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Self-intended action implies an initial stage of assigning an external entity as target
of action, with subsequent recruitment of body-scheme information serving the free
selection of an appropriate effector system to achieve the action aim. This plurality
underscores the concept that neuronal response freedom underlying the generation
of such action is not necessarily restricted to a singular cerebral event at its initiation,
but that such freedom is embedded in a series of successive processing steps.
In this respect, action intention initially concerns the transition of a neutral object
into a target of action, while the “will” to act further crystalizes with the recruitment
of one’s body scheme. The latter is a prerequisite for effector selection and indeed
complements the emerging sense of agency. This temporal order of neuronal events
fits a model of fronto-parietal interactions associated with volition. A concise behavioral
experiment is additionally described, in which successively displayed balls represent
either a recognizable object with distinct shape and color features, or a target of action.
Instructions to write down the ball’s characteristics were alternated by the command
”action.” When shifting from a neutral object to an action target, the ball was placed
in one of three backgrounds: empty, an outdoor goal or indoor basket. In response
to the action command, subjects reported intended actions such as kicking, seizing,
throwing and heading, thus implicitly referring to the foot, hand, or head as chosen
effector. For the latter the parietal cortex is strongly implicated, not only concerning
predefined but also free selection. Although subjects were free to choose what to do
with the ball, the environmental cues of the ball strongly influenced their choices. These
results illustrate the temporal order in fronto-parietal processing associated with initial
target assignment, instantly followed by the embodiment of will, i.e., the recruitment
of body-scheme information for possible effector selection. Such multistage neuronal
processing underlying free action selection underscores that the onset of brain signals
prior to the perceived sense of free will is not a valid argument to reduce free will
to an illusion.
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INTRODUCTION

Internal Versus External Action Cues
The generation of self-intended action implies the cerebral
organization of goal-directed movements not evoked by an
explicit external cue. The prefrontal cortex has been strongly
implicated in such function (Frith et al., 1991; Miller and Cohen,
2001; Koechlin and Hyafil, 2007), which is further underscored
by symptoms that may arise from prefrontal impairment such
as a reduced initiative to undertake internally motivated actions
and enhanced responses to external stimuli (Lhermitte, 1983; De
Renzi and Barbieri, 1992; Burgess and Shallice, 1996; Godefroy,
2003). Particularly involvement of the medial prefrontal cortex
in free action selection has been emphasized (Lau et al., 2006;
Mueller et al., 2007; Haggard, 2008; Rushworth, 2008; Zapparoli
et al., 2017). This is in line with an influential model dissociating
medial and lateral frontal cortex contributions, associated with
internally and externally driven motor actions, respectively
(Passingham et al., 2010). Regarding the latter, external cues may
be seen as an intrinsic part of sensory information about the
external world, which is predominantly channeled along indeed
the lateral surface of the hemispheres, with strong parietal-
frontal interconnections that extend from a dorsal visual pathway
(Goodale and Milner, 1992).

On the other hand, self-intended action similarly implies
interaction with one’s environment, also in the temporal window
preceding actual performance. In self-intended action, however,
different from externally cued action, an initially neutral
constituent of one’s environment is assigned as a target of action,
immediately followed by the embodiment of an action plan,
i.e., recruitment of a body-scheme for selecting the appropriate
motor outflow channels. In the present paper, the distinction
of these two aspects of self-intended action (target assignment
and free effector selection) is elaborated in order to argue that
degrees of response freedom in a neuronal system underlying free
action selection is based on a multistage process, of which the
recording of brain activity before the perception of a free will
to act, need not be in conflict with the concept of consciously
intended action.

Without an overt external cue, the initiation of goal directed
action within a dynamic environment is strongly influenced
by internal reference parameters, enabling the assessment of
new environmental circumstances in the context of possible
action outcomes. In this, memorized experiences may set
the level of reward expected from such possible action
(Rolls, 2012). A default mode neuronal system, in which
indeed particular medial frontal regions participate, has been
postulated to facilitate the shift from an internal steady-
state to externally directed action planning (Raichle, 2015).
In addition, perceptual analysis of the meaning and/or emotional
load of new environmental characteristics, channeled along
a (ventral) occipito-temporal visual pathway (Goodale and
Milner, 1992) to the orbitofrontal cortex, medial prefrontal
cortex and basal ganglia may further reinforce the drive for
action (Wager et al., 2005; Carlson et al., 2011; Grabenhorst
and Rolls, 2011; Wunderlich et al., 2012; Schultz, 2015,
2016). In other words, perceptual analysis of environmental

constituents, framed in the context pre-existing (memorized)
information, may define a new target of action. Although
it goes beyond the scope of this paper to further elaborate
on the neuronal and neurochemical mechanisms implicated
in primary sources of internal drives for action, functions
and pathways of the monoaminergic transmitter systems
might be considered in this respect, given their role in
attention, vigilance and arousal (noradrenaline), depression,
impulsivity and anxiety (serotonin), reward expectation and
motivation (dopamine) (Robert and Benoit, 2008; Westbrook
and Braver, 2016). In a psychological context, such an internal
driving force has been linked to the concept of conation,
i.e., mental energy also required for sustained performance
(Reitan and Wolfson, 2000).

The afore described neuronal mechanisms may thus well
explain the internal generation of goal directed action, without
the necessity of introducing a self-conscious actor as the initiator
of voluntary action. On the other hand, the perception of a
“free will” to initiate action or refrain from it, as well as the
sense of agency, i.e., the feeling of being in control of one’s
actions, is an undeniable first-person experience. Although it
should be kept in mind that responses of a human subject need
to be epistemologically distinguished from responses of neuronal
tissue (de Jong, 1989; Bennett et al., 2007), a first challenge to
reconcile these different levels of scientific assessment is to find
associations between reported perception and distinct cerebral
activity underlying self-intended action. The experiment of Libet
addressed this issue and revealed that the onset of intention-
associated cerebral activity preceded the perception of one’s free
will to push a button by means of a finger movement, i.e.,
the awareness of a non-cued intention to move (Libet et al.,
1983; Haggard, 2008). This has been used as an argument that
the feeling of voluntary control may be characterized as an
illusion (Rolls, 2012): apparently, the sense of agency has no
causal relation with the actual initiation of action because it
follows such initiation. On the other hand, recent experimental
data indicate that neuronal processing underlying free selection
involves multiple stages of goal-directed action, both parallel and
in sequential order (Cisek and Kalaska, 2010; Cui and Andersen,
2011; Rushworth et al., 2012). This implies that unconscious and
conscious decision making may be complementary to and not
at odds with each other. Particularly the parietal contribution to
decision making provides conceptual arguments for associations
between free selection at the level of neuronal processing and
the perception of free will and sense of agency at subject level
(Sirigu et al., 1999, 2004; Farrer and Frith, 2002; Nahab et al.,
2011; Desmurget and Sirigu, 2012).

Regarding the Libet experiment one might oppose that the
advocated model of successive stages involved in the initiation of
internally generated action, perceived as self-intended, does not
directly apply to Libet’s design. Indeed, the latter did not address
a natural condition in which participants express spontaneous
self-intended actions in interaction with their environment;
participants were instructed to make a free choice in time
when to push a button. This implies that the task instruction
is kept in memory, while the button and a clock are the
external objects on which ongoing attention is focussed. In this
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respect, the Libet experiment is consistent with the postulated
multistage model of (free) action intention, in such a way
that the initial stage concerns an (unconscious) actualization
of the instruction kept in memory (“push the button”) while
subsequently, the button becomes an overt target again, with
the recruitment of one’s body scheme for (fixed) selection of
the finger used to push. This second stage is proposed to be
associated with the conscious experience of the self-intended act
to move, while a final stage before actual motor execution might
address final action consent or veto (internal no-go), mediated
by prefrontal interconnections (Chikazoe, 2010; de Jong, 2011;
Cieslik et al., 2015).

Parietal Motor Functions and Sense of
Agency
As described in the previous paragraphs, next to the shift
of a neutral environmental object into a target of action,
a representation of body-scheme is recruited to accommodate
free effector selection. At this stage, the parietal cortex is crucially
involved. This parietal involvement concerns multiple levels
of complexity, ranging from the somatotopic representation of
body parts and sensorimotor transformations to the perceived
sense of agency. Mapping the spatial relationships between
body parts to construct a body scheme (Maravita et al., 2003;
Longo et al., 2010; Sereno and Huang, 2014), channeling
sensorimotor transformations (Binkofski et al., 1999; de Jong
et al., 2001; Freund, 2001; Filimon, 2010; Heed et al., 2015) and
the initiation of invariantly instructed motor actions (Andersen,
1995; de Jong et al., 1999; Medendorp et al., 2008; Gallivan
et al., 2011) have become well-established parietal functions.
More recently, involvement of parietal-premotor circuitry in
free selection has highlighted that decision making may already
take place at early stages of visuomotor planning, without
prefrontal involvement (Platt and Glimcher, 1999; Shadlen
and Newsome, 2001; Cisek, 2007; Pesaran et al., 2008; Cisek
and Kalaska, 2010). Apparently, the brain employs a strategy
of initiating multiple potential motor plans of which one is
further elaborated, particularly in conditions of a dynamic
environment. This does not only hold for actions that require
a selection between distinct environmental targets, but also
concerns the variance how to execute a given motor task. The
latter is demonstrated by the increased activations in both dorsal
premotor and inferior parietal cortices related to free finger
selection, contrasted to the invariant condition of fixed finger
selection (Beudel and de Jong, 2009).

Beyond its contribution to early-stage decision making,
the parietal cortex exhibits unique fields at which direct
cortical stimulation may evoke the perceived urge to move a
specific body part (Desmurget et al., 2009). The coinciding
parietal involvement in both initiating internally generated
action and the perception of self-intended action implies
that (i) parietal circuitry is characterized by distinct degrees
of freedom in neuronal response patterns associated with
free motor selection and (ii) this neuronal circuitry can be
stimulated in such a way that the perception of self-intended
movement arises. Finally, the parietal cortex, in concert with

the cerebellum, plays a distinct role in predicting the sensory
consequences of goal-directed movement, which is an essential
component in motor preparation (McCloskey, 1981; Blakemore
and Sirigu, 2003; Poulet and Hedwig, 2007; Beudel et al.,
2011; Sokolov et al., 2017). But even more, matching such
predicted (feedforward) and actual (feedback) information,
dissociated from externally evoked sensation, appears to be
a neuronal mechanism associated with the emerging sense
of agency, i.e., attributing the effect of a motor action to
oneself (Blakemore et al., 1998; Blakemore and Sirigu, 2003;
Haggard, 2017). Misalignment of actual and predicted action
consequences may result in a reduced sense of agency and even
in the illusion of alien action control (Blakemore et al., 2002;
Voss et al., 2010). The notion of anticipated sensation may
further provide theoretical support for a model of a prospective
perception of free will (Metcalfe and Greene, 2007; de Jong, 2011;
Chambon et al., 2013).

To summarize, two successive stages were postulated
concerning the initiation of internally generated action, and
further specified in the preceding paragraphs. The first stage of
assigning an environmental “object” to become a target of action,
plausibly unconscious, is followed by a stage of organizing the
means how to perform such action, i.e., how to give “hands
and feet” to an action plan. At this second stage, recruitment
of a body-scheme is considered to be a prerequisite for the
free selection of an appropriate effector system. The parietal
involvement in such effector selection, in the context of the above
treated range of parietal functions, provides a strong argument
to infer that at this stage, an association can be made between
neuronal activity underlying free self-intended action and the
perception of a “free will” to initiate such action. While the onset
of cerebral activity related to self-intended action thus defines
the initial stage, the “second-stage” neuronal activity, which is
particularly implicated in free effector selection, and logically
associated with the emerging sense of free self-intended action,
remains causally involved in the multi-stage process of free
selections. In other words, the onset of brain signals prior to the
perceived sense of a free will is not a valid argument to reduce
free will to an illusion.

EXPERIMENTAL ILLUSTRATION

In the following paragraphs, a concise proof-of-principle
experiment will be briefly described, illustrating the serial order
of segregating (i) the shift from the neutral description of a
displayed ball into a target of action, and (ii) the recruitment of
body-scheme information for free effector selection. Regarding
the latter, the displayed surrounding of the presented ball may
implicitly influence the (free) selection of e.g., an arm or a leg to
employ performance with the ball.

Methods of the Experiment
Ten healthy male subjects (one left-hand preference) with a mean
age (SD) of 35.3 years (10.7) and ten healthy female subjects
aged 35.4 years (13.4), of which two had left-hand preference,
participated in the study. Aside from a personal history in
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FIGURE 1 | Displays of the ball as neutral object or a target. A series of the 6 displays of the ball is presented in the order 1–6. Subjects were asked to give a
specific description of features on the ball’s surface when images 1, 3, and 5 were presented. Images 2, 4, and 6 labeled the ball as a target for virtual (free chosen)
action. In the actual PowerPoint presentation used for the experiment, the instructions written at the bottom side of the images 1, 3 and 5 were a bit longer, e.g.,
image 1 was labeled with “write down the number of red dots you see.”

sports, no further subject data were filed. According to national
regulation in Netherlands, the absence of filing personal details
and the fact that the experiment did not inflict a burden on the
participants, it was not required to obtain approval from the
local Ethics Committee. In line with this strategy to refrain from
filing personal data, only oral informed consent was obtained.
Participants viewed a computer monitor displaying a power point
presentation with a series of 6 pictures, showing a ball that
remained at the same position in the center of the successive
images. Subjects were informed that various pictures of a ball
would be presented, each accompanied by either a question
concerning specific features of the ball or the label “action,”
written at the bottom of each display. They had to respond by
either writing the answer concerning the ball’s characteristics
or noting the virtual performance that came to their mind in
response to the “action” command. No examples were given,
subjects were told that the command for action meant that they
had to write down “what they would do.” It is important to
understand that, although both conditions in this design include
external commands, the “action command” (i) implied the shift
from the ball as a neutral object of description into a target of
action, and (ii) aimed to test that the obtained answer indeed
reflects the recruitment of an effector system, while the actual
effector is selected by the participant’s free choice.

The series of 6 trials (Figure 1) started with a picture of
the ball with its surface marked by adjacent pentagon-shaped
dots of various colors, placed on an empty gray background.
Subjects had to count the red dots. Next, the ball appeared in
black-and-white on the same empty background labeled with the
“action” command. The third picture was unchanged, however,
subjects had to note the number of straight lines on de ball
delineating two adjacent pentagon-shaped dots. Next, the same
ball was depicted with an outdoor goal in the background,

accompanied by the “action” command at the bottom. The
fifth picture was similar to the first, only now subjects had
to count the green dots. The final picture with the “action”
request framed the black-and-white colored ball with an indoor
korfball basket.

Experimental Results
All 20 subjects provided answers as requested. The descriptions
of the ball’s features (questions 1, 3, and 5) were generally correct.

TABLE 1 | Free self-intended virtual actions.

“Action”
Response

Distribution of Actions Implicit Effector

Given by
particiapants

Background scenery of the bal:

No Outdoor Indoor

context goal basket Sum

# Kicking 15 16 – Foot 31

# Seizing 3 (2F, 1Fa) – – Hand

# Catching – 1 (M) – Hand

# Throwing – 1 (Fa) 19 Hand, sum: 24

# Heading – 1 (M) – Head 1

# Counting
black dots

2 (1F, 1Mb) 1 (Mb) 1 (Mb) None 4

Sum 20 20 20 60

Table 1 lists the answers that were obtained from the 20 subjects in response to
the displays of the ball when accompanied by the request for virtual “action.” Before
the experiment, subjects were instructed to write down the virtual performance that
came to their mind at the appearance of each of the three “action” images.
M, male (n = 10); F, female (n = 10); (a) and (b) indicate two distict subjects.
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The 60 responses to the “action” commands that accompanied
displays 2, 4, and 6 are listed in Table 1. Fifty-six responses
concerned kicking, seizing, throwing or heading while 4 of 60
responses concerned counting of dots. The background clearly
influenced the choice that was made although the selection had
remained entirely free. With the basket in the background 19 of
20 subjects responded by the intention to throw the ball. A few
subjects commented that, in the empty background, the black-
and-white colored ball looked like a football, which was a reason
to indicate kicking it away.

COMMENTS ON THE EXPERIMENT

The answers given with regard to the specific features of the ball
were based on overt perception of these characteristics, which
fits the classical involvement of predominantly the ventral visual
pathway (Goodale and Milner, 1992). This involvement may
include both bottom-up and top-down information processing
(Zeki and Shipp, 1988; Roe et al., 2012). Although the “action”
trails were dominated by virtual performance, more covert
perception of the ball’s background clearly influenced the chosen
virtual action. In the initial phase of action initiation, with the
perceptual shift from the ball as a subject of visual assessment
into a target of action, its visual surrounding thus unconsciously
added further qualification of the target. In the next stage,
to achieve the intended action, a hand, foot, or the head
was implicitly chosen for virtually performing kicking, seizing,
throwing, or heading. This embodiment of an action plan
required the recruitment of one’s body scheme. In other words,
action aimed at the ball, an external object, was now linked to a
specific body part, which implies a link to oneself. It is therefore
at this stage, with the above argued involvement of particularly
parietal functions, that free effector selection may be logically
associated with the emerging perception of a free will of making
such selection.

The covert influence of the ball’s visual environment on free
effector selection points at interactions between the ventral and
dorsal visual pathways. Such interactions may be based on direct
temporal–parietal interconnection or mediated along temporal–
prefrontal pathways toward parietal circuitry (Goodale, 2011;
van Polanen and Davare, 2015; Milner, 2017). The presented
experiment with a single object (the ball) placed in various
conditions, differed from the more natural circumstance with
multiple environmental objects, of which one is assigned as

a target of action. Although the experimental and natural
circumstances both include the shift from a neutral object
into a target of action, there was no selection between
objects in the experiment. Unconscious object selection in
natural circumstances may be stronger embedded in a ventral
visual pathway fuelling top-down prefrontal-parietal interactions
(Grabenhorst and Rolls, 2011; Wunderlich et al., 2012), compared
to the more variable temporal-parietal interaction assumed in
this experiment (van Polanen and Davare, 2015). Not only the
ball’s background influenced the choice for action. Without
background features, the surface pattern of the ball may have
suggested a football, explaining the preference for kicking. In
response to e.g., a displayed bowling ball, kicking would have
been an unlikely choice.

CONCLUSION

At the initiation of free self-intended action, a succession of
multiple neuronal processing steps may be discerned. An initial
stage of unconsciously assigning a neutral object to become a
target of action is followed by a second stage of body-scheme
recruitment, enabling the selection of an effector to achieve
the intended action. While initially, intention is aimed at the
external target, the embodiment of an action plan represents the
subsequent linkage between the intended action and a specific
body part, thus linking the action to oneself. At this stage,
when particularly parietal functions are involved, free effector
selection may be logically associated with the emerging sense
of agency and perception of a free will in action control. This
postulated multistage neuronal processing underlying free action
selection underscores that the onset of brain signals prior to the
perceived sense of free will is not a valid argument to reduce
free will to an illusion. A multistage model, as presented in this
paper, may further lay ground for novel experimental designs
to explore various steps in the association between internally
generated action and the perception of such self-intended action,
aimed at providing a more accurate, and undisputed definition of
free will.
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