.

Keywords: response time, hierarchical model, health measurement, multidimensional graded response model,

item response theory (IRT)

INTRODUCTION

When assessments are delivered via computer-based devices, collecting persons’ response times
(RTs) at the item level is straightforward. The analysis of item-level RTs on assessments has
attracted substantial interest recently. For example, in personality assessments, RTs have been used
to measure attitude strength (Bassili, 1996), to detect social desirability (Holden and Kroner, 1992),
and to enhance criterion validity (Siem, 1996). In achievement testing, RTs have been used to
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evaluate the speededness of the test (Van Der Linden et al., 1999),
to detect aberrant behavior (e.g., Wang and Xu, 2015;Wang et al.,
2018b,c), and to design a more efficient test (Bridgeman and
Cline, 2004; Van der Linden andGuo, 2008; van der Linden, 2009;
Fan et al., 2012). RTs have also been used to evaluate response
data quality in web-based surveys (Galesic and Bosnjak, 2009).

In the healthmeasurement domain, response time (sometimes
called reaction time) is often used to measure cognitive
functioning, particularly in research on aging (e.g., Pearson,
1924; Braver and Barch, 2002; Hultsch et al., 2002; Anstey
et al., 2005; Osmon et al., 2018). Similar to the speed test in
educational assessments, RTs are usually collected from timed,
target stimuli tasks, in which respondents are instructed to
respond as quickly as possible. In this case, only RTs, not
response accuracy, is of interest. For example, in a study using
the United Kingdom Health and Lifestyle Survey (Cox et al.,
1987; Der and Deary, 2006), person-level reaction times were
examined across different age and gender groups. Another
example is using RTs from a stop-signal reaction time task to
study response inhibition from patients with Parkinson’s disease
and other brain disorders (Gauggel et al., 2004; Verbruggen
et al., 2013). Despite these widespread applications of RTs, little
attention has been paid to the usefulness of item-level response
times as collateral information for improving measurement
precision. These previous studies have primarily used scale-
level, aggregated RTs, such as its mean and standard deviation.
However, item-level RTs, routinely collected during computer-
based assessment delivery, provide richer information. Only a
recent didactic review by Osmon et al. (2018) demonstrated
the advantages of examining the entire RT distribution rather
than only its mean and standard deviation to understand the
efficacy of mental speed assessment in clinical neuropsychology.
Therefore, it was of interest to apply advanced psychometric
models for item-level RTs in the assessment of reported health
behaviors and evaluate if RTs help better estimate the main
constructs of interest.

MODELS

Multidimensional Graded Response Model
The most appropriate measurement model for ordered
polytomous responses is the graded response model
(GRM; Samejima, 1969). The item response function of the
unidimensional GRMmodel is

Pjk (θ) = P+
jk (θ) − P+

j,k+1 (θ) = e
[

Daj
(

θ−bjk
)]

1+ e
[

Daj
(

θ−bjk
)]

− e
[

Daj
(

θ−bj,k+1

)]

1+ e
[

Daj
(

θ−bj,k+1

)] (1)

where Pjk (θ) is the probability of a randomly selected person
with a latent trait θ selecting category k of item j (k−1 . . . K).
P+
jk (θ) is the boundary response function, interpreted as the

probability of responding to category k and above for item j given
θ . aj is the item discrimination parameter for item j. bjk is the
boundary location parameter for item j in category k (k = 0, . . . ,

K). D = 1.7 is the normalizing constant. Because by definition,
P+j0 (θ) ≡ 1 and P+jK+1 (θ) ≡ 0, neither bj0 nor bjK+1 are estimable

parameters. Therefore, for an item with four response categories,
only three boundary parameters are estimated.

When the instruments include multiple scales measuring
different constructs or different aspects of the same construct
(e.g., Zickar and Robie, 1999; Fraley et al., 2000; Fletcher and
Hattie, 2004; Zagorsek et al., 2006; Pilkonis et al., 2014), the
multidimensional extension of the GRM, namely, the MGRM
(Hsieh et al., 2010; Jiang et al., 2016), is appropriate. Let θ be a
vector of lengthH representing the latent traits of interest, and let
h = 1, 2, . . . , H. Similar to the unidimensional case, P+j0 (θ) ≡ 1

and P+
j(K+1) (θ) ≡ 0. When the test displays a simple structure,

the boundary response function takes the form of

P+
jk (θ) = 1

1+ exp
[

−Dajh
(

θh − bjk
)]

= 1

1+ exp
[

−D
(

ajhθh + cjk
)] , (2)

assuming item j measures dimension h only so that ajh
is the item discrimination parameter on the hth dimension
of item j. In Equation 2, cjk = −ajhbjk and this a-c
parameterization with D = 1 is consistent with flexMIRT’s (Cai,
2013) default parameterization; the c parameter is interpreted
as the “intercept.” Equation 2 could also be modified to
accommodate complex structure; for details, see Reckase (2009).

Bivariate Models of Responses and RTs
Given that RTs carry useful collateral information about
both item and person characteristics, the bivariate model of
responses and RTs (Molenaar et al., 2015) was considered. The
measurement model for responses was as specified in Equation 2,
and the measurement model for RTs takes the form

lntij = λj + ϕjτi − ϕjρdθid + ωij (3)

Here, tij denotes the RT of patient i on item j, τi is the latent
speed parameter of patient i, λj and ϕj are the time-intensity
and time-discrimination parameters of item j, and ωij is the
residual. If the residuals are assumed to be normally distributed,
then Equation 3 suggests that the response time tij follows a log-
normal distribution. Other more flexible types of residuals can
also be assumed if the data warrants (e.g., Wang et al., 2013a,b).

The term, ϕjρdθid, is called a cross-relation function (Ranger,
2013; Molenaar et al., 2015), and it is assumed that item j
measures the dth dimension. Different from van der Linden’s
(2007) hierarchical model in which a covariance structure is
assumed on θ and τ at a second level, this cross-relation term
directly models the relationship between the latent ability and
observed log-transformed RTs (log-RTs). Certainly, the cross-
relation term based on τi could alternatively enter into the
measurement model of responses; for example, Molenaar et al.
(2015) argued that incorporating the cross-relation term in the
RT model had unique advantages. That is, when the purpose
of including RT information is to improve the measurement
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precision of θ , it is preferable to leave the measurement model for
the responses unchanged while modeling the information about
θ (if any) in the RTs. In this regard, θ accounts for the shared
ability variance in the responses and RTs and τ accounts for the
additional, unique variance in the RTs. This joint model is termed
as Model 0 and its diagram is shown in Figure 1.

To ensure model identifiability, several constraints need to
be in place. First, regarding the MGRM model, the mean and
variance of θs are restricted to be 0 and 1, respectively. Second,
the mean and variance of τ is also constrained to be 0 and 1 such
that the residual variance of ωij is freely estimated1. The three
θ components are assumed to be correlated, and the correlation
matrix is freely estimated. However, all three θs are assumed
uncorrelated with τ due to the inclusion of the cross-relation
term. The same set of constraints was assumed for all other
models introduced hereafter.

Molenaar et al. (2015) suggested identifiability constraints that
are similar to those listed, except that var(τ )= 1− ρ2, instead of
1. Both constraints are sufficient, and their choice conveniently
allows the interpretation of ρ as a correlation coefficient. Note
that in van der Linden’s (2007) model the variance of τ is
estimable (Equation 22, p. 294). This is because the lognormal
model for RT in van der Linden (2007) takes the form

f
(

tij; τi,αj,βj

)

=
αj

tij
√
2π

exp

{

−1

2

[

αj

(

lntij − (βj − τi)
)]

}

(4)

where αj is interpreted as the dispersion parameter that quantifies
the variance of the lognormal distribution, rather than the
discrimination parameter as in Equation 3.

Bivariate Model With Interviewer as a
Covariate
Because more than one interviewer was used for data collection,
three variations of the bivariate model with interviewer as a
covariate were considered. The first model is

lntij = λj + ϕjτi − ϕjρdθid +
∑P

p=1
γjpxp + ωij, (5)

where xp is a binary indicator variable indicating if interviewer
p recorded the RTs for patient i, and P is the total number of
interviewers in the data. P equaled 6 for batch 1 and 5 for batches
2–4. Because each patient interacted with only one interviewer,
only one non-zero element in the summation

∑P
p=1 γjpxp enters

into the regression equation for patient i. The model in Equation
5 (BivariateModel 1) assumes that interviewer effects differed per
item, i.e., there is an interaction between interviewer and items.

Model 2 is a slightly restricted version of Model 1, and the
measurement model for RT becomes

lntij = λj + ϕjτi − ϕjρdθid + ϕj

∑P

p=1
γpxp + ωij, (6)

where all parameters have the same interpretations as in Equation
5 except τi, which can be interpreted as the individual “residual”

1By default, Mplus sets the factor mean to be 0 for both θ and τ .

FIGURE 1 | Path diagrams of four different bivariate models (the total number

of items is hypothetically 96 for illustration purpose).
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speed after removing the interviewer effect. The MGRM model
is still used for polytomous responses. In Equation 6, the
interviewer effect differs across items but by the same amount,
denoted as ϕj. This Model 2 can also be viewed as a hierarchical
model in which the interviewer variable predicts the speed at the
second level, as follows:

lntij = λj + ϕjτi − ϕjρdθid + ωij

τi =
∑P

p=1
γpxp + εi, (7)

where εi is the individual residual speed. Compared to Model 1,
Model 2 greatly reduces the number of parameters and hence is a
more parsimonious model. When fitting the hierarchical model
in Mplus (Muthén and Muthén, 1998-2015), the variance of τ

cannot be fixed directly but instead the variance of εi is fixed at 1.
Model 3 considers only the interviewer main effect and it

assumes that the interviewer effect does not differ across items.
Again theMGRM stays the same, and the model for RTs becomes

ln tij = λi + ϕjτi − ϕjρdθid +
∑P

p=1
γpxip + ωij. (8)

Although this Model 3 has essentially the same number of
parameters as Model 2, it assumes no interactions between
interviewers and items. The path diagrams for the four models
are presented in Figure 1.

METHODS

Instrument and Subjects
Responses and RTs from the Activity Measure for Post-Acute
Care (AM-PAC) were analyzed (Yost et al., 2018). The AM-
PAC is the first multi-domain patient reported outcomesmeasure
with the capability to direct care in a hospital rehabilitation
environment. The scores from the AM-PAC are intended to
be linked to the widely understood stages of the Functional
Independence Measure (O’Dell et al., 1998; Huang et al., 2000)
such that appropriate rehabilitative care plans can be immediately
identified. It is anticipated that the AM-PAC will provide an
inexpensive and accurate alternative to clinician assessments.
The three domains covered in the AM-PAC include Applied
Cognition, Daily Activity, and Mobility. A sample question from
the Applied Cognition domain is: “How much difficulty do you
currently have reading a long book (over 100 pages) over a number
of days?”, and the four response options are “Unable” (coded
as 1), “A lot” (coded as 2), “A little” (coded as 3), and “None”
(coded as 4). Items were administered to hospital inpatients
via a computer-assisted personal interview using Qualtrics R©

web survey software. During the field testing of the items, an
interviewer read each item to a patient and recorded, on a tablet
computer, the patient’s responses and the software recorded RTs.
A total sample of 2,270 hospitalized patients were recruited to
the study; their mean age was 65 years. Roughly 54% were male
and 96% were non-Hispanic white, and 78% had two or more
comorbidities (Yost et al., 2018).

Questions were grouped into blocks according to domain, and
the order of item administration within a block was randomized.

Given that there were 324 items in total in the bank, data
collection proceeded in four batches to reduce patient burden.
The first batch of 109 items was administered to patients, and
24 linking items were selected with eight items in each domain.
The number of linking items was determined based on Kolen and
Brennan (2004)’s recommendation that at least 20% of the items
need to be shared between different test forms to have enough
information to link the scale (Wang et al., 2016). These linking
items in each domain were selected to produce a composite
information function that was closest in shape to the domain
information function. Linking items were assembled using the
linear programming solver “lp_solve version 5.5” (Diao and van
der Linden, 2011). Then, the set of linking items was carried
forward in subsequent data collection batches. Table 1 presents
the number of items per domain for the four batches.

Preliminary Data Cleaning
Table 2 presents the summary descriptive statistics for the four
batches of data. The cleaned Batch 1 dataset contained 563
respondents after deleting 67 (10.6%) respondents with at least
20 missing items. The cleaned Batch 2 dataset contained 490
respondents after deleting 52 (9.6%) respondents with more
than 10 missing items. The cleaned Batch 3 dataset contained
500 respondents after deleting 55 (9.9%) respondents with more
than 9 missing items. The cleaned Batch 4 dataset contained
507 respondents after deleting 36 (6.6%) respondents with more
than nine missing items. Although each item contained four
response categories, for some items, category 1 and/or category
2 received no responses or very few responses. These items
were then recoded to ensure that the lowest response category
for each item was always 1, but the highest response category
could be 4 or less. As shown in Table 2, the response time
distribution exhibited extreme skewness (ranging from 29.08 to
41.84), and therefore the distribution was truncated by removing
the top 2.5% and removing the RTs smaller than 3 s, resulting in
skewness from 1.48 to 1.66. The resulting data was entered into
modeling analysis. Recent research by Marmolejo-Ramos et al.
(2015a) suggested that Box-Cox transformation outperformed
the elimination method in normalizing positively skewed data.
However, the extremely long and short RTs were trimmed
in these data because those RTs were considered as outliers.
Extremely long RTs happened when the patient took a break such
as “service came in to discuss plans” or “patient lunch came and
wanted to stop.” The row for the missing proportion of RTs in

TABLE 1 | Number of unique items per domain for the four batches.

Batch Applied

cognition

Daily

activity

Mobility Total

Unique Linking

1 28 27 30 85 24

2 24 24 24 72 24

3 24 24 24 72 24

4 23 23 25 71 24

Linking 8 8 8 24 24

Total 107 106 111 324 —
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TABLE 2 | Descriptive statistics of the observed data, by batch.

Variable Batch 1 Batch 2 Batch 3 Batch 4

SAMPLE SIZE

Before cleaning 630 542 555 543

After cleaning 563 490 500 507

Trimmed proportion of RTs 6.24% 3.21% 3.16% 4.59%

NUMBER OF ITEMS

2 categories 1 0 0 0

3 categories 31 26 22 23

4 categories 77 70 94 72

RT BEFORE TRUNCATION

Mean 9.27 9.79 9.82 8.39

SD 21.28 17.39 25.37 17.62

Skewness 41.84 32.40 35 .85 29.08

RT AFTER TRUNCATION

Mean 8.21 8.44 8.06 7.18

SD 4.14 4.92 4.80 4.05

Skewness 1.48 1.66 1.65 1.53

Table 2 refers to the proportion of RTs at the person-by-item
level, out of the cleaned sample size (e.g., 563 for batch 1), that
was deleted either because they were extremely short (<3 s) or
extremely long (upper 2.5%).

To further test the normality of item-level RT distributions,
the Kolmogorov-Smirnov (K-S) test (Smirnov, 1948) was
conducted for all item-level log-RTs. The K-S statistic quantifies
the distance between the empirical distribution function of a
sample and the cumulative distribution function of a reference
distribution, and it is a non-parametric test of the equality of
two distributions. For the present purpose, the K-S test was done
with response times that were at least 3 s and were below the
97.5% percentile. This item-level K-S test compared the log-RTs
of that item to the theoretical normal distribution with the mean
and variance computed for the item. The null hypothesis is that
the log-RTs follow a normal distribution. Hence, a significant p-
value (i.e., p < 0.05) indicated that the log-RTs distribution was
significantly different from normal. Results showed that in Batch
1, 54 out of 110 items exhibited statistically significant p-values,
but the K-S statistics for those items were very small (ranged from
0.05 to 0.1). In Batches 2, 3, and 4, 30 out of 96, 16 out of 96, 11
out of 95 items, respectively, had significant p-values, but again,
the K-S statistics were small.

The K-S test was chosen because of its wide popularity.
For instance, it was used to evaluate the item RT distributions
from computer-based licensure examinations (Qian et al., 2016).
However, other tests, such as the Shapiro-Wilk (S-W) test
(Royston, 1982) has been found to be more powerful than the
K-S test to detect departure from normality (Marmolejo-Ramos
and González-Burgos, 2013). Unsurprisingly, using the S-W tests
on the same data set showed that 99.1% of Batch 1 items, 90.6% of
Batch 2 items, 95.8% of Batch 3 items and 92.6% of Batch 4 items
had significant p-values. However, the lognormal model was still
used as the parametric model for RTs in the following analysis
because the skewness (shown in Table 2) after truncation was not

high, and the lognormal distribution was a convenient choice that
most software packages can handle.

Collapsing Response Categories
In the data analysis, response categories for some items were
collapsed due to lack of observations in those categories.
Specifically, for a given item, if a category received no response
or only one response, the response of this option, if any,
was combined into the responses of the next higher category.
Therefore, as shown in Table 2, some items had fewer than
four response categories. The treatment of collapsing response
categories is legitimate for the graded response model because
it does not substantially change the item parameter estimates2.
For instance, a 4-category GRM item (k = 1, 2, 3, 4) item will
have four parameters, i.e., aj, bj1, bj2, bj3. When collapsing the
lowest two response categories, the parameters of the same item
become a∗j ≈ aj, b

∗
j2 ≈ bj2, b

∗
j3 ≈ bj3. This is because the

GRM is essentially a difference model (see Equation 1), and the
same discrimination parameter is assumed across all boundary
response functions [i.e., P+

jk (θ)].

Model Fitting and Item Calibration
Bivariate Model Fitting
All four models in Figure 1 were fit with marginal maximum
likelihood estimation (MML) using the Expectation-
Maximization (EM) algorithm in Mplus3 These models
were fitted to each batch of data separately to evaluate global
model fit via AIC, BIC and−2Log-likelihood. The Mplus source
code of Batch 4 is provided in the Appendix. The same source
code was used for other batches, as well. As shown in Table 3,
Model 2 was the best-fitting model across all four batches of
data based on BIC, but Model 1 was preferred based on AIC. In
addition, Model 2 and Model 3 are respectively nested within
Model 1. The deviance test (i.e., likelihood ratio test) revealed
that there was a significant difference between Model 1 and
Model 2, Model 1 and Model 3, implying that Model 1 should be
preferred. However, Model 2 was used in the following analysis
for two reasons: (1) Model 2 is a much more parsimonious
model than Model 1 and it is conceptually more reasonable
because the interviewer effect should not interact with items, i.e.,
the interviewer’s speed should be relatively static across items;
(2) when fitting Model 1 in the concurrent calibration described
below, it failed to converge due to complexity and data sparsity.

Concurrent Calibration
When data are collected in different batches, linking items are
used to place the items from the different batches onto a common
scale. Concurrent calibration has been demonstrated to be more
effective than separate calibration plus post-hoc linking (Kolen
and Brennan, 2004) because the latter approach suffers from
linking error. Three models were compared in the concurrent
calibration: the MGRM model for responses only, Model 0, and

2A separate study (Jiang and Wang, 2019) was conducted that provided analytic

and simulation evidence for this claim.
3Mplus was chosen because it is widely used in social science research. Mplus

plotting using R is available via the “rhdf5” package. For details, refer to http://

www.statmodel.com/mplus-R/.
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Model 2. Models 1, and 3 were not considered because of their
poorer fit compared to Model 2. Both the item and person
parameters and their standard errors were compared across the
three models. The main research question was whether including
RTs and interviewer information helped improve the estimation
accuracy of both item and person parameters.

When pooling data from the four batches together, the
concurrent calibration of Model 0 andModel 2 failed to converge
due to the sparsity of data and model complexity. Therefore,
a two-stage approach was implemented. In the first stage, data
from Batches 2–4 were pooled and a concurrent calibration was
conducted on the pooled data. Data from Batch 1 was left out
because this batch had the largest number of items flagged under
the K-S test. By shrinking the sample size, all models successfully
converged. Then in the second stage, Batch 1 data were calibrated
using the fixed parameter calibration approach (Kim, 2006). That
is, the linking item parameters (i.e., a, b, λ, and ϕ) were fixed at
their estimated values obtained from Stage 1 for each of the three
models such that the remaining items were estimated on the same
scale as the linking items. Hence, no further linking procedure
was needed.

Due to the collapsing of response categories, a side note for
the two-stage approach is worth mentioning. Specifically, for
the linking items, the threshold parameters of Batch 1 did not
always match those in Batches 2–4. For example, an item had
four categories (three threshold parameters) in Batches 2–4, but
only three categories (two threshold parameters) in Batch 1. The
linking items always had the same or fewer categories in Batch
1 as compared to the combined data due to the smaller sample

TABLE 3 | Global fit results (AIC, BIC,−2Log-likelihood) for the four bivariate

models, by batch.

Batch and

model

Number of

free parameters

AIC BIC -2Log-likelihood

BATCH 1

Model 0 736 133566 136755 132094

Model 1 1281 133174 138725 130612

Model 2 741 133316 136527 131834

Model 3 741 133409 136620 131926

BATCH 2

Model 0 652 102468 105202 101164

Model 1 940 102049 105992 100170

Model 2 655 102235 104982 100924

Model 3 655 102339 105086 101030

BATCH 3

Model 0 656 111384 114149 110072

Model 1 1040 110613 114996 108532

Model 2 660 111001 113783 109682

Model 3 660 111323 114105 110004

BATCH 4

Model 0 648 108550 111290 107254

Model 1 1028 107733 112080 105676

Model 2 652 108174 110931 106870

Model 3 652 108364 111121 107060

Bold values highlighted the best-fitting model based on the information criteria.

size of Batch 1. In this case, only the corresponding threshold
parameters and discrimination parameter for an item were input
into the fixed calibration. The rationale is the same as before—
collapsing response categories does not substantially change the
item parameters.

RESULTS

Global Model Fit
Table 4 presents the global model fit statistics for the three
models in both stages. Note that the AIC and BIC from
the MGRM are smaller because they are on a different scale
compared to Model 0 and Model 2 due to its exclusion of RT
information. Consistent with the separate calibration results,
Model 2 fit the data better thanModel 0, reflected by smaller AIC
and BIC values.

Item Parameter Estimates
Figure 2 presents the scatterplots of item discrimination
parameters (aj) across the three models; all points fall along
the 45◦ line, implying a close alignment of item parameter
estimates from the three models. This is unsurprising because
the variance of θ was fixed at 1 across all models, which fixed
the scale of aj. Means of SEs of estimates of aj were 0.188 in the
MGRM, 0.190 in Model 0, and 0.190 in Model 2. A simple t-
test showed no significant differences of SEs between the different
models.

The correlations of boundary parameters b̂jk between different
models were all 1, and therefore the scatterplots (Figure 3) show

that the estimates of b̂jk from the different models fall tightly on
the 45◦ line. Moreover, t-tests showed no significant differences

of mean SEs of b̂jk between different models. Thus, the results
suggest that, in these data, estimation of MGRM item parameters
aj and bj, and their SEs were not affected by the addition of RT
information.

With respect to the item time discrimination parameter, ϕj,
the correlation between their estimates from Model 0 and Model
2 was 0.99. The scatterplot (Figure 4) shows that these estimates
of ϕ̂j from the two models fell on a line that was not 45◦,
indicating that there was a linear relationship between ϕ̂js from
the two models. The explanation is as follows: Focusing on the
two terms in Model 0 and Model 2, respectively, ϕj(τi − ρdθid)

TABLE 4 | Global model fit results.

Stage and Model AIC BIC

STAGE 1: CONCURRENT CALIBRATION (BATCHES 2-4)

MGRM 185303.933 190099.963

Model 0 327447.703 336067.811

Model 2 326589.532 335230.884

STAGE 2: FIXED PARAMETER CALIBRATION

MGRM 74013.471 75391.453

Model 0 134224.604 136824.572

Model 2 133924.461 136546.095

Bold values highlighted the best-fitting model based on the information criteria.
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FIGURE 2 | Scatterplots of item discrimination parameters (aj ) across three models. (A) MGRM vs. Model 0, (B) MGRM vs. Model 2, and (C) Model 0 vs. Model 2.

(Equation 3) and ϕj(
∑P

p=1 γpxip + εi − ρdθid) (Equation 7)

the (τi − ρdθid) and (εi − ρdθid) are the same across the two
equations because both τi and εi are on the 0–1 scale. Due to
the data collection design, the same interviewer went through all
items in the batch each time, and each interviewer interviewed
a portion of the sample. For instance, suppose the sample size
is N, and there are n1, n2 − n1, n3 − n2, n4 − n3, and N − n4
patients interviewed by each interviewer, as shown in Table 5.
Then, for item j, those patients assigned to Interviewer 1 all
carry the same interviewer effect of γ1, and similarly for the
three other groups. Hence, the second and third columns are the
same for every item, and also because the mean and variance
of these two columns are different, there is a unique linear
relationship between ϕ̂js from the twomodels. On the other hand,
SEs of ϕ̂j of Model 2 are significantly lower (p < 0.001) than
those of Model 0: Mean SE was 0.018 in Model 0 and 0.013 in
Model 2.

Regarding the time intensity parameter, λj, again the
correlation between their estimates from Model 0 and Model 2
was larger than 0.99. SEs of λ̂j from Model 2 were significantly
higher (p < 0.001) than those of Model 0: Mean SE was 0.020 in
Model 0 and 0.023 in Model 2. The results suggest that the SE of
item response time parameters ϕ̂j and λ̂j is affected in different
directions by the addition of interviewers as covariates. However,
the absolute difference in SEs was not too large to be concerning
because the difference appearedmostly in the third decimal place.

Person Parameter Estimates
In terms of θ estimation, the θ̂1, θ̂2, and θ̂3 from all three models
correlated as high as 0.99 to 1. Mean SEs from Models 0 and 2
(Table 6) were significantly lower than those from the MGRM (p
< 0.001), and there was no significant difference of SE between
Model 0 and Model 2. This result implies that adding response
time decreased the SE of θ̂ , which is consistent with prior findings
(e.g., van der Linden et al., 2010;Wang et al., 2013a,b), but adding
the interviewer variable did not further decrease the SEs.

Table 7 presents the estimated correlation parameters.
Consistent with previous findings (e.g., Wang et al., 2018a), there
were moderate to high correlations among the three latent traits.
Moreover, the speed factor also played a modest role as reflected
by the moderate size of ρ1 to ρ3. These correlations were higher
in Model 2 than in Model 0, which is unsurprising because after
removing the interviewer effects on RTs, the individual speed
factor should correlate higher with individual latent traits.

The last column in Table 7 refers to the fixed effects of
interviewers. During Batches 2–4 data collection, the same five
interviewers were recruited and one of them was randomly
selected as the reference for dummy coding. It appears from
the estimated γ̂p that interviewers differed substantially and that
is why including the interviewer variable in the model helped
improve model data fit. For Batch 1 data collection, a different set
of six interviewers was recruited; among them, three overlapped
with the other set of five. However, because a different reference
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FIGURE 3 | Scatterplots of item boundary parameters (from left to right: b̂j1, b̂j2, b̂j3) across three models. (A) MGRM vs. Model 0, (B) MGRM vs. Model 2, and (C)

Model 0 vs. Model 2.

interviewer was selected, the estimated γ̂p from stage 1 and
2 model fitting were not directly comparable. Still, the results
show that interviewers operated at different speeds and they
contributed to the observed RT variabilities.

DISCUSSION AND CONCLUSIONS

Response time as part of the assessment process data has
gained great popularity in recent decades in educational and

psychological measurement. This is because collecting RTs
has become easy, due to computer-based assessment delivery,
and RTs provide an additional source of information for
researchers to understand an individual’s behavior as well as
the characteristics of the items. More than a dozen IRT models
have been proposed in the psychometrics literature, with an early
focus on modeling the different shapes of RT distributions (e.g.,
Rouder et al., 2003; van der Linden, 2007; Loeys et al., 2011;Wang
et al., 2013a,b) and a later focus on modeling within-subject
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FIGURE 4 | Scatterplot of estimates of ϕ̂j between Model 0 and Model 2.

TABLE 5 | An illustration of the linear transformation relationship of ϕ̂j from Model

0 and Model 2.

Patients Model 0 ϕ0
j Model 2 ϕ2

j Interviewer

1 to n1 (τi − ρdθid )
(

τi − ρdθid
)

+ γ1 1

n1+1 to n2 (τi − ρdθid )
(

τi − ρdθid
)

+ γ2 2

n2+1 to n3 (τi − ρdθid )
(

τi − ρdθid
)

+ γ3 3

n3+1 to n4 (τi − ρdθid )
(

τi − ρdθid
)

+ γ4 4

n4+1 to N (τi − ρdθid )
(

τi − ρdθid
)

5 (reference)

TABLE 6 | Mean and SD of SE of θ̂ from three models.

θ MGRM Model 0 Model 2

SE θ1

Mean 0.307 0.280 0.279

SD 0.093 0.076 0.076

SE θ2

Mean 0.252 0.242 0.241

SD 0.082 0.071 0.070

SE θ3

Mean 0.178 0.171 0.171

SD 0.079 0.074 0.074

variations such as different and changing test-taking behaviors
(e.g., Wang and Xu, 2015; Molenaar et al., 2018; Wang et al.,
2018b,c). However, the usage of item-level RT information has
rarely been explored in health measurement.

This study systematically investigated the application of RTs
for improving measurement precision of the target latent traits
and the estimation precision of the item parameters. The
bivariate joint model discussed in Molenaar et al. (2015) was
applied and expanded in two respects: (1) a multivariate θ was
considered in the measurement model for responses, and this θ

vector was correlated with the latent speed through the cross-
relation term; (2) an interviewer covariate was entered into the
model to explain the variability of the observed RTs. Patient-
reported outcomes obtained from personal interview surveys
are widely used in health services research studies (Clancy and
Collins, 2010), especially when conducting such surveys among

older adults or patients with severe symptoms like the sample
used in the present research. Thus, the observed RTs might be
contaminated by the interviewer’s reaction speed and, hence, the
interviewer variable should be included in the model.

Several approaches to including the interviewer variable
were explored. Results indicated that Model 2, which is a
hierarchical model, consistently best fit the data. In this model,
the interviewer’s effect on the observed RTs is mediated through
patients’ latent speed. It is more parsimonious than Model 1
in which the interviewer’s effect could differ for different items.
Indeed, Model 2 also makes more intuitive sense because the
interviewer effect reflects the different interviewers’ response
styles (i.e., fast or slow responders) that could be considered as
the latent speed of an interviewer; hence, it should not change
from item to item.

Results from the data analysis revealed that (1) adding
response time information did not affect the item parameter
estimates and their standard errors significantly; and (2) adding
response time information helped reduce the standard error
of patients’ multidimensional latent trait estimates, but adding
interviewer as a covariate did not result in further improvement,
although the interviewer effect was significant. Regarding the first
point, it is not surprising because Ranger (2013) has proven that
the amount of (Fisher) information RTs provide to θ cannot be

>
ρ2

1−ρ2 (i.e., an upper bound) regardless of test length and RT

distributions. A simple explanation is that RTs only contribute to
θ via τ due to the hierarchical structure in van der Linden (2007),
and hence the maximum information RTs provide is when τ is
“observed,” resulting in the information upper bound. As a result,
the collateral information provided by RT will be useful when
test length is short, but its role diminishes in longer tests when
information accrued through responses is already high. That said,
it is still worth pointing out that the role of speed as a self-
contained construct might be useful for psychological and health
assessment. It might be particularly promising to investigate the
additional validity of the assessment by including speed in the
prediction of external criteria.

An immediate implication for the follow-up adaptive design of
the AM-PAC is that RT does not need to be included in interim
θ estimation (i.e., selecting items during assessment delivery),
but it could be used to improve the final θ estimates. Moreover,
to further improve the time efficiency of adaptive testing, the
maximum information per time unit (Fan et al., 2012) or its
simplified version (Cheng et al., 2017) could be applied. In this
case, the interviewer effect could be ignored when estimating
an individual patient’s speed, as long as item time parameters
are provided. This is pragmatically sound because it is likely
that different interviewers will be used for adaptive testing data
collection in some measurement environments.

Due to the positive skewness of the RT distribution, typical
log-transformations were used (van der Linden, 2007; Wang
and Xu, 2015; Qian et al., 2016), and the raw RT data was
cleaned by trimming the extremely short and long observations.
However, recent research by Marmolejo-Ramos et al. (2015a)
suggested that the Box-Cox transformation outperformed the
elimination methods in normalizing positively skewed data.
Vélez et al. (2015) proposed a new approach to estimate the
parameterλ in the Box-Cox transformation. In cases in which the
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TABLE 7 | Final Pearson correlation parameter estimates for the three models from two calibration stages.

Stage and Model ρθ1θ2
ρθ1θ3

ρθ2θ3
ρ1 ρ2 ρ3 γ p

STAGE 1: CONCURRENT CALIBRATION (BATCH 2 TO 4)

MGRM 0.624 0.468 0.846 – – – –

Model 0 0.625 0.488 0.839 0.425 0.458 0.418 –

Model 2 0.628 0.492 0.840 0.583 0.629 0.578 (1.150, 1.053, 0.725, −0.911)

STAGE 2: FIXED PARAMETER CALIBRATION

MGRM 0.702 0.545 0.869 – – – –

Model 0 0.707 0.584 0.881 0.400 0.433 0.457 –

Model 2 0.706 0.583 0.880 0.527 0.577 0.605 (1.063, −0.286, 1.315, −0.135, 1.046)

log-transformation is insufficient, the Box-Cox transformation
could be a viable alternative. In the present study, the extremely
long and short RTs were trimmed because those RTs were
considered as outliers. On the other hand, when there is lack
of information on the outliers, Ueda’s method could be used
to automatically detect discordant outliers (Marmolejo-Ramos
et al., 2015b). Because observed RTs could exhibit different
skewed distributions, a careful decision needs to be made with
respect to dealing with outliers, data transformation, and using
the mean vs. the median, for making valid inferences (Rousselet
and Wilcox, 2018). When the median is used, then quantile
regression instead of a mean-based linear model should be
considered instead.
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