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Risky decision-making involves risky reward valuation, choice, and feedback processes. 
However, the temporal dynamics of risky reward processing are not well understood. Using 
event-related brain potential, we investigated the neural correlates of probability weight and 
money magnitude in the evaluation of a risky reward. In this study, each risky choice consisted 
of two risky options, which were presented serially to separate decision-making and option 
evaluation processes. The early P200 component reflected the process of probability weight, 
not money magnitude. The medial frontal negativity (MFN) reflected both probability weight 
and money magnitude processes. The late positive potential (LPP) only reflected the process 
of probability weight. These results demonstrate distinct temporal dynamics for probability 
weight and money magnitude processes when evaluating a risky outcome, providing a 
better understanding of the possible mechanism underlying risky reward processing.
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INTRODUCTION

Risky decision-making, which involves trade-offs between lotteries with differing magnitude 
and uncertainty, is ubiquitous in everyday life. Therefore, when making decisions among risky 
rewards, it is necessary to evaluate the subjective value of each risky reward. The subjective 
value of a risky reward depends on its probability and magnitude (Tversky and Kahneman, 
1981; Brown and Braver, 2007). Prospect theory, an influential model of risky decision-making, 
suggests that the subjective value of a risky outcome depends on gains or losses relative to 
status quo and probability weighting function (Kahneman and Tversky, 1979; Camerer, 2000).

The neurocognitive mechanisms underlying risky decision-making involve several processes: 
valuation, choice, and feedback (Rangel et  al., 2008; Liu et  al., 2012). Previous neuroscience 
studies focused on the choice and feedback processes of risky decision-making, but the 
neural correlates for valuation of risky rewards are not well understood (see review by 
Chandrakumar et  al., 2018). The focus of this study is on the temporal dynamics of the 
valuation process of risky rewards using an event-related brain potential (ERP) technique.
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Neuroimaging studies have demonstrated that a number of 
brain regions including the ventromedial prefrontal cortex, 
amygdala, insula, anterior cingulate cortex (ACC), striatum, 
parietal, and temporal cortices are implicated in risk processing 
(Paulus and Frank, 2006; Berns et  al., 2008; Hsu et  al., 2009; 
Blankenstein et al., 2018). Several studies investigated the neural 
correlates of probability and magnitude of a risky reward. Berns 
and Bell (2012) measured independently the neural responses 
to magnitude and probability of a risky outcome by displaying 
serially magnitude and probability information. They found 
that the ventral and dorsal striatum were involved in the 
processes of magnitude and probability, respectively. These 
results demonstrate a second-order decision process, in which 
participants integrate judgments instead of information. In a 
study by Smith et al. (2009), high reward elicited more activation 
in several brain regions including the insula, amygdala, and 
posterior cingulate cortex when other parameters were held 
constant, as opposed to low reward. Low-probability reward 
induced more activation in the ACC than high-probability 
reward when other parameters were held constant.

Eye-tracking methodology has been used to investigate 
processes in risky decision-making (Rayner, 1998; Glöckner 
and Herbold, 2011). These studies suggested that risky decision-
making relied mainly on automatic-intuitive processes, which 
were partially accounted for by automatic integration or simple 
heuristic models (Glöckner and Herbold, 2011; Fiedler and 
Glöckner, 2012; Venkatraman et  al., 2014; Aimone and Ball, 
2016). Eye-tracking studies have focused on risky choices in 
which two gambles were displayed simultaneously. Such 
paradigms did not allow us to distinguish valuation and choice 
processes. Furthermore, in real world, individuals usually face 
risky choice options serially.

Existing event-related brain potential (ERP) studies of risky 
decision-making focused on responses to risk-related decision 
and feedback. Only a minority of ERP studies have focused 
on the neural response to risky options (see review by 
Chandrakumar et  al., 2018). Both feedback-related negativity 
(FRN) and P300 are two important ERP components involved 
in the risk process. The FRN, which is often known as reward 
positivity (RewP) associated with outcomes processing in the 
context of gains in contrast with losses (Foti et al., 2012; Proudfit, 
2015; Yaple et al., 2018a,b), is larger following negative feedback 
relative to positive feedback (Wu and Zhou, 2009; Polezzi et al., 
2010; Yang and Zhang, 2011; Yang et  al., 2015; Zhao et  al., 
2016; Kardos et al., 2017). The P300, which is thought to reflect 
the outcome of stimulus evaluation and decision-making, was 
pronounced in response to the selection of a risky option and 
positive feedback (Yeung and Sanfey, 2004; Sato et  al., 2005; 
Oberg et  al., 2011; Schuermann et  al., 2012; Wang et  al., 2015).

While previous ERP studies have yielded important insights 
into the neural mechanisms of risky decision-making, there 
are limitations. First, risky decision-making involves valuation 
and choice processes, with evaluation of a risky reward most 
relevant to the valuation process (Rangel et al., 2008; Liu et al., 
2012). Previous ERP paradigms, in which the participants’ task 
was to decide whether or not to accept a risky bet, did not 
allow one to distinguish among valuation and choice processes. 

Furthermore, evaluation of a risky reward involves its probability 
weight and magnitude, but previous ERP studies did not focus 
on these two components.

In this study, we  developed a risky choice task to investigate 
neural mechanisms underlying probability weight and magnitude 
of risky rewards based on study paradigms derived from the 
intertemporal choice literature (Pine et al., 2009; Xia et al., 2017), 
given that there are a number of similarities between delay and 
probability discounting (Green and Myerson, 2004; Madden and 
Bickel, 2010; McKerchar and Renda, 2012). In our paradigm, 
each choice consisted of two risky options, which were first 
presented serially, then presented simultaneously. This allowed us 
to separate risky rewards valuation and selection processes. By 
controlling for the effects of probability and magnitude respectively, 
we  could explore the neural mechanisms underlying probability 
weight and magnitude during evaluation of a risky reward.

According to previous research, several ERP components are 
associated with magnitude and probability processes. Based on 
these, we analyzed the ERP response related to probability weight 
and money magnitude in the evaluation of a risky reward. Since 
frontal P200 may be  involved in stimulus evaluation and quick 
assessment (Boudreau et  al., 2009; Lau et  al., 2013), a hypothesis, 
in which the frontal P200 would reflect the difference between 
high- and low-probability rewards, was proposed. A second 
evaluated component was medial frontal negativity (MFN)1, which 
represents the early appraisal of feedback and is more pronounced 
for bad outcomes compared to good outcomes (Hajcak et  al., 
2006; Holroyd et  al., 2006; Hewig et  al., 2007; Boksem and de 
Cremer, 2010; Huang and Yu, 2014; Umemoto et  al., 2017). In 
this study, when the magnitude of options was held constant, 
the high-probability rewards were considered “good” outcomes 
compared to low-probability rewards. Therefore, we predicted that 
the MFN would reflect the difference between high- and 
low-probability rewards. Similar predictions for the magnitude of 
risky rewards were made. Furthermore, the P300 has been shown 
to be  sensitive to outcome evaluation, including the magnitude 
and valence of rewards (Goyer et  al., 2008; Wu and Zhou, 2009; 
Harris et  al., 2013; Righi et  al., 2014). It is possible that the P300 
would also encode the probability weight of risky rewards. Therefore, 
we hypothesized that the P300 or a later component would reflect 
the process of probability weight and money magnitude.

MATERIALS AND METHODS

Participants
A total of 20 right-handed undergraduates were recruited. Twelve 
females and eight males participated. They were 20–25  years 

1The MFN is a class of ERP components which include the FRN and 
ERN. The MFN has been proposed to reflect a motivational/affective 
evaluation of negative outcomes. Both feedback and stimulus information 
elicit MFN. The MFN in the context of feedback-locked ERPs could reflect 
whether outcomes matched expectations, while the MFN in the context 
of stimulus-locked ERPs could reflect whether the events violated (social 
and non-social) expectancy (Holroyd and Coles, 2002; Goyer et al., 2008; 
Boksem and de Cremer, 2010; Schuermann et al., 2012). This study focused 
on stimulus-locked ERPs.
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of age with a mean age of 22.35 (SD  =  1.59). All participants 
had normal or corrected-to-normal visual acuity and no history 
of neurological or mental disease. All subjects signed an informed 
consent prior to the experiment, which was performed in 
accordance with the Declaration of Helsinki and was approved 
by the Ethics Committee of Reinhard Selten Laboratory, Nankai 
University. The participants received an average of 65 Chinese 
yuan (approximately $10) (Krajbich et  al., 2012; Li et  al., 2016; 
Yaple et  al., 2017, 2018a,b).

Task and Stimuli
According to Prospect Theory (Kahneman and Tversky, 1979), 
the subjective value (V) of a risky gamble is given by:

 V p u x
i

n

i i= ( ) ( )
=
å

1

p

In the present study, we  focused on the evaluation of risky 
rewards. Therefore, each risky option consisted of a risky reward 
and a zero reward. Therefore, the subjective value (V) of a 
risk option was expressed as:

 V p u x= ( )´ ( )p

The function π(p) represents the subjective probability to 
objective probability p, with u(x) the undiscounted utility of 
a reward (x).

This study tried to explore neural processing of probability 
weight and money magnitude of a risky reward. Since the 
subjective value of a risky reward is determined by the 
magnitude and probability of its receipt, an experimental 
paradigm was designed to allow comparison based on: (1) 
different probabilities but same money magnitude, and (2) 
different money magnitude but same probability. To obtain 
subjective utility related to probability, two types of stimuli 
were considered: winning CNY50 at the probability of 0.2 

(low probability, LP) and CNY50 at the probability of 0.5 
(high probability, HP). Similarly, for money magnitude, 
we  considered two types of stimuli: winning CNY15 at the 
probability of 0.66 (small magnitude, SM) and CNY40 at the 
probability of 0.66 (large magnitude, LM). In addition, in 
order to improve the reality of the experiment and decrease 
the risk that participants will be bored, some stimuli including 
CNY10 by 0.99, CNY30 by 0.33, CNY60 by 0.33, and CNY20 
by 0.99 were defined as filling materials.

The task of the participants was to choose between two 
options with different magnitude and probability of occurrence. 
Each option of a choice was presented serially to separate 
decision-making and option valuation processes. At the end 
of the experiment, two of the participant’s choices were selected 
at random and used for subject payment.

Procedure
The rules of the experimental task were instructed to the 
participants by explaining written instructions. The task was 
performed in a quiet and isolated laboratory. The participants 
were told that they would be  paid for participation after 
completion of the experiment. The recording session took 
approximately 30  min.

After 8 practice trials, a total of 100 trials were randomly 
divided into 2 blocks with 50 trials each. Each trial was created 
through the following sequence. In each trial, a cross was 
first displayed in the center of a screen for 800–1,200  ms. 
Afterward, option 1 was presented for 1,500  ms. Then, after 
a cross of 800–1,200  ms, option 2 was presented for 1,500  ms. 
Next, the choice was displayed until a response had been 
made. The presentation of the two options for each type of 
stimuli was counterbalanced in a random order across trials. 
Then, their choice was shown for 1,000  ms, after which a 
blank screen was displayed for 1,000  ms, and then the next 
trial started (Figure 1).

FIGURE 1 | Sequence of trail events.
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Electroencephalography (EEG)  
Recording and Analysis
EEGs were continuously acquired at a 1,000  Hz sampling rate 
with a Neuroscan Synamp2 Amplifier, by using an electrode cap 
with Ag/AgCl electrodes mounted according to the extended 
international 10–20 system. The EEG signals were amplified online 
(band pass: 0.05–100  Hz). All rows of electrode recordings were 
referenced online to the left mastoid, and they were re-referenced 
offline to the average of the left and right mastoid. Electrode 
impedance was kept under 5 kΩ. Following the electrode application, 
the participants sat in a comfortable chair located in a shielded 
room and were asked to fix on the center of the computer 
display located 1 m away from their eyes during the experiment.

EEG epochs of 1,000  ms (from −200 to 800  ms after the 
onset of stimulus) were extracted offline, and the 200-ms 
pre-stimulus defined as baseline. Ocular artifacts were 
corrected. Trials contaminated by amplifier clipping, bursts 
of electromyographic activity or peak-to-peak deflection 
exceeding ±75  μV were excluded from further analysis. The 
remaining trials were baseline corrected. The EEG segments 
were averaged separately for probability type (HP vs. LP) 
and magnitude type (LM vs. SM). Averaged ERPs were digitally 
filtered with a low-pass filter at 30 Hz. Within-subject repeated 
measure analysis of variance (ANOVA) were used to analyze 
ERP data. Behavior and ERP data were statistically analyzed 
using SPSS (version 22, SPSS Inc., Chicago, IL, USA). A 
Greenhouse-Geisser correction for violation of sphericity 
assumption was applied when the degrees of freedom were 
more than one. The significance level was set at 0.05 for all 
analyses. To control for family-wise error for multiple t-tests, 
p were Bonferroni corrected.

Based on the visual inspection of the grand-average 
waveforms, three components were analyzed. The frontal 
P200 was measured as peak amplitude between 150 and 
250  ms after stimulus onset at F3, Fz, F4, FC3, FCz, and 
FC4 (Polezzi et  al., 2008; Molinaro and Carreiras, 2010; Gui 
et  al., 2016). The MFN component was measured as peak 
amplitude between 250 and 350  ms after stimulus onset at 
F3, Fz, F4, FC3, FCz, and FC4 (Boksem and de Cremer, 
2010; Schuermann et  al., 2012; Huang and Yu, 2014; Xia 
et  al., 2017). The LPP was measured as mean amplitude 
between 450 and 650  ms after stimulus onset at CP3, CPz, 
CP4, P3, Pz, and P4 (Harris et  al., 2013; Righi et  al., 2014; 
Gui et  al., 2016). ERP analyses were conducted by repeated-
measure ANOVAs, with electrode (for P200 and MFN: F3, 
Fz, F4, FC3, FCz, and FC4, for LPP: CP3, CPz, CP4, P3, 
Pz, and P4) and probability (high, low), and electrode and 
magnitude (large, small), respectively.

RESULTS

Behavioral Results
Behavioral results are shown in Table 1. For the choice of 
CNY50 by 0.2 probabilities and CNY15 by 0.66 probabilities, 
44.60% of decisions chose the former. For the choice of CNY50 
by 0.5 probabilities and CNY40 by 0.66 probabilities, 38.73% 

of decisions chose the former. The average response time was 
775.98  ms (SD  =  611.5195) and 719.52  ms (SD  =  413.1792), 
respectively. For the choice of CNY50 by 0.2 probabilities and 
CNY40 by 0.66 probabilities, all decisions chose the latter. For 
the choice of CNY50 by 0.5 probabilities and CNY15 by 0.66 
probabilities, 95.24% of decisions chose the former. The average 
response time was 550.69  ms (SD  =  204.8855) and 590.89  ms 
(SD  =  268.96), respectively.

Participants took more response time to make decision 
between the choices in which the expected value of two options 
was similar, compared to choices in which there was large 
difference between the expected values of two options (p = 0.02). 
Based on formal logic, when the expected value of each option 
of a risky choice is similar, the higher level of conflict requires 
more brain resources for conflict resolution, which results in 
more response time.

Behavioral data showed that participants chose the option 
with largest expected value. This is consistent with previous 
studies and demonstrates that participants clearly understood 
the experimental task.

ERP Results for Probability Weight
P200
Figure 2 shows ERP waveforms and topographic maps for 
probability processes at Fz and FCz electrodes. In the frontal 
area, there was a significant main effect of P200 for probability 
levels [F(1, 19)  =  8.309, p  =  0.010, η2  =  0.304], no main effect 
for laterality [F(2, 38)  =  3.899, p  =  0.051, η2  =  0.170], and 
no interaction between probability levels and laterality [F(2, 
38)  =  2.160, p  =  0.145, η2  =  0.102] were found. In the frontal-
central scalp area, significant main effects were found for 
probability levels [F(1, 19)  =  7.586, p  =  0.013, η2  =  0.285] 
and laterality [F(2, 38)  =  5.117, p  =  0.017, η2  =  0.212]. There 
was no interaction between probability levels and laterality 
[F(2, 38)  =  2.288, p  =  0.126, η2  =  0.107]. High-probability 
rewards elicited more positive P200 than low-probability ones 
when the magnitude was kept constant.

MFN
As shown in Figure 2, in the frontal area, significant main effects 
of MFN were observed for probability levels [F(1, 19)  =  10.389, 
p = 0.004, η2 = 0.353] and laterality [F(2, 38) = 5.490, p = 0.024, 
η2  =  0.224], but no interaction was found between probability 
levels and laterality [F(2, 38)  =  1.656, p  =  0.211, η2  =  0.080]. 
In the frontal-central area, significant main effects of MFN were 
observed for probability levels [F(1, 19)  =  12.067, p  =  0.003, 
η2 = 0.388] and laterality [F(2, 38) = 5.443, p = 0.020, η2 = 0.223]. 

TABLE 1 | Behavioral results.

Choice type  
(option 1: option 2)

Percentage of 
option 1

Response 
time

Standard 
deviation

CNY 50 by 0.2: CNY 15 by 0.66 44.60% 775.98 611.5195
CNY 50 by 0.2: CNY 40 by 0.66 0.00% 550.69 204.8855
CNY 50 by 0.5: CNY 15 by 0.66 95.24% 590.89 268.9600
CNY 50 by 0.5: CNY 40 by 0.66 38.73% 719.52 413.1762
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There was no interaction between probability levels and laterality 
[F(2, 38)  =  3.594, p  =  0.053, η2  =  0.159]. These results showed 
that low-probability rewards elicited more negative MFN than 
high-probability ones, when the magnitude was kept constant.

LPP
Figure 3 shows ERP waveforms and topographic maps for 
probability processes at Pz and CPz electrodes. In the parietal 
area, a significant main effect for LPP was found for probability 
levels [F(1, 19)  =  17.599, p  =  0.000, η2  =  0.481]. There were 
no significant main effect for laterality [F(2, 38) = 2.418, p = 0.105, 
η2  =  0.113] and no interaction between probability levels and 
laterality [F(2, 38)  =  0.032, p  =  0.935, η2  =  0.002]. In the 
central-parietal area, significant main effects for LPP was found 
for probability levels [F(1, 19)  =  19.374, p  =  0.000, η2  =  0.505] 
and laterality [F(2, 38)  =  3.884, p  =  0.043, η2  =  0.170], but no 
interaction was found between probability levels and laterality 
[F(2, 38) = 0.033, p = 0.934, η2 = 0.002]. These results demonstrated 
that high-probability rewards elicited more positive LPP than 
low-probability ones, when the magnitude was kept constant.

ERP Results for Money Magnitude
P200
Figure 4 shows ERP waveforms and topographic maps for 
money magnitude at Fz and FCz electrodes. In the frontal 
area, there were no significant P200 effect for reward magnitude 
[F(1, 19)  =  0.093, p  =  0.764, η2  =  0.005] and no interaction 
between magnitude and laterality [F(2, 38)  =  0.045, p  =  0.921, 

η2  =  0.002]. But there was significant P200 effect for laterality 
[F(2, 38) = 7.140, p  =  0.002, η2  =  0.273]. In the frontal-central 
area, no significant P200 effects were observed for magnitude 
levels [F(1, 19)  =  0.095, p  =  0.761, η2  =  0.005] and laterality 
[F(2, 38) = 1.716, p = 0.198, η2 = 0.083]. There was no interaction 
between magnitude levels and laterality [F(2, 38)  =  0.059, 
p  =  0.878, η2  =  0.003].

MFN
As shown in Figure 4, in the frontal area, significant main 
effects for MFN were found for magnitude levels [F(1, 19) = 6.380, 
p = 0.021, η2 = 0.251] and laterality [F(2, 38) = 13.866, p = 0.000, 
η2  =  0.422], but no interaction was found between magnitude 
levels and laterality [F(2, 38)  =  1.461, p  =  0.246, η2  =  0.071]. 
In the frontal-central area, significant main effects for MFN were 
found for magnitude levels [F(1, 19) = 5.619, p = 0.029, η2 = 0.228] 
and laterality [F(2, 38)  =  9.404, p  =  0.001, η2  =  0.331], but no 
interaction was found between magnitude levels and laterality 
[F(2, 38) = 0.735, p = 0.454, η2 = 0.037]. Given same probability 
weight, small rewards elicited more positive MFN than large ones.

LPP
Figure 5 shows ERP waveforms and topographic maps for 
magnitude at Pz and CPz electrodes. In the parietal area, no 
significant main effect of LPP was found for magnitude levels 
[F(1, 19)  =  1.937, p  =  0.180, η2  =  0.093] and no interaction was 
found between magnitude levels and laterality [F(2, 38)  =  1.867, 
p  =  0.176, η2  =  0.089]. There was no significant main effect for 

FIGURE 2 | Grand-averaged ERP waves at electrodes Fz and FCz for probability and topographic maps for P200 and MFN.
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laterality [F(2, 38) = 1.651, p = 0.208, η2 = 0.080]. In the central-
parietal area, no significant main effects of LPP were found for 
magnitude levels [F(1, 19)  =  1.431, p  =  0.246, η2  =  0.070] or 

laterality [F(2, 38) =1.804, p = 0.186, η2 = 0.087], and no interaction 
was found between magnitude levels and laterality [F(2, 38) = 0.676, 
p  =  0.473, η2  =  0.034].

FIGURE 3 | Grand-averaged EPR waveforms at electrodes Pz and CPz for probability, and topographic maps for LPP.

FIGURE 4 | Grand-averaged EPR waveforms at electrodes Fz and FCz for magnitude, and topographic maps for P200 and MFN.
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Relationships Among Evaluation and  
Risky Decision-Making Behaviors
In the present study, there were two types of normal choices: 
CNY50 by 0.2 probabilities (expected value (EV)  =  10) and 
CNY15 by 0.66 probabilities (EV = 9.9), CNY50 by 0.5 probabilities 
(EV  =  25) and CNY40 by 0.66 probabilities (EV  =  26.4). Based 

on behavioral results, participants were divided into groups. 
For the choice of CNY50 by 0.2 and CNY15 by 0.66, 9 participants 
(LH) almost chose the former and 11 participants (LL) almost 
chose the latter. For the choice of CNY50 by 0.5 probabilities 
and CNY40 by 0.66 probabilities, 8 participants (HH) almost 
chose the former and 12 participants (HL) almost chose the latter.

FIGURE 5 | Grand-averaged EPR waves at electrodes Pz and CPz for magnitude, and topographic maps for LPP.

FIGURE 6 | Grand-averaged EPR waves at electrode Fz for different groups (HH, HL).
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We conducted independent t-test using ERP data on Fz to 
analyze the correlation among valuation of risky rewards and 
risky decision-making behaviors (Figure 6). Statistical results 
showed that there was no significant ERP difference between 
LH and LL groups when they observed CNY50 by 0.2 and 
CNY15 by 0.66, respectively. However, when observing CNY50 
by 0.5 and CNY40 by 0.66 respectively, HH and HL groups 
displayed different ERP valuation. For CNY50 by 0.5, there 
was no significant ERP difference between HH and HL groups, 
but for CNY40 by 0.66, two types of participants expressed 
different valuation. For P200 component, the mean amplitudes 
were 1.1040 and 4.9620 μV in HH and HL groups, respectively 
(t  =  −2.025, df  =  18, p  =  0.058). For MFN component, the 
mean amplitudes were −4.0098 and 0.2311  μV in HH and 
HL groups, respectively (t  =  −1.675, df  =  18, p  =  0.111). For 
the LPP component, the mean amplitudes were −1.8682 and 
4.5597  μV in HH and HL groups, respectively (t  =  −2.437, 
df  =  18, p  =  0.025).

DISCUSSION

Risky decision-making involves risky reward valuation, choice, 
and feedback processes. This study focused on risky reward 
valuation. This investigation assessed the neural dynamics 
involved in the processing of probability weight and money 
magnitude. ERP results demonstrated distinct temporal dynamics 
for probability weight and money magnitude processes. The 
early frontal P200, MFN, and LPP components all represented 
the process of probability weight; however, only the MFN 
component was associated with the process of money magnitude 
when evaluating a risky reward.

Frontal P200 revealed a significant main effect of probability 
weight on the frontal and frontal-central areas, but no significant 
main effect of money magnitude for a risky reward. 
Low-probability reward elicited less positive P200 amplitude 
when compared to high-probability reward at the same 
magnitude. Previous studies showed that P200, the probable 
sources of which may be  the mesotelencephalic dopamine 
reward system, likely associates with stimulus evaluation and 
quick assessment (Boudreau et  al., 2009; Chen et  al., 2009). 
The P200 component has been shown to be  involved in 
attention to relevant cues including reward-related stimuli 
(Molinaro and Carreiras, 2010; Lau et  al., 2013; Gui et  al., 
2016). Several ERP studies, which explored the processing of 
reward, found that a reward condition elicited larger P200 
compared to a non-reward condition (Martin and Potts, 2004; 
Franken et  al., 2010). The relationships between low- and 
high-probability rewards were similar to those relationships. 
Schuermann et  al. (2012) found that P200 was enhanced on 
negative feedbacks in high-risk compared to low-risk choices, 
which suggests that large negative prediction errors are already 
processed in the P200 time range. Hence, our findings are 
consistent and suggest that participants detected the initial 
feature of probability, not magnitude at the early stage of 
risky option processing.

The MFN component, which reflects the impact of 
dopamine-dependent reward signals on the ACC, may represent 
the evaluation of reward value (Gehring, 2002; Holroyd and 
Coles, 2002; Proudfit, 2015). In the present study, consistent 
with this classical theory, the MFN component showed 
significant main effects of both probability weight and money 
magnitude of a risky reward. Given the same magnitude, 
low-probability options evoked a more negative MFN as 
compared to high-probability options. Moreover, small 
magnitude induced a more pronounced MFN than large 
magnitude for the same probability weight. Existing studies 
demonstrated that the MFN component reflects the early 
appraisal of feedback, in which the MFN response to 
unfavorable outcomes is larger compared to favorable outcomes 
(Holroyd et  al., 2006; Goyer et  al., 2008; Boksem and de 
Cremer, 2010; Broyd et  al., 2012; Huang and Yu, 2014; 
Umemoto et  al., 2017). Our results are consistent with those 
findings. Since risky decision-making is ubiquitous, high-
probability rewards are considered better than low-probability 
ones for the same magnitude. In other words, a high-probability 
reward is a “good” outcome, relative to a low-probability 
reward when the magnitude is constant. Likewise, large 
rewards are considered better than small rewards with the 
same probability weight.

The LPP component has been mainly associated with 
affective and emotional processing (Ferrari et  al., 2011; 
Righi et  al., 2012). Many studies have found positive and 
negative stimuli to elicit larger LPP amplitude than neural 
stimuli, which suggests that more brain resources are allocated 
to affective stimuli (Foti and Hajcak, 2008; Hua et  al., 
2014; Zhang et  al., 2014; Guo et  al., 2018). In this study, 
LPP was more positive for high-probability than 
low-probability reward, demonstrating that participants paid 
more attention to high-probability reward. The study of 
Harris et  al. (2013) found that LPP reflected process 
differences between liked and disliked food items. Those 
results suggest LPP is related to valuation modulation. The 
relationship between liked and disliked foods is similar to 
that between high- and low-probability rewards. Wu et  al. 
(2011) investigated the neural response to selection of risky 
rewards. They found that medial prefrontal cortex (mPFC) 
involved in the process of magnitude, and mPFC and ACC 
correlated with probability. Given that P300 and LPP 
amplitude variation is related to the striatum (Pfabigan 
et  al., 2014) and the MFN is correlated with ACC and 
mPFC (Gehring, 2002; Boksem and de Cremer, 2010), their 
findings support our conclusions.

In summary, this study investigated neural dynamics of the 
processes associated with probability weight and money 
magnitude in the evaluation of a risky reward. ERP results 
demonstrated P200, MFN, and LPP components to reflect the 
processing of probability weight, while only the MFN component 
reflected the processing of money magnitude when evaluating 
a risky reward. These findings contribute to an understanding 
of the temporal course of processing probability weight and 
money magnitude during risky choices.
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